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ARTICLES

Image charges in spherical geometry: Application to colloidal systems
René Messinaa)

Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

~Received 9 May 2002; accepted 24 September 2002!

The effects of image charges~i.e., induced surface charges of polarization! in spherical geometry
and their implication for charged colloidal systems are investigated. We study analytically and
exactly a single microion interacting with a dielectric sphere and discuss the similarities and
discrepancies with the case of a planar interface. By means of extensive Monte Carlo simulations,
we study within the framework of the primitive model the effects of image charges on the structure
of the electrical double layer. Salt-free environment as well as salty solutions are considered. A
remarkable finding of this study is that the position of the maximum in the counterion density
~appearing at moderately surface charge density! remains quasi-identical, regardless of the
counterion valence and the salt content, to that obtained within thesingle-counterion system.
© 2002 American Institute of Physics. @DOI: 10.1063/1.1521935#

I. INTRODUCTION

In charged colloidal systems electrostatic effects, and es-
pecially the structure of the electrical double layer, often play
a determinant role for their physico-chemical properties. It is
well known that charged colloids~i.e., macroions! have typi-
cally a low dielectric constant («r'2 – 5) which is much
smaller than that of the surrounding solvent~e.g., for water
«r'80). In most of the theoretical works, this dielectric dis-
continuity is ignored.

Nevertheless, a few studies have addressed the effects of
image charges~i.e., image forces stemming from the dielec-
tric discontinuity! on the counterion distribution for planar
geometry which is closely related to our problem. An
electrolyte close to a charged wall1,2 or confined between two
charged plates3 had been the subject of MC simulations.
Similar systems have also been investigated by
integral-equation4–6 and mean field theories.7–9

As far as the spherical geometry is concerned, much less
literature is available. Counterion distributions with image
forces in salt-free environment were investigated by MC
simulations.10 There some approximations for the treatment
of the image forces were used that are not always fully con-
trolled. The main conclusions however remain qualitatively
correct.

The aim of this paper is to provide a detailed analysis of
the image forces in spherical geometry and their effects on
the structure of the electrical double layer. The remainder of
this article is set out as follows. Section II corresponds to the
analytical part of the paper. We first briefly present the gen-
eral theoretical background of the concept of image charges
in spherical geometry. Then we apply it to colloidal systems
to compute~exactly! some relevant observables and discuss

our results. Section III is devoted to the computational de-
tails of our MC simulations. In Sec. IV, we present our simu-
lation results for salt-free environment as well as salty solu-
tions where image forces are explicitly taken into account
with no approximation. Finally, Sec. V contains brief con-
cluding remarks.

II. THEORY

In this part we mainly study the interaction of asingle
excess charge with a dielectric sphere. We briefly present the
formalism of the dielectric model for spherical interfaces and
discuss some important electrostatic properties. Such a sys-
tem captures the underlying physics of image forces in
spherical geometry. Moreover a systematic quantitative com-
parison with the planar geometry is undertaken.

A. Poisson equation with azimuthal symmetry

The model system is sketched in Fig. 1. Consider an
uncharged dielectric sphere of radiusa and dielectric con-
stant ~relative permittivity! «2 embedded in an infinite di-
electric medium~region 1! characterized by«1 . A single
excess charge of magnitudeq is located outside the dielectric
sphere at a distanceb5ubu from its center.

The central problem is to determine the electrostatic po-
tential F(r) at any point in the space. This is achieved by
solving the Poisson equation which reads

DF~r!52

r~r!

«
, ~1!

wherer(r) is the volume charge density and«5«0« i with
«0 being the vacuum permittivity andi51,2. Since here
r(r)5qd(r2b) and taking into account the azimuthal sym-
metry, Eq.~1! reduces~for rÞb) to the Laplace equation
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dress: Institut fu¨r theoretische Physik II, Heinrich-Heine-Universita¨t Düs-
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DF~r,u !5

1

r2

]

]r S r2
]F

]r D1

1

r2

1

sinu

]

]u S sinu
]F

]u D50,

~2!

where u is the angle betweenr and b ~see Fig. 1! and r
5uru. The general solution of the Laplace equation with azi-
muthal symmetry is given by12–14

F~r,u !5(
l50

` FM lr
l
1N l

1

r l11GP l~cosu !, ~3!

where P l(cosu) is the associated Legendre polynomial of
order l.

Inside the dielectric sphere~region 2! the electrostatic
potentialF2(r) must be finite atr50 so thatN l50 in Eq.
~3!, and hence

F2~r,u !5(
l50

`

A lr
lP l~cosu !. ~4!

Concerning the electrostatic potential outside the dielec-
tric sphere~region 1! we know that without dielectric discon-
tinuity ~at r5a) the potential would simply be given by
q/4p«0«1ur2bu. Making use of the following identity

1

ur2bu
5(

l50

` r
,

l

r
.

l11
P l~cosu !, ~5!

wherer, (r.) is the smaller~larger! of r andb, the electro-
static potentialF1(r) in region 1 reads11

F1~r,u !5(
l50

` FC l

1

r l11
1

q

4p«0«1

r
,

l

r
.

l11GP l~cosu !, ~6!

recalling thatF1(r) must be finite atr→` so thatM l50 in
Eq. ~3!.

B. Boundary conditions

The electrostatic potentials given by Eqs.~4! and~6! will
be univocally determined by applying the proper boundary
conditions that will fixA l andC l . The boundary conditions
are derived from the full set of Maxwell equations. The re-

sults are that the normal components of the displacementD
and the tangential components ofE on either side of the
spherical interface atr5a satisfy

~D12D2!•n1250

~E12E2!3n1250, ~7!

wheren125r/r is a unit normal vector to the surface directed
from region 2 to region 1~see Fig. 1!. Within the framework
of the linear response theory we haveD5«E. Combining
Eqs. ~4! and ~6! with Eq. ~7! and noting thatE52¹F, it
follows that

«2A lla
l21

5«1F2C l

l11

a l12
1

q

4p«0«1

la l21

b l11 G
A la

l
5C l

1

a l11
1

q

4p«0«1

a l

b l11
. ~8!

