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ARTICLES

Image charges in spherical geometry: Application to colloidal systems

René Messina®
Max-Planck-Institut fur Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

(Received 9 May 2002; accepted 24 September 002

The effects of image chargése., induced surface charges of polarizationspherical geometry

and their implication for charged colloidal systems are investigated. We study analytically and
exactly a single microion interacting with a dielectric sphere and discuss the similarities and
discrepancies with the case of a planar interface. By means of extensive Monte Carlo simulations,
we study within the framework of the primitive model the effects of image charges on the structure
of the electrical double layer. Salt-free environment as well as salty solutions are considered. A
remarkable finding of this study is that the position of the maximum in the counterion density
(appearing at moderately surface charge densigmains quasi-identical, regardless of the
counterion valence and the salt content, to that obtained withinsithgbe-counterion system.

© 2002 American Institute of Physics. [DOI: 10.1063/1.1521935

I. INTRODUCTION our results. Section lll is devoted to the computational de-

tails of our MC simulations. In Sec. IV, we present our simu-

In charged colloidal systems electrostatic effects, and eSztion results for salt-free environment as well as salty solu-
pecially the structure of the electrical double layer, often play;jons where image forces are explicitly taken into account

a determinant role for their physico-chemical properties. It iSyith no approximation. Finally, Sec. V contains brief con-
well known that charged colloids.e., macroionshave typi- cluding remarks.

cally a low dielectric constante(~2-5) which is much
smaller than that of the surrounding solvéetg., for water
£,~80). In most of the theoretical works, this dielectric dis-
continuity is ignored. Il. THEORY
Nevertheless, a few studies have addressed the effects of
image charge§.e., image forces stemming from the dielec-
tric discontinuity on the counterion distribution for planar
geometry which is closely related to our problem. An

In this part we mainly study the interaction ofsangle
excess charge with a dielectric sphere. We briefly present the
formalism of the dielectric model for spherical interfaces and
electrolyte close to a charged wdllor confined between two discuss some important eIgctrostaug prope_mes. Such a Sys-
tem captures the underlying physics of image forces in

charged platéshad been the subject of MC simulations. ; : o
Similar systems have also been investigated byspherlcal geometry. Moreover a systematlc guantitative com-
integral-equatiofr® and mean field theorids? parison with the planar geometry is undertaken.

As far as the spherical geometry is concerned, much lesA. Poisson equation with azimuthal symmetry
literature is available. Counterion distributions with image
forces in salt-free environment were investigated by MC
simulationst® There some approximations for the treatment
of the image forces were used that are not always fully con
trolled. The main conclusions however remain quahtatlvelyexcess charge of magnitudds located outside the dielectric
correct. . : . . . fsphere at a distande=|b| from its center.

'_I'he aim of th|§ Paperis o provide a detalled_analyss 0 The central problem is to determine the electrostatic po-
the image forces in sphe.rlcal geometry and their eﬁects OIEential ®(r) at any point in the space. This is achieved by
thfe strL_Jcture of the electrical double_layer. The remainder o olving the Poisson equation which reads
this article is set out as follows. Section Il corresponds to the
analytical part of the paper. We first briefly present the gen-
eral theoretical background of the concept of image charges A (r)=— &, (2)
in spherical geometry. Then we apply it to colloidal systems €
to compute(exactly some relevant observables and discuss

wherep(r) is the volume charge density amrd=¢cge; with
dElectronic address: messina@thphy.uni-duesseldorf.de; Permanent ad? being the vacuum permittivity ané=1,2. Since here

dress: Institut fa theoretische Physik II, Heinrich-Heine-Univeisipiis- ~ P(F) =0qd(r —b) and taking into account the aZimUtha_l sym-
seldorf, Universittsstrasse 1, 40225 Bseldorf, Germany. metry, Eq.(1) reducedfor r #b) to the Laplace equation

The model system is sketched in Fig. 1. Consider an
uncharged dielectric sphere of radiua and dielectric con-
stant (relative permittivity ¢, embedded in an infinite di-
electric medium(region ) characterized by,. A single

0021-9606/2002/117(24)/11062/13/$19.00 11062 © 2002 American Institute of Physics
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REGION 1

REGION 2

a

FIG. 1. Model for a dielectric sphereolloid) of dielectric constank,
embedded in an infinite medium characterized by a different dielectric con
stante;. An excess chargeqj is located near the boundary outside the

spherical particle. This is a two-dimensional representation of the three-

dimensional system.

2
where 6 is the angle between andb (see Fig. 1 andr

=|r|. The general solution of the Laplace equation with azi-
muthal symmetry is given By~14

P,(cos#), 3

<1)(I’,t9)=2 M|I’|+N|%
= r
where P (cosé) is the associated Legendre polynomial of
orderl.
Inside the dielectric spher@egion 2 the electrostatic
potential®,(r) must be finite ar =0 so thatN,=0 in Eq.
(3), and hence

©

D,(r,0)=>, Ar'P(cosb). (4)
I=0
Concerning the electrostatic potential outside the dielec
tric sphere(region 1 we know that without dielectric discon-
tinuity (at r=a) the potential would simply be given by
q/4mege|r—b|. Making use of the following identity

oo

r I

<
——P,(cos0),
2 T (cos6)

1

=8l ®

wherer _ (r-) is the smallel(largep of r andb, the electro-
static potentiakb,(r) in region 1 reads

q <
I+1

P,(cos6),
Amegey !

- 1
@y(r,60)= 2 gt (6)

recalling thatd,(r) must be finite at —« so thatM;=0 in
Eq. (3).

B. Boundary conditions

The electrostatic potentials given by E¢$). and(6) will

be univocally determined by applying the proper boundary

conditions that will fixA; andC,. The boundary conditions
are derived from the full set of Maxwell equations. The re-
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sults are that the normal components of the displacement
and the tangential components Bf on either side of the
spherical interface at=a satisfy

(D1—=D3) n,=0

(E1—E2)Xnp,=0, (7

wheren,,=r/r is a unit normal vector to the surface directed
from region 2 to region Isee Fig. 1L Within the framework
of the linear response theory we halle=¢E. Combining
Egs. (4) and (6) with Eqg. (7) and noting thaE=—-V, it
follows that

' l+1 -1

a|+2

g la

gAla =g, —C
2 . l dmege, pltl

Aal=C g I 2
la_ |a|+l 4778081b|+1'

®

This set of two equationgEg. (8)] can be readily solved to
yield the Legendre coefficients; andC; :

|_4’7T8081 b'tl eq(l+1)+e,l
Co— q a’t (s1—s)l 9
" 4mege, p't1 e(l+1)+e,l ©
and hence
__ 41 1
q>l(r’0)_4778081 [r—b
* 21+1
a (81_82)|
+|:1 57T o1+ 1)+ o, r|—+1P|(cos¢9) .
(10

The physical interpretation of Eq10) is straightforward.
The first term represents the usual electrostatic potential
(without image forcesgenerated by and the second term
can be referred to as the electrostatic potential due to “image
charges” stemming from the dielectric discontinuity. As ex-
pected, the strength of the image force is strongly governed
by the jumpAe in the dielectric constant defined as

Ae=¢g;—¢,. (1)

In particular, one can anticipate and state that the interaction
between the microiom and the dielectric particlé.e., the
self-image interaction) is repulsive for Ag>0 (i.e., &
>¢g,) andattractive for Ae <0 (i.e.,e,<g,) as itis also the
case in planar geometry.

One can show that Eq10) can also be written as fol-
lows (see, e.g., Ref. 15 and references therein

|

€1 J’u (u/x
81+82 0

',
|r—b|

u
[r=ul

g1—¢e5 1
81+82 a

q

4megeq

D, (r,0)=

)82/(€1+€2)

dx

] ; (12)

L
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whereu=ba?/b? (see Fig. 1° In this formalism the geo- e le

metrical structure of the image charges is transparent and it is
specified by the second main teftretween bracketof Eq.

(12). More precisely, one has to deal with &finite mani-

fold of image charges distributed along the oriented segment

u that electrically compensates the image point-chayge s .
located atu and whose magnitude is given by / \
! b—a\| b—a |
g1—¢€ra 1 =g 1.
im— - 13 l\l 9
Am=97 . b (13 : 7 b?T
\ a ,
C. Polarization charge \\ 7 d
~ -
It is important to know the surface distribution of the =
induced charge on the spherical interface. In the Kukk, in

region 1 or 2 we have a zero volume density of polarization Y

charge p,,) since ppo=eoV-E=—V-P=0 (except atr

f b)- At the '(rlt%rf_ace_(: a) the surface denS|ty of pOIa”Za' FIG. 2. Model for a microion ) near a planar interface() separating the

tion chargecrpcﬁ IS given by two semi-infinite media characterized by ande,. The imaginary spheri-
cal dielectric of radius is shown for geometrical comparison with the setup

h
O'E)Soﬁ )=— (P1— Pz) ‘N12, (14) of Fig. 1. This is a two-dimensional representation of the three-dimensional
system.

where
Pi=¢go(e;—1)E;=—¢go(e;—1)VD,
Po=gg(e2—1)E;=—€0(e,—1)VD,

are the polarizations in region 1 and 2, respectively. Usin
Egs.(4), (6), (9), (14) and(15), the final expression fofoﬁh)

whered= \x?+y? is the radial distancén cylindrical coor-
dinates systelrbelonging to the planar interfagsee Fig. 2
Equation (19) demonstrates tha]rgg'ﬁ“)(d) never changes
gS.ign [as can also be deduced from simple geometrical

considerations—Eq(17)] in contrast with the spherical in-

(19

reads terface. The total charge of polarizati@{’*” is obtained
(o) q i (a) -1 by direct integration ob-?*"(d) and its expression is given
oo’ (C0SH) = = 21+ Dl
pol Ameb? =110 by
— (plan)_q
€17 &2 onl ] (20)
- - = &
><81(|+l)ng2| P,(cos#). (16) 1
o (sph) where
The net charge of polarization  Qpf
=1 2ma’o(hM (cose)d(cose) is zero!’ meaning that o —q it (21
there isno monopole contribution as it should be. g1te,

The critical angleg* whereo3"™ changes sign is given

. - is theunique image charge located at the mirror positiongof
by the geometrical condition g g g b o

(see Fig. 2 This nonzero monopolar contribution for the
planar interface involves gronger andlonger ranged self-
(17) image interaction.

El(r =a, 0* )J_ n12
Ez(r =a, 0* )J_ nlz

which is the orthogonality condition at the interface betweenD. Application to colloidal systems

the (inner and outgrelectric field andny,. In terms of Leg- So far we treat in a rather general manner the physics of

endre polynomials, Eq17) can be equivalently written as a point charge near a spherical dielectric interface. We now
* would like to apply the above theory to colloidal systems. In
2 the remaining of this paper we suppose that region 1 corre-
=1 sponds to water, so that we take=80 corresponding to the
where Eq.(16) was used. Two limiting cases can be easilywater dielectric constant at room temperature. To character-
described:(i) for b/a>1 we haveé* — 7/2 [recalling that ize the low permittivity of the colloid we consider hetg
Pi(cos#)=cosd] and (i) for b/a—1 we haved* —0. In =2 so thatAe=78. The little ion carries a chargg=Ze
general,0* increases wittb and it is a complicated function wheree stands for the elementary charge afdor its va-

=1 (21+1)l
e1(1+1)+e,l

% P/(cos#*)=0, (18

of b/a, 1 ande,.