This set of two equations@Eq. ~8!# can be readily solved to
yield the Legendre coefficientsA l andC l :

A l5
q

4p«0«1

1

b l11

«1~2l11!

«1~ l11!1«2l

C l5
q

4p«0«1

a2l11

b l11

~«12«2!l

«1~ l11!1«2l
~9!

and hence

F1~r,u !5

q

4p«0«1
F 1

ur2bu

1(
l51

`
a2l11

b l11

~«12«2!l

«1~ l11!1«2l

1

r l11
P l~cosu !G .

~10!

The physical interpretation of Eq.~10! is straightforward.
The first term represents the usual electrostatic potential
~without image forces! generated byq and the second term
can be referred to as the electrostatic potential due to ‘‘image
charges’’ stemming from the dielectric discontinuity. As ex-
pected, the strength of the image force is strongly governed
by the jumpD« in the dielectric constant defined as

D«5«12«2 . ~11!

In particular, one can anticipate and state that the interaction
between the microionq and the dielectric particle~i.e., the
self-image interaction! is repulsive for D«.0 ~i.e., «1

.«2) andattractive for D«,0 ~i.e.,«1,«2) as it is also the
case in planar geometry.

One can show that Eq.~10! can also be written as fol-
lows ~see, e.g., Ref. 15 and references therein!

F1~r,u !5

q

4p«0«1
H 1

ur2bu
1

«12«2

«11«2

1

a F u

ur2uu

2

«1

«11«2
E

0

u ~u/x !«2 /(«11«2)

ur2xu
dxG J , ~12!

FIG. 1. Model for a dielectric sphere~colloid! of dielectric constant«2

embedded in an infinite medium characterized by a different dielectric con-
stant «1 . An excess charge (q) is located near the boundary outside the
spherical particle. This is a two-dimensional representation of the three-
dimensional system.
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whereu5ba2/b2 ~see Fig. 1!.16 In this formalism the geo-
metrical structure of the image charges is transparent and it is
specified by the second main term~between brackets! of Eq.
~12!. More precisely, one has to deal with aninfinite mani-
fold of image charges distributed along the oriented segment
u that electrically compensates the image point-chargeq im

located atu and whose magnitude is given by

q im5q
«12«2

«11«2

a

b
. ~13!

C. Polarization charge

It is important to know the surface distribution of the
induced charge on the spherical interface. In the bulk~i. e., in
region 1 or 2! we have a zero volume density of polarization
charge (rpol) since rpol5«0¹•E52¹•P50 ~except atr
5b). At the interface (r5a) the surface density of polariza-
tion chargespol

(sph) is given by

spol
(sph)

52~P12P2!•n12, ~14!

where

P15«0~«121!E152«0~«121!¹F1

~15!
P25«0~«221!E252«0~«221!¹F2

are the polarizations in region 1 and 2, respectively. Using
Eqs.~4!, ~6!, ~9!, ~14! and~15!, the final expression ofspol

(sph)

reads

spol
(sph)~cosu !5

q

4p«1b2 (
l51

` S a

b D l21

~2l11!l

3

«12«2

«1~ l11!1«2l
P l~cosu !. ~16!

The net charge of polarization Qpol
(sph)

5*
21
1 2pa2spol

(sph)(cosu)d(cosu) is zero,17 meaning that
there isno monopole contribution as it should be.

The critical angleu* wherespol
(sph) changes sign is given

by the geometrical condition

E1~r5a,u* !'n12

~17!
E2~r5a,u* !'n12

which is the orthogonality condition at the interface between
the ~inner and outer! electric field andn12. In terms of Leg-
endre polynomials, Eq.~17! can be equivalently written as

(
l51

` S a

b D l21 ~2l11!l

«1~ l11!1«2l
P l~cosu* !50, ~18!

where Eq.~16! was used. Two limiting cases can be easily
described:~i! for b/a@1 we haveu* →p/2 @recalling that
P1(cosu)5cosu] and ~ii ! for b/a→1 we haveu* →0. In
general,u* increases withb and it is a complicated function
of b/a, «1 and«2 .

For aplanar interface, the surface density of polarization
chargespol

(plan)(d) is given by14

spol
(plan)~d !5

q

2p«1

«12«2

«11«2

b2a

@~b2a !2
1d2!] 3/2

, ~19!

whered5Ax2
1y2 is the radial distance~in cylindrical coor-

dinates system! belonging to the planar interface~see Fig. 2!.
Equation ~19! demonstrates thatspol

(plan)(d) never changes
sign @as can also be deduced from simple geometrical
considerations—Eq.~17!# in contrast with the spherical in-
terface. The total charge of polarizationQpol

(plan) is obtained
by direct integration ofspol

(plan)(d) and its expression is given
by

Qpol
(plan)

5

q8

«1
, ~20!

where

q85q
«12«2

«11«2
~21!

is theunique image charge located at the mirror position ofq
~see Fig. 2!. This nonzero monopolar contribution for the
planar interface involves astronger and longer ranged self-
image interaction.

D. Application to colloidal systems

So far we treat in a rather general manner the physics of
a point charge near a spherical dielectric interface. We now
would like to apply the above theory to colloidal systems. In
the remaining of this paper we suppose that region 1 corre-
sponds to water, so that we take«1580 corresponding to the
water dielectric constant at room temperature. To character-
ize the low permittivity of the colloid we consider here«2

52 so thatD«578. The little ion carries a chargeq5Ze
wheree stands for the elementary charge andZ for its va-
lence, and has a diameters. An important quantity is

r05a1

s

2
~22!

being the center–center distance of closest approach between
the colloid and the microionq.

FIG. 2. Model for a microion (q) near a planar interface (S) separating the
two semi-infinite media characterized by«1 and«2 . The imaginary spheri-
cal dielectric of radiusa is shown for geometrical comparison with the setup
of Fig. 1. This is a two-dimensional representation of the three-dimensional
system.
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1. Induced surface charge

It is helpful to have a precise representation of the polar
profile of spol

(sph)(u) in order to get a clear understanding of
the source of the image forces. Although at first glance such
a study should belong to standard electrostatics we are not
aware of any data in the literature that treats this relevant
aspect.

The numerical computation of Eq.~16! was performed
using a cutofflmax5300 in the Legendre space leading to
high accuracy.18 The plot of spol

(sph)(u) for a57.5s and
b/s58, 9 and 10 can be found in Fig. 3. One can clearly
observe thatspol

(sph)(u) is stronglyinhomogeneous. For small
u, spol

(sph)(u) is highly positive~i.e., it carries the same charge
sign asq) and decreases abruptly. The angleu* @given by
Eq. ~18!# wherespol

(sph)(u) changes sign is 16.9°, 29.5° and
37.4° for b/s58, 9 and 10, respectively. In parallel, by in-
creasingb one drastically decreases the magnitude as well as
the inhomogeneity ofspol

(sph)(u). Recall that forb/a@1 we
havespol

(sph)(u);cosu.
It is insightful to comparespol

(sph)(u50) with spol
(plan)(d

50) @computed from Eq.~19!# since both quantities give the
maximum ofspol

(sph)(u) andspol
(plan)(d), respectively. The cor-

responding numerical values are gathered in Table I. The
values found at finite curvature are very similar to those of
zero one. The fact thatspol

(sph)(u50) is systematically
smaller thanspol

(plan)(d50) is consistent with the idea that in
spherical geometry we have the presence of opposite image

charges. Nevertheless, for sufficiently largea one should re-
cover the planar case.

2. Self-image interaction

We now compute the potential of interaction between the
microion q and the dielectric particle or, in terms of image
forces, the potential of self-image interaction. This is the
work done in bringing the microion from infinity to its posi-
tion b, and it is equal to thehalf-product ofq and the second
term of F1(r5b) given by Eq.~10!. In that case we have
r5b ~see Fig. 1!, so thatu50 and thereforeP l@cos(u50)#
51. In order to normalize the energy withkBT we introduce
the Bjerrum length lB5e2/(4p«0«1kBT) which is 7.14
Å for water atT5298 K. By choosings53.57 Å we have
lB52s. The potential of self-image interactionVsel f

(sph)(b) is
then given by

Vsel f
(sph)~b !5

1

2
kBTlB

Z2

b (
l51

` S a

b D 2l11 ~«12«2!l

«1~ l11!1«2l
.

~23!

Equation~23! shows that the typical interaction range scales
like 1/b4 and therefore it isshort-ranged.19 Note that it is
fully equivalent to computeVsel f

(sph)(b) from the surface po-
larization charges as follows

Vsel f
(sph)~b !5

1

2

1

4p«0
E

21

1

2pa2q
spol

(sph)~cosu !

ura2bu
d~cosu !,

~24!

where ra is the radial vector of magnitudeurau5a and
spol

(sph)(cosu) is given by Eq.~16!.
It is insightful to compare the potential of self-image

interaction obtained in spherical geometry with that,
Vsel f

(plan)(b2a), obtained in planar geometry. The setup for a
planar interface is sketched in Fig. 2. In this situation the
analytical expression ofVsel f

(plan)(b2a) is simply given by

Vsel f
(plan)~b2a !5

1

2
kBTlBZ2

«12«2

«11«2

1

2~b2a !
. ~25!

FIG. 4. Potential of self-image interaction for a microion (q5Ze) in spheri-
cal and planar geometries with«1580 and«252.

FIG. 3. Polar profile of the surface density of polarization chargespol
(sph)(u)

in units of spol
(0)

5(q/4p«1s2) for different radial distancesb of the excess
chargeq with «1580, «252 anda57.5s.

TABLE I. Numerical values ofspol
(sph)(u50) andspol

(plan)(d50) in units of
q/4p«1s2 as a function ofb. The corresponding profiles ofspol

(sph)(u) can be
found in Fig. 3.

b/s spol
(sph)(u50) spol

(plan)(d50)

8 7.41 7.61
9 0.794 0.846

10 0.278 0.304
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Profiles of Vsel f
(sph)(b) ~for two colloidal radii! and

Vsel f
(plan)(r) are reported in Fig. 4. Since in both~planar and

spherical! cases the potential of interaction diverges at the
interface, we only show results fromr.r0 as it is the case in
experimental systems. The numerical computation of Eq.
~23! was performed using the formalism of Eq.~12! allowing
an arbitrary precision.20

Figure 4 clearly shows that the self-image interaction
is weaker~the higher the curvature! with a spherical inter-
face than with a planar one. In particular, at contact we
have Vsel f

(sph)(r058s)50.66Z2kBT and Vsel f
(sph)(r0540s)

50.86Z2kBT for the spherical interface andVsel f
(plan)(s/2)

50.95Z2kBT for the planar one. These features can be physi-
cally explained in terms of polarization charges. In the con-
tact region~i.e., for smallu—see Fig. 2! we know that the
surface polarization charge is quasi-identical on both spheri-
cal and planar interfaces. However, forfinite curvature we
also know thatspol

(sph) changes sign aboveu* and in the
present casespol

(sph) getsoppositely charged toq. This latter
effect is the main cause that leads to a weaker self-image
interaction for spherical interfaces. Nevertheless, by increas-
ing a ~i.e., reducing the curvature! one approaches the planar
case as expected~see Fig. 4!. Physically, this means that the
contribution of the negative polarization charges~lying at u
.u* ) to the self-image interaction@Eq. ~24!# becomes neg-
ligible for sufficiently large colloidal radius.