For aplanar interface, the surface density of polarization
chargec P2V (d) is given by

pol

€17 &2

b—a

Gt -

2mey 1+ €5 [(b—a)?+d?)] %2

(19

lence, and has a diametet An important quantity is

—ato 22
ro=at > (22)
being the center—center distance of closest approach between
the colloid and the microion.
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FIG. 3. Polar profile of the surface density of polarization char§"”(6)

in units of afj%)|=(q/47-rslaz) for different radial distanceb of the excess FIG. 4. Potential of self-image interaction for a microiap=Ze) in spheri-

chargeq with &,=80, £,=2 anda=7.5¢ cal and planar geometries with =80 ande,=2.
170U, €27 =1.90.

charges. Nevertheless, for sufficiently lamene should re-
1. Induced surface charge cover the planar case.

It is helpful to have a precise representation of the polar _ . _
profile of o™ (6) in order to get a clear understanding of 2. Self-image interaction

the source of the image forces. Although at firs_t glance such  We now compute the potential of interaction between the
a study should belong to standard electrostatics we are neicroion g and the dielectric particle or, in terms of image
aware of any data in the literature that treats this relevanforces, the potential of self-image interaction. This is the

aspect. work done in bringing the microion from infinity to its posi-
The numerical computation of E416) was performed tion b, and it is equal to thialf-product ofq and the second
using a cutoffl ,,,,=300 in the Legendre space leading to term of ®,(r=b) given by Eq.(10). In that case we have
high accuracy® The plot of o3i"(6) for a=7.50 and r=b (see Fig. 1, so that§=0 and therefore® [ cos@=0)]
b/o=8, 9 and 10 can be found in Fig. 3. One can clearly=1. In order to normalize the energy wika T we introduce

observe that-{($" () is stronglyinhomogeneous. For small  the Bjerrum lengthlg=e?/(4mege kg T) which is 7.14
6, o$hM(6) is highly positive(i.e., it carries the same charge A for water atT =298 K. By choosingr=3.57 A we have
sign asq) and decreases abruptly. The angfe [given by  |,=2¢. The potential of self-image interactiorSP(b) is

Eq. (18)] Wherecrg,%ﬁh)(a) changes sign is 16.9°, 29.5° and then given by

37.4° forb/o=8, 9 and 10, respectively. In parallel, by in-

* |
creasingo one drastically decreases the magnitude as well as VEP) (1) = }k Tl Z_Z D a AL (g1 gy)l
the inhomogeneity ot-(%"(6). Recall that forb/a>1 we self 28 Bp &b e1(l+1)+e,l”
have o™ () ~ cosé. (23

i inai (sPh)( = i (plan) . . . .
It is insightful to comparerpg™(6=0) with 0" "(d  Equation(23) shows that the typical interaction range scales
=0)_[computei(sj gom Eq(192]|§r|]§1ce both quantities give the ik 1% and therefore it ishort-ranged.’® Note that it is
maximum ofapa ™ ( _0) ando 2" (d), respecnvgly. The cor- fully equivalent to computd/(P
responding numerical values are gathered in Table I. They,i-ation charges as follows
values found at finite curvature are very similar to those of

(b) from the surface po-

zero one. The fact thau(h"(6=0) is systematically V) () = 11 9ra? olH" (cosd) d(cosd)
smaller thans (%2 (d=0) is consistent with the idea that in selt (D)= 5 Areg) 157 9 v — | :
spherical geometry we have the presence of opposite image (24)

where r, is the radial vector of magnitudé,/=a and
o{*"(cosd) is given by Eq.(16).

; (sph)( g ®1a0d— 0 in uni c0s0) _ _
TABLE I Numerical values otryo(6=0) andopg"(d=0) in units of It is insightful to compare the potential of self-image

pol
q/4me 0 as a function ob. The corresponding profiles of2"”(6) can be

found in Fig. 3. in(telri\)ction obtain(_ed in spherical geometry with that,
V& &V (b—a), obtained in planar geometry. The setup for a
bl/e oM (6=0) oM (d=0) planar interface is sketched in Fig. 2. In this situation the
8 71 761 analytical expression of (82" (b—a) is simply given by
9 0.794 0.846
1 g1~ ¢ 1
10 0.278 0.304 (Plan)(y _ )= = 221 %2 =~
Vself (b a) 2kBT|BZ 81+82 2(b_a) (25)
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Profiles of VP (b) (for two colloidal radi) and

v&la(r) are reported in Fig. 4. Since in botplanar and
spherical cases the potential of interaction diverges at the
interface, we only show results from»r as it is the case in
experimental systems. The numerical computation of Eq. 08
(23) was performed using the formalism of EG2) allowing
an arbitrary precisioR’ ~
Figure 4 clearly shows that the self-image interaction \10,6
is weaker(the higher the curvatuyewith a spherical inter-
face than with a planar one. In particular, at contact we
have VEP(r,=80)=0.6&%kgT and VI (ry=400)
=0.862%kgT for the spherical interface an¥®2"V(o/2)
=0.9522%kgT for the planar one. These features can be physi- R )
cally explained in terms of polarization charges. In the con- alo
tact region(i.e., for small &—see Fig. 2 we know that the 02 o0 a0 60 80 100 120 140 160 180 200
surface polarization charge is quasi-identical on both spheri- alc

cal and planar interfaces. However, fibmite curvature we

also know thato_(sgnlh) changes sign abové* and in the FIG_. 5. R_educed contact potentl}a{[‘g_(a) as a funptlon of the colloidal
radiusa with £,=80, e,=2. The limit value of unity corresponds to the

presen_t Case'E)Soﬁ’t? gets oppostely charged tog. This latte_r planar interface. The solid line is the exact contact potehdla) and the

effect is the main cause that leads to a weaker Self'lmaggashed one is the contact potenﬁN&}(a) obtained with the two-image
interaction for spherical interfaces. Nevertheless, by increasharge approximation used by Linggef. 10. The insert shows the ratio
ing a (i.e., reducing the curvaturene approaches the planar V;(a)/vs(a).

case as expectddee Fig. 4. Physically, this means that the
contribution of the negative polarization charggsng at 6

> #*) to the self-image interactiofEq. (24)] becomes neg-

ligible for sufficiently large colloidal radius.