3. Effect of curvature on the contact potential

It is clear that for sufficiently low curvature one should
recover the planar case as far as the self-image interaction is
concerned. Thus, a natural question that arises is: for which
typical colloidal size are curvature effects relevant?

A suitable observable for this problem is provided by the
contact potentialVsel f

(sph)(b5a1s/2). This quantity is of spe-
cial interest since it will correspond to the highest repulsive
part of the global interaction between a macroion~i.e.,
charged macro-particle! and an oppositely charged counter-
ion. In order to investigate the effect of finite curvature we
are going to compareVsel f

(sph)(a1s/2) to the contact potential
Vsel f

(plan)(b2a5s/2) obtained with a planar interface.
The plot of the normalized contact potentialV0* (a) de-

fined as

V0* ~a !5

Vsel f
(sph)S a1

s

2 D
Vsel f

(plan)S s

2 D ~26!

can be found in Fig. 5. For the sake of numerical stability we
used the formalism of Eq.~12! allowing an arbitrary preci-
sion. Figure 5 shows that fora/s larger than about 100 the
contact potential is close to that of the planar interface~less
than 5% difference!. This length scale typically corresponds
to ‘‘true’’ colloidal systems (;100 nm!. Therefore, in the
dilute regime where the self-image interaction is dominant
~i.e., lateral microion–microion correlations are negligible!,
large-sized colloidal particles can be reasonably approxi-
mated by planar interfaces as far as the modeling of the
self-image interaction is concerned. On the other hand, for

a/s smaller than about 20 the contact potential varies rapidly
and therefore it is strongly dependent on the curvature. This
length scale typically corresponds to micellar systems (; 10
nm!.

Some years ago, Linse10 used an approximation where
he replaced the~exact! infinite manifold of image charges
@entering Eq.~12!# of total charge2q im by a single image
point-charge2q im @given by Eq.~13!# located at the center
of the sphere.21 Although this ansatz was motivated by the
study of many counterions~where the degree of spherical
symmetry can be enhanced compared to the single-
counterion system!, it is instructive to see what this approxi-
mation involves for the self-image interaction. Doing so, the
setup of image charges consists of a~two point-charge! di-
pole pim5q imu, and the corresponding contact potential
Ṽsel f

(sph)(r0) reads

Ṽsel f
(sph)~b5r0!5kBTlB

Z2

2

«12«2

«11«2

a

r0
F 1

r02u
2

1

r0
G . ~27!

The plot of

Ṽ0* ~a !5

Ṽ0
(sph)S a1

s

2 D
Vsel f

(plan)S s

2 D ~28!

can also be found in Fig. 5. It shows that the two-image
charge approximation used by Linse is only valid for very
low curvature ~i.e., close to the planar case! and may
strongly overestimate the self-image repulsion as expected
by its inherent construction.22 Using MC simulations, Linse10

investigated micelles of radius 12218 Å ~i.e., a/s;3.5
25) leading to errors as large as 40%~see insert of Fig. 5!.
This proves that this ansatz is unsuitable to determine the
self-image interaction in this regime, which is the source of

FIG. 5. Reduced contact potentialV0* (a) as a function of the colloidal
radiusa with «1580, «252. The limit value of unity corresponds to the
planar interface. The solid line is the exact contact potentialV0* (a) and the

dashed one is the contact potentialṼ0* (a) obtained with the two-image
charge approximation used by Linse~Ref. 10!. The insert shows the ratio

Ṽ0* (a)/V0* (a).
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the image forces. Even in a many-counterion system, this
approximation is too strong when the self-image interaction
is dominant.23 However, in the limit of high spherical sym-
metry ~with many counterions! this approximation becomes
precise, but then the effects of image forces are negligible.

4. Charged colloid

As a last theoretical result, we consider the interaction
between~a single counterion! q and a negativelycharged
dielectric sphere. The procedure is completely similar to the
neutral colloid case, and we now apply the principle of su-
perposition to take into account the additional potential due
to a central chargeQm52Zme. The ~global! macroion-
counterion potential of interactionVm(b) reads

Vm~b !52kBTlB

ZmZ

b
1Vsel f

(sph)~b !, ~29!

whereVsel f
(sph)(b) is given by Eq.~23!, and hence

Vm~b !5kBT
lB

b
Z2F2

Zm

Z
1

1

2

3(
l51

` S a

b D 2l11
~«12«2!l

«1~ l11!1«2lG . ~30!

Profiles of Vm(b) for Zm560, r058s, «252 and Z
51, 2 and 3 are reported in Fig. 6. An important result is the
occurrence of aminimum in Vm(b) whose depth and position
r* increase with increasingZ. This is due to the purelyre-
pulsive self-image interaction which scales likeZ2, whereas
the directattractive Coulomb macroion-microion interaction
scales likeZ ~at fixedZm). Nevertheless the occurrence of a
minimum is strongly dictated by the ratioZm /Z @see Eq.
~30!#. For high value ofZm /Z, uVm(b)u is maximal for b
5r0 ~only attraction occurs! and for smallZm /Z one recov-
ers the neutral colloid case where onlyrepulsion occurs. Of

course the same qualitatively happens for charged plates.24

The values ofr* minimizing Vm(b) ~with b.r0) are given
in Table II. The quantityr* will be useful to discuss our
simulation results that concernmany counterions and where
we also have the same macroion bare charge (Zm560).

Keep in mind that all our results above concern a single
microion. Whenmany counterions come into play, other im-
portant effects might appear in principle. In particular, when
the number of counterions near the macroion surface is very
large the image forces are practically canceled by symmetry
reason.10,25 Clearly, by approaching the~perfect! spherical
symmetry one asymptotically cancels the polarization
charges everywhere on the macroion surface. This point
shows that the discrete nature of the counterions is crucial for
the existence of image charges in spherical geometry.26–28 In
planar geometry the situation is radically different, where
one gets an amplified image force upon increasing the num-
ber of ‘‘surface’’ counterions.