CX XYy pe—

04 14

al/o smaller than about 20 the contact potential varies rapidly
and therefore it is strongly dependent on the curvature. This
length scale typically corresponds to micellar systemslQ

3. Effect of curvature on the contact potential nmy.

It is clear that for sufficiently low curvature one should Some years ago, LinStused an approximation where

recover the planar case as far as the self-image interaction ¢ replaced théexacy infinite manifold of image charges

concerned. Thus, a natural question that arises is: for whickentering Eq.(12)] of total charge—q;,, by a single image

typical colloidal size are curvature effects relevant? point-charge—q;, [given by Eq.(13)] located at the center
A suitable observable for this problem is provided by theof the spheré: Although this ansatz was motivated by the

contact potentiaV/ S (b=a+ ¢/2). This quantity is of spe- study of many counterionévhere the degree of spherical

cial interest since it will correspond to the highest repulsiveSYmmetry can be enhanced compared to the single-
part of the global interaction between a macroitire., ~ counterion systemit is instructive to see what this approxi-

charged macro-particle and an oppositely charged counter- mation in_volves for the self-im_age interactign. Doing SO, the
ion. In order to investigate the effect of finite curvature weSetup of image charges consists oftao point-chargg di-

are going to compare$Pf)(a+ o/2) to the contact potential PO!€ Pim=0imu, and the corresponding contact potential

sel f
V&2 (b—a=qg/2) obtained with a planar interface. V& (ro) reads
The plot of the normalized contact potent\d} (a) de- Z2e—e,al 1 1
. N7(sph) (i — — _ _ I,
fined as Vi (b=rg)=kgTlg 2 s1% e, To|To—u rJ' (27
g
o VM| g+ 5 o The plot of
ola)= ~ o
ver|3) L e
2 Vo(@)=————— (28)
can be found in Fig. 5. For the sake of numerical stability we vplan E)

used the formalism of Eq12) allowing an arbitrary preci-
sion. Figure 5 shows that fa/o larger than about 100 the can also be found in Fig. 5. It shows that the two-image
contact potential is close to that of the planar interfdees  charge approximation used by Linse is only valid for very
than 5% difference This length scale typically corresponds low curvature (i.e., close to the planar cgsend may

to “true” colloidal systems (~100 nn). Therefore, in the strongly overestimate the self-image repulsion as expected
dilute regime where the self-image interaction is dominanty its inherent constructioff.Using MC simulations, Lins@

(i.e., lateral microion—microion correlations are negligible investigated micelles of radius #218 A (i.e., a/c~3.5
large-sized colloidal particles can be reasonably approxi—5) leading to errors as large as 40%ee insert of Fig. b
mated by planar interfaces as far as the modeling of th&his proves that this ansatz is unsuitable to determine the
self-image interaction is concerned. On the other hand, foself-image interaction in this regime, which is the source of
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0 — — —— — TABLE Il. Theoretical values of* minimizing the macroion-counterion
potential of interactionwith Z,,=60, £,=80, £,=2 andr,=8c). The
corresponding profiles can be found in Fig. 6.

€5 Ae z (r*=rg)lo
2 78 1 0

2 78 2 0.17

2 78 3 0.32

V(b)/(k,T)

course the same qualitatively happens for charged plates.
The values of * minimizing V,(b) (with b>r,) are given
in Table Il. The quantityr* will be useful to discuss our
simulation results that concemany counterions and where
4 6 1 we also have the same macroion bare cha#jg=60).
(b-r)lc Keep in mind that all our results above concern a single
microion. Whenmany counterions come into play, other im-
FIG. 6. Global macroion-counterion potential of interacti@olid lineg portant effects might appear in principle. In particular, when
with Z, =60, ro=80, £,=80 ande,=2. The values of the corresponding the nymber of counterions near the macroion surface is very
minimar* can b_e found in Tab.le Il The da_shed Il'nes corregpond to theIarge the image forces are practically canceled by symmetry
usual electrostatic potential of interaction without image for@es, Ae 025 . .
=0). reasont>?® Clearly, by approaching théerfec spherical
symmetry one asymptotically cancels the polarization
charges everywhere on the macroion surface. This point
the image forces. Even in a many-counterion system, thishows that the discrete nature of the counterions is crucial for
approximation is too strong when the self-image interactiorthe existence of image charges in spherical geom&tfjin
is dominant® However, in the limit of high spherical sym- planar geometry the situation is radically different, where
metry (with many counterionsthis approximation becomes one gets an amplified image force upon increasing the num-
precise, but then the effects of image forces are negligible.ber of “surface” counterions.

4. Charged colloid
. . . _1lll. MONTE CARLO SIMULATION
As a last theoretical result, we consider the interaction

between(a single counterionq and a negativelycharged Standard canonical MC simulations following the Me-
dielectric sphere. The procedure is completely similar to theéropolis scheme were usé¥d® The system we consider is
neutral colloid case, and we now apply the principle of su-similar to those studied in previous works* It is made up
perposition to take into account the additional potential dueof two types of charged hard spherég:a macroion of ra-
to a central charge,,=—Z,e. The (globa) macroion- diusa with a bare charg®,,= —Z,e (with Z,,>0) and(ii)

counterion potential of interactiov,(b) reads small microiongcounterions and coion®f diametero with

chargeg= = Ze to ensure the electroneutrality of the system.

ZZ . o ; .
V()= —kgTlg —— + VP (b), (290  All these ions are confined in an impermeable cell of radius

b R and the macroion is held fixed at the center of the cell.
wherevgz'ﬁﬁ)(b) is given by Eq.(23), and hence The dielectric media are modeled as in Sec Il. It is to
mention that we suppose, for the sake of simplicity, that the
Vm(b)=kBTI—BZZ Zn 1 dielectric discontinuity coincides with the macroion radius.

b Z 2 One must note that the effects of image forces can be sig-
ol +1 nificantly reduced when the location of the dielectric bound-
a (e1— &)l 30 &Y is somewhata few Angstfans) beneath the macroion
b ei(l+ D) +e,l | (30 surface'® On the other hand, the outer region of the simula-
tion cell is assumed to have the same dielectric congtant
as the solvent in order to avoid the appearance of artificial
€image forces.

The work done in bringing thé&eal ions together from
infinite separation gives the interaction energy of the system.

The corresponding Hamiltoniakl,,; , can be expressed as

Ui(m)+ E Ui(bare)}

=Y

x>
=1

Profiles of V,(b) for Z,,=60, ro=80, ¢,=2 andZ
=1, 2 and 3 are reported in Fig. 6. An important result is th
occurrence of aninimumin V,(b) whose depth and position
r* increase with increasing. This is due to the purelye-
pulsive self-image interaction which scales lig#, whereas
the directattractive Coulomb macroion-microion interaction
scales likeZ (at fixedZ,,). Nevertheless the occurrence of a U — 2
minimum is strongly dictated by the ratid,,/Z [see Eq. tot &
(30)]. For high value ofZ,,/Z, |V(b)| is maximal forb
=T (only attraction occurg and for smallZ.,/Z one recov- +> [Ugself)+ D Uggm)} (31)
ers the neutral colloid case where omgpulsion occurs. Of i ' oy

j>i
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The first two terms in Eq(31) correspond to the tradi-
tional electrostatic interactions between real charges. More

explicitly,
ZZ o
*lgkgT—, for ri=a+ -,
I 2
U™(ry)= (32)
o
o, for r;<a+ X

represents the macroion-microion interaction, wheré ap-
plies to coions and-) to counterions, and

René Messina

2
iIBkBTF' for rjj=o,
Ui(jbare)(rij): 1] (33)

o, for rj;<o,

the pair interaction between microiofsand i where (+)
applies to microions of the same type an€) otherwise.

The two last terms in Eq31) account for the interaction
between images and microions. Tiepulsive self-image in-
teraction is given by

1 ZZ'max a 21+1 (81_82)| o
2kBTIBri 21 - SRS for ri=a+ -,
Ui(self)(ri): (34)
g
o, for ri<a+§,
wherel o is the cutoff in the Legendre space, and
I max 21+1
a (e1—&9)l 1 o
+ 2 =g+ —
| *lekeTZ" 2, T (D) gl i1 11000 forfi=at s,
UM (1, 1) = (39
(o
o, for ri<a+§,

represents the interaction between microi@nd the image
(surface charge induced bgf microionj, where(+) applies
to charges of the same siand(—) otherwisd and @ is the
angle betweenm; andr; . It is this term that generateateral
image-counterion correlations. Due to the symmetrylf:}f“)
upon exchangingj with ji there is an implicit factor 1/2 in
Eq. (35).

ions were extrapolated. The radial distanceare discretized
over logarithmically equidistant nodes so that close to the
macroion surface the radial resolution is G0and near the
simulation wall 0.. The polar discretization consists of
2000 equidistant co$nodes leading to even smaller lateral
resolutions. The corresponding values 0f*®"(r;) and
U™ (r;,r;,cosé) were then initially stored into tables. Note

Convergence of the Legendre sums with a relative errothat in principle one could also have used the formalism of

of 10" © is obtained with the employed value lgf,,= 1003*

Eq. (12) to compute the image-ion interactions. However, at

For the sake of computational efficiency and without loss ofidentical numerical accuracy, this method involving a nu-
accuracy, we computed the image-ion interactions on anerical integration is too time and resource consuming.

(very) fine (r,cosé) grid where the coordinates of the micro-

Typical simulation parameters are gathered in Table III.
The cases,=80 corresponds to the situation where there is
no dielectric discontinuity Ae=0). Measurements were

TABLE IIl. Model simulation parameters with some fixed values. Apart performed over 10MC steps per partlcle.
from the charge sign, counterions and coions have the same parameters.

Parameters
T=298 K room temperature
£,=80 water solvent dielectric constant
£,=2 colloidal dielectric constant
Ae=g,—&,=78 strength of dielectric discontinuity
Zn macroion valence
z counterion valence
o=357 A counterion diameter
lg=20=7.14 A Bjerrum length
a=7.50 macroion radius

o
rq=a+t 5 =80 macroion-counterion distance of closest approach
R radius of the outer simulation cell

IV. SIMULATION RESULTS

Here we present our MC simulation results in salt-free
environment as well as in the presence of multivalent salt-
ions. We essentially study in detail the radial microion dis-
tributionsn;(r) around the macroion, which are normalized
as follows

R
f 47r°n,(r)dr=N,
r

0

R (36)

f 47r?n_(r)dr=N_,
o
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TABLE IV. System parameters.
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System A B C D E F G H | J

Zn 60 60 60 60 60 60 60 60 180 180
z 1 1 2 2 3 3 2 2 2 2
N, 60 60 30 30 20 20 430 430 445 445
N_ - - - - - 400 400 400 400

&5 2 80 2 80 2 80 2 80 2 80
Ae 78 0 78 0 78 0 78 0 78 0
Rl/o 40 40 40 40 40 40 20 20 20 20

wherer is the distance separation from the macroion center,

+(—) stands for counteriofcoion) species andN, (N_) is
the total number of counterion&oiong contained in the
simulation cell.