III. MONTE CARLO SIMULATION

Standard canonical MC simulations following the Me-
tropolis scheme were used.29,30 The system we consider is
similar to those studied in previous works.31,32 It is made up
of two types of charged hard spheres:~i! a macroion of ra-
dius a with a bare chargeQm52Zme ~with Zm.0) and~ii !
small microions~counterions and coions! of diameters with
chargeq56Ze to ensure the electroneutrality of the system.
All these ions are confined in an impermeable cell of radius
R and the macroion is held fixed at the center of the cell.

The dielectric media are modeled as in Sec II. It is to
mention that we suppose, for the sake of simplicity, that the
dielectric discontinuity coincides with the macroion radius.
One must note that the effects of image forces can be sig-
nificantly reduced when the location of the dielectric bound-
ary is somewhat~a few Angstro¨ms! beneath the macroion
surface.10 On the other hand, the outer region of the simula-
tion cell is assumed to have the same dielectric constant«1

as the solvent in order to avoid the appearance of artificial
image forces.

The work done in bringing the~real! ions together from
infinite separation gives the interaction energy of the system.
The corresponding Hamiltonian,U tot , can be expressed as

U tot5(
i

FU i
(m)

1(
j.i

U i j
(bare)G

1(
i

FU i
(sel f )

1(
j.i

U i j
(im)G . ~31!

FIG. 6. Global macroion-counterion potential of interaction~solid lines!
with Zm560, r058s, «1580 and«252. The values of the corresponding
minima r* can be found in Table II. The dashed lines correspond to the
usual electrostatic potential of interaction without image forces~i.e., D«

50).

TABLE II. Theoretical values ofr* minimizing the macroion-counterion
potential of interaction~with Zm560, «1580, «252 and r058s). The
corresponding profiles can be found in Fig. 6.

«2 D« Z (r* 2r0)/s

2 78 1 0
2 78 2 0.17
2 78 3 0.32
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The first two terms in Eq.~31! correspond to the tradi-
tional electrostatic interactions between real charges. More
explicitly,

U i
(m)~r i!55

6lBkBT
ZmZ

r i
, for r i>a1

s

2
,

`, for r i,a1

s

2
,

~32!

represents the macroion-microion interaction, where~1! ap-
plies to coions and~-! to counterions, and

U i j
(bare)~r i j!5H 6lBkBT

Z2

r i j
, for r i j>s,

`, for r i j,s,
~33!

the pair interaction between microionsj and i where ~1!
applies to microions of the same type and~2! otherwise.

The two last terms in Eq.~31! account for the interaction
between images and microions. Therepulsive self-image in-
teraction is given by

U i
(sel f )~r i!55

1

2
kBTlB

Z2

r i
(
l51

lmax S a

r i
D 2l11 ~«12«2!l

«1~ l11!1«2l
, for r i>a1

s

2
,

`, for r i,a1

s

2
,

~34!

wherelmax is the cutoff in the Legendre space, and

U i j
(im)~ri ,rj!55

6lBkBTZ2(
l51

lmax a2l11

r j
l11

~«12«2!l

«1~ l11!1«2l

1

r i
l11

P l~cosu !, for r i>a1

s

2
,

`, for r i,a1

s

2
,

~35!

represents the interaction between microioni and the image
~surface charge induced by! of microion j, where~1! applies
to charges of the same sign@and~2! otherwise# andu is the
angle betweenri andrj . It is this term that generateslateral
image-counterion correlations. Due to the symmetry ofU i j

(im)

upon exchangingi j with j i there is an implicit factor 1/2 in
Eq. ~35!.

Convergence of the Legendre sums with a relative error
of 1026 is obtained with the employed value oflmax5100.33

For the sake of computational efficiency and without loss of
accuracy, we computed the image-ion interactions on a
~very! fine (r,cosu) grid where the coordinates of the micro-

ions were extrapolated. The radial distancesr i are discretized
over logarithmically equidistant nodes so that close to the
macroion surface the radial resolution is 0.01s and near the
simulation wall 0.1s. The polar discretization consists of
2000 equidistant cosu-nodes leading to even smaller lateral
resolutions. The corresponding values ofU i

(sel f )(r i) and
U i j

(im)(r i ,r j ,cosu) were then initially stored into tables. Note
that in principle one could also have used the formalism of
Eq. ~12! to compute the image-ion interactions. However, at
identical numerical accuracy, this method involving a nu-
merical integration is too time and resource consuming.

Typical simulation parameters are gathered in Table III.
The case«2580 corresponds to the situation where there is
no dielectric discontinuity (D«50). Measurements were
performed over 106 MC steps per particle.

IV. SIMULATION RESULTS

Here we present our MC simulation results in salt-free
environment as well as in the presence of multivalent salt-
ions. We essentially study in detail the radial microion dis-
tributionsn i(r) around the macroion, which are normalized
as follows

E
r0

R

4pr2n1~r !dr5N1

~36!

E
r0

R

4pr2n2~r !dr5N2 ,

TABLE III. Model simulation parameters with some fixed values. Apart
from the charge sign, counterions and coions have the same parameters.

Parameters

T5298 K room temperature
«1580 water solvent dielectric constant
«252 colloidal dielectric constant
D«5«12«2578 strength of dielectric discontinuity
Zm macroion valence
Z counterion valence
s53.57 Å counterion diameter
lB52s57.14 Å Bjerrum length
a57.5s macroion radius

r05a1

s

2
58s macroion-counterion distance of closest approach

R radius of the outer simulation cell
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wherer is the distance separation from the macroion center,
1~2! stands for counterion~coion! species andN1 (N2) is
the total number of counterions~coions! contained in the
simulation cell.

Another quantity of special interest is the integrated~or
cumulative! fluid net chargeQ(r) defined as

Q~r !5E
r0

r

4pu2Z@n1~u !2n2~u !#du, ~37!

where we chosee51. Q(r) corresponds to the total fluid
charge~omitting the macroion bare chargeZm) within a dis-
tancer from the macroion center, and at the cell wallQ(r
5R)5Zm . Up to a factor proportional to 1/r2, @Q(r)
2Zm# gives ~by simple application of the Gauss theorem!
the mean electric field atr. ThereforeQ(r) can measure the
strength of the macroion charge screening by salt-ions. In
salt-free environment systems we haven2(r)50 and N1

5Zm /Z.
The simulation run parameters can be found in Table IV.

For all these simulation systems, the ion densitiesn i(r) were
computed with the same radial resolutionDr.34 The discreti-
zation of the radial distancer in n i(r) is realized over loga-
rithmically equidistant points so that close to the macroion
surface (r2r0,s) we haveDr,0.04s. It is important to
obtain such an accuracy~and the required statistics! if one
wants to describe quantitatively the effects of image forces
which are short-ranged at strong curvature.

A. Salt-free environment

Salt-free systemsA2F ~see Table IV! were investigated
for a moderately charged macroionZm560 corresponding to
a surface charge densitys050.11 Cm22.

1. Monovalent counterions

The profiles ofn1(r) and Q(r) are depicted in Figs.
7~a! and 7~b!, respectively for the monovalent counterion
systemsA andB.

Figure 7~a! shows that the counterion density at contact
(r5r0) is somewhat smaller withD«578 as a direct conse-
quence of the self-image repulsion. However there is no
maximum appearing inn1(r) with D«578, in agreement
with the study of the single-counterion system~see Fig. 6
and Table II!. For r2r0.;0.6s ~corresponding roughly to
three half ionic sizes from the interface!, the effects of image
forces are negligible and alln1(r) curves are nearly identi-
cal.

To gain further insight into the effects oflateral image-
counterion correlations, we have considered the same system

A (D«578) but omitted the correlational termU i j
(im) @Eq.

~35!# in the total HamiltonianU tot @Eq. ~31!#. Physically, this
means that, on the level of the image force, each counterion
sees uniquely its self-image interaction. Thereby, Fig. 7~a!
shows that~i! the corresponding counterion densityn

1

(sel f )(r)
is nearly identical ton1(r), and ~ii ! in the vicinity of the
interface n

1

(sel f )(r) is slightly smaller thann1(r). These
findings ~i! and ~ii ! lead to the two important conclusions:

•For monovalent counterions and moderately charged
macroions, theeffective image force is basically identical to
the self-image force.35

•The crucial effect of lateral image-counterion correla-
tions is toscreen the self-image repulsion.

This latter feature is generally true for anyfinite curvature at
identical fixed macroion charge density. Finding~i! is also
consistent with the fact that, close to the interface~say r

TABLE IV. System parameters.

System A B C D E F G H I J

Zm 60 60 60 60 60 60 60 60 180 180
Z 1 1 2 2 3 3 2 2 2 2
N1 60 60 30 30 20 20 430 430 445 445
N2 - - - - - - 400 400 400 400
«2 2 80 2 80 2 80 2 80 2 80
D« 78 0 78 0 78 0 78 0 78 0
R/s 40 40 40 40 40 40 20 20 20 20

FIG. 7. Monovalent counterion distributions~systemsA andB): ~a! Density
n1(r). The dashed line in gray corresponds to the counterion density
n

1

(sel f )(r) obtained in the same systemA (D«578) but where the~lateral!
image-counterion correlational termU i j

(im) @Eq. ~35!# has been omitted in the
total HamiltonianU tot @Eq. ~31!#. ~b! Fluid charge.
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2r0,0.2s), the average number of~surface! counterionsN̄
is ~very! small (N̄,5) as can be deduced from the fraction
of counterionsQ(r)/Zm @Fig. 7~b!#.

Figure 7~b! shows that the fluid chargeQ(r) decreases
when image forces are present, meaning that they lower the
macroion charge screening by counterions. At the distance
r2r05s ~corresponding to a 2s-layer thickness!, the mac-
roion is 29% electrically compensated@i.e., Q(r2r0

5s)/Zm50.29] with D«50 against 26% withD«578. At
the distancer2r054s, the relative differenceDQ/Q be-
tween theQ(r) obtained withD«50 andD«578 drops to
2% ~against 10% atr2r05s) where the bare macroion
charge is nearly half-compensated.

2. Multivalent counterions
a. Divalent counterions. The profiles of n1(r) and

Q(r) are depicted in Figs. 8~a! and 8~b!, respectively for the
divalent counterion systemsC andD.

Figure 8~a! shows that the counterion density at contact
becomes strongly reduced withD«578 due to the
Z2-dependence of the self-image repulsion@compare the case
Z51 in Fig. 7~a!#. This sufficiently strong~short-ranged!
repulsion leads to a maximum inn1(r) close to the macro-
ion surface. The corresponding radial positionr* maximiz-
ing n1(r) is r* 5r010.22s, in very good agreement~within
Dr) with the one-counterion theoretical valuer010.17s
~see Table II!. This shows that for divalent counterions
many-body effects do nearly not affectr* . This nontrivial
finding is the result of the competition between two driving
forces that controlr* in many-counterion systems:

•F im : the screening of the self-imagerepulsion by the
~extra! negative polarization charges tends todecrease ther*
obtained in the one-counterion system.

•Fmc : the screening of the macroion-counterionattrac-
tion by the ~extra! surface counterions tends toincrease the
r* obtained in the one-counterion system.

It is precisely a balance of these two driving forces that leads
to a nearly unchangedr* ~compared to the one-counterion
system! in many-counterion systems. Whereas for monova-
lent counterions both driving forcesF im andFmc are weak,
those become relevant for multivalent counterions.