Another quantity of special interest is the integrated
cumulative fluid net chargeQ(r) defined as

Q(r)=frr4wu22[n+(u)—n_(u)]du, 37

0

where we chose=1. Q(r) corresponds to the total fluid
charge(omitting the macroion bare char@g,) within a dis-
tancer from the macroion center, and at the cell w@l(r
=R)=Z,. Up to a factor proportional to A7, [Q(r)
—Z,] gives (by simple application of the Gauss theodem
the mean electric field at ThereforeQ(r) can measure the
strength of the macroion charge screening by salt-ions.
salt-free environment systems we have(r)=0 andN,
=ZnlZ.

The simulation run parameters can be found in Table IV.

For all these simulation systems, the ion densitigs) were
computed with the same radial resolutian.3* The discreti-
zation of the radial distancein n;(r) is realized over loga-

rithmically equidistant points so that close to the macroion

surface (—ro<o) we haveAr<0.04s. It is important to
obtain such an accurad@nd the required statistici# one

n(r)c

0.01 -

omiz,

In

FIG. 7. Monovalent counterion distributiofsystemsA andB): (a) Density

wants to describe quantitatively the effects of image forces ., (r). The dashed line in gray corresponds to the counterion density

which are short-ranged at strong curvature.
A. Salt-free environment

Salt-free system8 —F (see Table 1Y were investigated
for a moderately charged macroi@g,= 60 corresponding to
a surface charge density,=0.11 Cn 2,

1. Monovalent counterions

The profiles ofn,(r) and Q(r) are depicted in Figs.
7(a) and 7b), respectively for the monovalent counterion
systemsA andB.

Figure 7a) shows that the counterion density at contac

(r=rg) is somewhat smaller with ¢ =78 as a direct conse-

guence of the self-image repulsion. However there is n

maximum appearing im,(r) with Ae=78, in agreement
with the study of the single-counterion systdsee Fig. 6
and Table I}. Forr—ry>~0.60 (corresponding roughly to
three half ionic sizes from the interfac¢he effects of image
forces are negligible and afi (r) curves are nearly identi-
cal.

To gain further insight into the effects tdteral image-

n(r) obtained in the same systeM(Ae=78) but where thelatera)
image-counterion correlational teridﬂm) [Eg. (35)] has been omitted in the
total HamiltonianU ., [Eq. (31)]. (b) Fluid charge.

A (Ae=78) but omitted the correlational tertd™ [Eq.
(35] in the total Hamiltoniarl,y; [Eg. (31)]. Physically, this
means that, on the level of the image force, each counterion
sees uniquely its self-image interaction. Thereby, Fig) 7
shows thati) the corresponding counterion densilﬂ?e'f)(r)
{is nearly identical ton,(r), and (i) in the vicinity of the
interface n®*®"(r) is slightly smaller thann, (r). These
dindings (i) and (ii) lead to the two important conclusions:

*For monovalent counterions and moderately charged
macroions, theeffective image force is basically identical to
the self-image forcé®

*The crucial effect of lateral image-counterion correla-
tions is toscreen the self-image repulsion.

This latter feature is generally true for afigite curvature at
identical fixed macroion charge density. FindifiQ is also

counterion correlations, we have considered the same systetonsistent with the fact that, close to the interfasay r
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—r¢<0.20), the average number ¢$urface counterionsN 0.06 Bl el

is (very) small (N<5) as can be deduced from the fraction ;

of counterionQ(r)/Z,, [Fig. 7(b)]. — Ae=0
Figure 7b) shows that the fluid charg®(r) decreases e L Ae =178

when image forces are present, meaning that they lower thi - Ae=T8

macroion charge screening by counterions. At the distance  0.04
r—ro=o (corresponding to a @-layer thicknesg the mac- -

roion is 29% electrically compensatefi.e., Q(r—rg .-g 0.0
=0)/Z,=0.29] with Ae=0 against 26% withAe=78. At T

the distancer —ry=40, the relative differenceAQ/Q be- 1
tween theQ(r) obtained withAe=0 andAe=78 drops to 0.02 f -~
2% (against 10% atr —ro=o0) where the bare macroion :

charge is nearly half-compensated. 0.01

2. Multivalent counterions

a. Divalent counterions. The profiles ofn,(r) and
Q(r) are depicted in Figs.(8) and &b), respectively for the
divalent counterion systen andD.

Figure 8a) shows that the counterion density at contact
becomes strongly reduced wittAe=78 due to the
Z2-dependence of the self-image repulsioompare the case
Z=1 in Fig. 7a@)]. This sufficiently strong(short-ranged
repulsion leads to a maximum m,(r) close to the macro-
ion surface. The corresponding radial positidh maximiz-
ingn,(r)isr*=ry+0.22r, in very good agreemefvithin
Ar) with the one-counterion theoretical valuery+0.170
(see Table ). This shows that for divalent counterions
many-body effects do nearly not affect. This nontrivial
finding is the result of the competition between two driving
forces that controt* in many-counterion systems:

oIz,

*Fim: the screening of the self-imagepulsion by the
(extra negative polarization charges tendsleorease ther* 0
obtained in the one-counterion system.

*F . the screening of the macroion-counteriattr ac-

tion by the (extra surface counterions tends itacrease the FIG. 8. Divalent counterion distributionsystemsC andD): (a) Density
r* obtained in the one-counterion svstem n.(r). The dashed line in gray corresponds to the counterion density
: I u ! Y : n"(r) obtained in the same syste@(As=78) but where thdlatera)

It is precisely a balance of these two driving forces that lead#nage-counterion correlational teridf;™ [Eq. (35)] has been omitted in the
to a nearly unchanged® (compared to the one-counterion tota! HamiltonianUy, [Eq. (31)]. (b) Fluid charge.