We stress the fact that this is specific to the spherical
geometry, and that for a planar interface~at identical surface
charge density! one should get a higherr* ~compared to that
of the one-counterion system!, since there we have no
screening driving forceF im . We are not aware of any previ-
ous studies for the planar interface that address this issue.36

To gain even further insight into the effect ofZ on the
lateral image-counterion correlations, we have ignored the
term U i j

(im) in U tot in the same systemD (D«578) as done
previously with systemA. Figure 8~a! shows a qualitatively
different n

1

(sel f )(r) wherer* 5r010.26s is now somewhat
larger, proving that with divalent counterions the screening
of the self-image repulsion by lateral image-counterion cor-
relations is appreciable. This is in contrast to what was ob-
served withZ51.

At the distancer2r05s, Fig. 8~b! shows that the mac-

roion is 62% electrically compensated forD«50 against
53% for D«578 @compare the caseZ51 in Fig. 7~b!#.

b. Trivalent counterions. The profiles of n1(r) and
Q(r) are depicted in Figs. 9~a! and 9~b!, respectively for
trivalent counterion systemsE andF.

Figure 9~a! shows that the counterion density at contact
is drastically reduced withD«578, as expected for highZ
~compare the previous cases!. At D«578, we haver* 5r0

10.36s, in quantitative agreement with theone-counterion
theoretical valuer010.32s ~see Table II!. This shows again
that even for trivalent counterions many-body effects do
~practically! not affectr* ~compared to that obtained in the
single-counterion system! due to a balance of the driving
forcesF im andFmc .

By neglecting the lateral image-counterion correlations
in the same systemE (D«578), Fig. 9~a! indicates that the
position r* of the maximum inn

1

(sel f )(r) gets considerably

FIG. 8. Divalent counterion distributions~systemsC and D): ~a! Density
n1(r). The dashed line in gray corresponds to the counterion density
n

1

(sel f )(r) obtained in the same systemC (D«578) but where the~lateral!
image-counterion correlational termU i j

(im) @Eq. ~35!# has been omitted in the
total HamiltonianU tot @Eq. ~31!#. ~b! Fluid charge.
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larger (r* 5r010.50s). This relatively strong shift confirms
the Z-enhancing of the screening of the self-image repulsion
by lateral image-counterion correlations.

At the distancer2r05s, the macroion is 84% electri-
cally compensated forD«50 against only 67% forD«
578 @see Fig. 9~b! and compare previous systems#. Snap-
shots of typical equilibrium configurations forD«50 and
D«578 can be visualized in Figs. 10~a! and 10~b!, respec-
tively.

B. Salty solutions

We focus on the case of divalent salt-ions. This choice is
motivated by two reasons:~i! effects of image charges are
clearly observable for multivalent counterions and~ii ! such
systems must be experimentally reachable. To study the ef-
fect of added salt we have considered two macroion charges
Zm560 ~as previously! and Zm5180 corresponding to a

charge densitys050.32 Cm-2. The salt concentration de-

fined as (N2 / 4
3pR3) is 0.44 M for all salty systemsG2J

~see Table IV!. The simulation cell radiusR520s of these
systems is still very large compared to any screening lengths
so that finite size effects are negligible.

1. Moderately charged macroion

Profiles ofn6(r) and Q(r) are depicted in Figs. 11~a!
and 11~b!, respectively for the salty systemsG and H with
Zm560.

The coion densityn2(r) with D«578 is basically
shifted to the right of about 0.15s ~compared to that with
D«50) due to the repulsive coion’ self-image interaction.
Near the colloidal surface, the counterion densitiesn1(r) are
considerably higher than those obtained with no added salt
~systemsC andD) as it should be@compare Fig. 8~a!#.

A rather surprising result here is that, despite the pres-
ence of a considerable amount of added salt, we still have
r* 5r010.22s remaining unchanged. This is a nontrivial
finding since one should have an~extra! attractive contribu-
tion to the macroion-counterion potential of mean force
stemming from the~localized! negative polarization charges
induced by the coions, which in turn could lead to a shorter
r* . However there are two concomitant sources that lead to

FIG. 9. Trivalent counterion distribution~systemsE and F): ~a! Density
n1(r). The dashed line in gray corresponds to the counterion density
n

1

(sel f )(r) obtained in the same systemE (D«578) but where the~lateral!
image-counterion correlational termU i j

(im) @Eq. ~35!# has been omitted in the
total HamiltonianU tot @Eq. ~31!#. ~b! Fluid charge.

FIG. 10. Snapshots of typical equilibrium configurations for trivalent coun-
terions~systemsE andF). ~a! D«50 ~b! D«578. One can clearly observe
the larger mean radial counterion distance forD«578 stemming from the
self-image repulsion.
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a marginal screening of the counterion’ self-image repulsion
by the negative coion-induced polarization charges:~i! there
is a strong coion depletion close to the interface@see Fig.
11~a!# due to the large direct Coulomb macroion-coion repul-
sion and~ii ! uspol

(sph)u decreases abruptly with the radial dis-
tance of the microion as discussed in Sec. II D 1~see also
Fig. 3!. Of course the role of theexcluded volume is crucial
here.

As expected the macroion charge screening is weaker
when image forces come into play as can be deduced from
the profile ofQ(r) plotted in Fig. 11~b!.

2. Highly charged macroion

Profiles ofn6(r) and Q(r) are depicted in Figs. 12~a!
and 12~b!, respectively for the salty systemsI and J with
Zm5180.

Figure 12~a! shows that the effects of image forces are
considerably reduced. The relatively small difference be-
tween then1(r) obtained withD«50 and that obtained with

D«578 decreases drastically in the vicinity of the interface,
and already forr2r0.;0.2s the two profiles ofn1(r) are
nearly identical. Besides, near the interfaceno effective
macroion-counterion repulsion occurs atD«578. This ab-
sence of a maximum inn1(r) is due to two main concomi-
tant effects:

•For such a highly charged macroion, there is a very
large number of counterions close to the interface@compare
Fig. 12~b! and Fig. 11~b!#. In this limit, one can use Wigner
crystal concepts and say that, on the level of the force stem-
ming from the bare charges~i.e., ignoring the image forces!,
each surface counterion essentially interacts with the oppo-
sitely charged background of its Wigner-Seitz~WS! cell. At
sufficiently high macroion charge density~i.e., small WS
hole radius!, this attractive interaction becomes very impor-
tant and it always overcomes the self-image repulsion.

•The second~concomitant! mechanism is specific to the
closed spherical topology: at high number of surface counte-

FIG. 11. Divalent salt-ion distribution~systemsG andH) with Zm560: ~a!
The solid and dashed lines correspond to counterion and coion densities,
respectively.~b! Net fluid charge.

FIG. 12. Divalent salt-ion distribution~systemsI andJ) with Zm5180: ~a!
The solid and dashed lines correspond to counterion and coion densities,
respectively.~b! Net fluid charge.
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rions, the image forces are reduced because of the enhanced
degree of spherical symmetry as already mentioned in Sec.
II D 4.

The coion densitiesn2(r) are basically identical for
both dielectric discontinuitiesD«, in contrast to what hap-
pened withZm560 ~systemsJ and K). This phenomenon
can be explained as the enhanced screening of the coion’
self-image repulsion by the positive polarization charges in-
duced by the other coions present in the electrical double
layer ~EDL!. Indeed, because of the macroion chargerever-
sal that occurs atZm5180 @i.e., Q(r)/Zm.1—see Fig.
12~b!#, there is also a larger number of coions~at fixed salt
concentration! in the EDL @compare Fig. 12~a! and Fig.
11~a!#. Therefore, since the magnitude and the inhomogene-
ity of 2spol

(sph)(u) induced by a coion strongly decreases with
its radial distance@see Eq.~16! and Fig. 3#, the screening of
the coion’ self-image repulsion gets highly sensitive to an
increase in number of coions in the EDL.

Concerning the net fluid chargeQ(r), we see that both
profiles obtained withD«578 andD«50 are nearly identi-
cal, as expected from those ofn6(r). The net fluid charge
Q(r) reaches its maximum atrQ* 2r050.90s and 0.94s for
D«250 and 78, respectively. In both cases we have a mac-
roion charge reversal of 9%@more explicitly Q(rQ* )/Zm

51.09]. This proves the important result that, for typical
systems~with high macroion charge density! leading to
overcharging,27,28,32,37,38 image forces donot affect the
strength of the macroion charge reversal.

V. CONCLUDING REMARKS

We have presented fundamental results about the effects
of image forces on the counterion distribution around a
spherical macroion.

Exact analytical results have been provided for the case
of a single microion interacting with a dielectric sphere.
Within this framework, the self-image interaction and the
surface charge of polarization have been studied and also
compared to those obtained with a planar interface. Besides
we also estimated the positionr* where the macroion-
counterion potential of interaction is minimized. We demon-
strated that the effects of image forces due to a spherical
interface are qualitatively different from those occurring with
a planar interface, especially when the colloidal curvature is
large. We showed that theself-screening of the polarization
charges~i.e., the screening of the positive surface charges of
polarization by the negative ones! is decisive to explain the
weaker and the shorter range of the self-image interaction in
spherical geometry. This self-screening increases with the
colloidal curvature.

Many-counterion systems have been investigated by
means of extensive MC simulations where image forces were
properly taken into account.

In salt-free environment and for moderately charged
macroions, a maximum in the counterion density~near the
spherical interface! appears for sufficiently large dielectric
discontinuityD«. An important result is that the correspond-
ing positionr* is basically identical, regardless of the coun-
terion valenceZ, to that obtained within theone-counterion

system. This feature is specific to the spherical geometry and
can not take place with planar interfaces where there isno
self-screening of the polarization charges. For monovalent
counterions we showed that the~effective! image force is
basically equal to that of the self-image interaction, and the
lateral image -counterion correlations are~very! weak. How-
ever for multivalent counterions the lateral image-counterion
correlations affect significantly the counterion density, and as
major effect theyscreen the self-image repulsion. Neverthe-
less, the combined effects of~i! the macroion charge screen-
ing by counterions and~ii ! the screening of the self-image
repulsion lead to a nearly unchangedr* ~compared to that
obtained in the single-counterion system! for multivalent
many-counterion systems. Furthermore, we showed that the
counterion density at contact decreases drastically withZ ~as
also found in Ref. 10!, and thatr* also increases withZ as
expected. These latter results have important implications for
the stabilization of charged colloidal suspensions where a
component of the pair-force is proportional to the ion density
at contact.

By adding salt, it was found for moderately charged
macroions that the strength of the image forces induced by
the coions is very small compared to that resulting from the
counterions. This is due to the coupled effects of~i! the coion
depletion in the vicinity of the colloidal interface due to the
strong direct Coulomb macroion-coion repulsion and~ii ! the
~highly! short range of the image forces in spherical geom-
etry. Consequently the positionr* remains identical to that
obtained in salt free environment and a fortiori to that ob-
tained within the one-counterion system. Forhighly charged
macroions the effects of image charges are significantly re-
duced since~i! the attractive counterion-hole interaction
dominates the repulsive counterion’ self-image interaction
and~ii ! the screening of the counterion’ self-image repulsion
gets enhanced by symmetry reason. In this situationno maxi-
mum appears in the counterion density and it was found that
overcharging is nearly unaffected by image forces.

Although our MC analysis was carried at given macro-
ion size, all the above reasonings that concernmany counte-
rions remain unchanged~for symmetry reason! for any finite
curvature by a rescaling at fixed macroion charge density.

Finally, this contribution should constitute a solid basis
to understand and predict the effects of image charges in
other similar systems~e.g., polyelectrolyte adsorption onto
spherical charged colloids!.
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