system in many-counterion systems. Whereas for monova-

lent counterions both driving forcds;,, andF . are weak,

2
(r-r)lc

those become relevant for multivalent counterions. roion is 62% electrically compensated fdre=0 against
We stress the fact that this is specific to the sphericab3% for Ae =78 [compare the casé=1 in Fig. 7b)].
geometry, and that for a planar interfa@e identical surface b. Trivalent counterions. The profiles ofn,(r) and

charge densityone should get a highe#* (compared to that Q(r) are depicted in Figs.(8) and 9b), respectively for
of the one-counterion systgmsince there we have no trivalent counterion systerms andF.
screening driving forc&;,,,. We are not aware of any previ- Figure 9a) shows that the counterion density at contact
ous studies for the planar interface that address this sue.is drastically reduced withe =78, as expected for high
To gain even further insight into the effect @fon the  (compare the previous cagest Ae =78, we haver* =r,
lateral image-counterion correlations, we have ignored the-0.360, in quantitative agreement with thame-counterion
term Ui(}m) in Uy, in the same syste® (As=78) as done theoretical value,+0.320 (see Table Il. This shows again
previously with systemA. Figure &a) shows a qualitatively that even for trivalent counterions many-body effects do
different n*®)(r) wherer* =r,+0.260 is now somewhat (practically not affectr* (compared to that obtained in the
larger, proving that with divalent counterions the screeningsingle-counterion systendue to a balance of the driving
of the self-image repulsion by lateral image-counterion corforcesF;,, andF,.
relations is appreciable. This is in contrast to what was ob- By neglecting the lateral image-counterion correlations
served withZz=1. in the same syste (Ae=78), Fig. 9a) indicates that the
At the distance —ry= o, Fig. 8b) shows that the mac- positionr* of the maximum inn(fe'f)(r) gets considerably
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Z,=60;Z=3
0.07 —

(@)

0.06 |

0.05 -

n(r)o’

o)z,

FIG. 10. Snapshots of typical equilibrium configurations for trivalent coun-
terions(systemsE andF). (a) Ae=0 (b) Ae=78. One can clearly observe
the larger mean radial counterion distance Aar=78 stemming from the
self-image repulsion.

2
(r-ry)lc

charge densityo;=0.32 Cn?. The salt concentration de-

FIG. 9. Trivalent counterion distributiofsystemsE and F): () Density ~ fined as N_/27R%) is 0.44 M for all salty system&—J
n.(r). The dashed line in gray corresponds to the counterion densitysee Table IY. The simulation cell radiuR= 200 of these

(self) i i = . . .
N (r) obtained in the same systef(As=78) but where thélatera) gy qtems js still very large compared to any screening lengths
image-counterion correlational terU‘fj [Eq. (35)] has been omitted in the that finite si ffect ligibl
total HamiltonianU, [Eq. (31)]. (b) Fluid charge. SO that inite size etiects are negligible.

I o 0.507). This relativel hif . 1. Moderately charged macroion

arger t*=ry+0. . This relatively strong shift confirms i . -

the Z-enhancing of the screening of the self-image repulsion Profiles ofni(_r) and Q(r) are depicted in Figs. %a)

by lateral image-counterion correlations. and 11b), respectively for the salty systen@ and H with
At the distance —r,= o, the macroion is 84% electri- Zsz?]O. on densit ith Ae—78 is basicall

cally compensated fode=0 against only 67% forAe _'he coion densi yn_(r) wi &= IS basically

—78 [see Fig. %) and compare previous systemsnap- shifted to the right of about 0.15(compared to that with

shots of typical equilibrium configurations fase =0 and Ae=0) due to the repulsive coion’ self-image interaction.
Ae=78 can be visualized in Figs. 18) and 1ab), respec- Near the colloidal surface, the counterion densitieér) are
tively ' ' considerably higher than those obtained with no added salt

(systemsC andD) as it should bdcompare Fig. &)].

A rather surprising result here is that, despite the pres-
ence of a considerable amount of added salt, we still have
We focus on the case of divalent salt-ions. This choice is* =r;+0.220 remaining unchanged. This is a nontrivial

motivated by two reasonsgi) effects of image charges are finding since one should have éextrg attractive contribu-
clearly observable for multivalent counterions afiig such  tion to the macroion-counterion potential of mean force
systems must be experimentally reachable. To study the eftemming from thelocalized negative polarization charges
fect of added salt we have considered two macroion chargdaduced by the coions, which in turn could lead to a shorter
Z,=60 (as previously and Z,,=180 corresponding to a r*. However there are two concomitant sources that lead to

B. Salty solutions
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Z =60;,Z2=2 Z =180;Z=2

0.08 |

(@)

—--- Ae=0

0.02

4
S
X
&
Qi
0 2 3 4 ) PP P,
(r-r)/c 0 4

2
(r-ry)lc

FIG. 11. Divalent salt-ion distributiotsystemsG andH) with Z,,=60: (a)

The solid and dashed lines correspond to counterion and coion densitieE!G- 12. Divalent salt-ion distributiofsystemd andJ) with Z,=180: (8)
respectively(b) Net fluid charge. The solid and dashed lines correspond to counterion and coion densities,

respectively(b) Net fluid charge.

a marginal screening of the counterion’ self-image repulsion

by the negative coion-induced polarization chardgsthere = Ae=78 decreases drastically in the vicinity of the interface,
is a strong coion depletion close to the interfasee Fig. and already for —r,>~0.20 the two profiles o, (r) are
11(a)] due to the large direct Coulomb macroion-coion repul-nearly identical. Besides, near the interfage effective
sion and(ii) |o(h"| decreases abruptly with the radial dis- macroion-counterion repulsion occurs &&=78. This ab-
tance of the microion as discussed in Sec. Il B¢e also sence of a maximum in,(r) is due to two main concomi-

Fig. 3). Of course the role of thexcluded volume is crucial  tant effects:

here. _ o *For such a highly charged macroion, there is a very
As expected the macroion charge screening is weakghrge number of counterions close to the interfimempare
when image forces come.into. play as can be deduced frorpig_ 12b) and Fig. 11b)]. In this limit, one can use Wigner
the profile ofQ(r) plotted in Fig. 11b). crystal concepts and say that, on the level of the force stem-
ming from the bare chargége., ignoring the image forcgs
each surface counterion essentially interacts with the oppo-
Profiles ofn..(r) and Q(r) are depicted in Figs. 13 sitely charged background of its Wigner-Seit'S) cell. At
and 12b), respectively for the salty systenisand J with sufficiently high macroion charge densitye., small WS
Zn,=180. hole radiug, this attractive interaction becomes very impor-
Figure 1Za) shows that the effects of image forces aretant and it always overcomes the self-image repulsion.
considerably reduced. The relatively small difference be- +The secondconcomitant mechanism is specific to the
tween then, (r) obtained withAe =0 and that obtained with closed spherical topology: at high number of surface counte-

2. Highly charged macroion
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rions, the image forces are reduced because of the enhancggtem. This feature is specific to the spherical geometry and
degree of spherical symmetry as already mentioned in Secan not take place with planar interfaces where thenaois
1D 4. self-screening of the polarization charges. For monovalent
counterions we showed that theffective image force is

The coion densitiesr_(r) are basically identical for X A i .
basically equal to that of the self-image interaction, and the

both dielectric discontinuitied e, in contrast to what hap- ' - )
pened withZ,,= 60 (systemsJ and K). This phenomenon lateral image -counterion correlations aneery) weak. How-

can be explained as the enhanced screening of the coioRVe" for multivalent counterions the lateral image-counterion

self-image repulsion by the positive polarization charges incorrelations affect significantly the counterion density, and as

duced by the other coions present in the electrical doublg&Or effect theyscreen the self-image repulsion. Neverthe-
layer (EDL). Indeed, because of the macroion chargesr- less, the combined effects Gj the macroion charge screen-

sl that occurs atZ,=180 [i.e., Q(r)/Z,>1—see Fig. ing by counterions andii) the screening of the self-image
12(b)], there is also a larger number of coiofat fixed salt ~ "€Pulsion lead to a nearly unchanget! (compared to that

concentratiop in the EDL [compare Fig. 1@) and Fig. obtained in the single-counterion systefior multivalent

11(a)]. Therefore, since the magnitude and the inhomogengM@ny-counterion systems. Furthermore, we showed that the
ity of — o{¥" () induced by a coion strongly decreases with c?un;erlog (_ierl;SI:cy ft con;at(r:]t ?ricrelasgs drastically ?’& (e
its radial distancésee Eq(16) and Fig. 3, the screening of &S0 found in Ref. 1f) and thatr* also increases witll as
the coion’ self-image repulsion gets highly sensitive to aneXpected. These latter results have important implications for
increase in number of coions in the EDL. the stabilization of charged colloidal suspensions where a

Concerning the net fluid charg@(r), we see that both component of the pair-force is proportional to the ion density

profiles obtained withhe =78 andAe=0 are nearly identi- &t contact.

cal, as expected from those pf.(r). The net fluid charge By adding salt, it was found for moderately charged
Q(r) reaches its maximum ag—r0=0.90cr and 0.94- for  Macroions that the strength of the image forces induced by

Ae,=0 and 78, respectively. In both cases we have a maé—he coions is very small compared to that resulting from the
roion charge reversal of 9%more explicitly Q(r)/Z counterions. This is due to the coupled effectsi pthe coion

i ; QM. depletion in the vicinity of the colloidal interface due to the
=1.09]. This proves the important result that, for typical 9P Y

systems (with high macroion charge densjtyleading to str_ong direct Coulomb mac_roion-coion repulsion é’r’n)jthe
7,28,32,37,38 (highly) short range of the image forces in spherical geom-

overchargind, image forces donot affect the . -2 )

strength of the macroion charge reversal. etry..ConsequentIy the p95|t|m*f remains |dept|gal to that
obtained in salt free environment and a fortiori to that ob-
tained within the one-counterion system. Fighly charged

V. CONCLUDING REMARKS macroions the effects of image charges are significantly re-

We have presented fundamental results about the eﬁec%uced since(i) the attractive counterion-hole interaction
of image forces on the counterion distribution around a Om'_'?ates the repulswe counterlon ?e'f"”.‘age mteract.lon
spherical macroion. and(ii) the screening of the counterion’ self-image repulsion

Exact analytical results have been provided for the casd®tS enhanced_ by symmetry reason. !n this situatmmaxi-
of a single microion interacting with a dielectric sphere, UM aPPears in the counterion dens_lty and it was found that
Within this framework, the self-image interaction and theover;f;e;]rgmghls nez,\a/lrlg unalf“fegted by |ma_gz forcgs.
surface charge of polarization have been studied and also though our analysis was carried at given macro-

compared to those obtained with a planar interface. Besidd§" S1#€. al! the above reasonings that conaeany counte-
we also estimated the positior* where the macroion- rions remain unchangelor symmetry reasqrfor any finite

counterion potential of interaction is minimized. We demon-curvature by a rescaling at fixed macroion charge density.

strated that the effects of image forces due to a spherical Finally, this contribut?on should constitgte a solid basi;
interface are qualitatively different from those occurring with to unde_:rs_tand and predict the effects of image _charges n
a planar interface, especially when the colloidal curvature ié)ther _S|m|lar system$e._g., polyelectrolyte adsorption onto
large. We showed that theelf-screening of the polarization spherical charged colloigls

chargegi.e., the screening of the positive surface charges of
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finite manifold of image chargelentering Eq.(12)] by a single image
point-charge— q;,, located at the center of the sphere.

surface charge density and fairly small salt content. However, they did not
make any comparison between the position of this maximum and the
position of a single counteriofper simulation boxminimizing the plate-
counterion potential of interaction.

2Note that the two-image charge approximation also holds when the charg€ R. Messina, C. Holm, and K. Kremer, Phys. Rev. L8&, 872 (2000.

q is very far from the interfacéi.e., b/a>1). Unfortunately, all the rel-

38R. Messina, C. Holm, and K. Kremer, Europhys. L&, 461 (2000.



