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Abstract: We report a GPU implementation in HOOMD Blue of long-range electrostatic
interactions based on the orientation-averaged Ewald sum scheme, introduced by Yakub and
Ronchi (J. Chem. Phys. 2003, 119, 11556). The performance of the method is compared to an
optimized CPU version of the traditional Ewald sum available in LAMMPS, in the molecular
dynamics of electrolytes. Our GPU implementation is significantly faster than the CPU
implementation of the Ewald method for small to a sizable number of particles (∼105).
Thermodynamic and structural properties of monovalent and divalent hydrated salts in the bulk
are calculated for a wide range of ionic concentrations. An excellent agreement between the
two methods was found at the level of electrostatic energy, heat capacity, radial distribution
functions, and integrated charge of the electrolytes.

1. Introduction

The introduction of highly optimized, specialized hardware,
that is, the graphics processing unit (GPU), has allowed for
rendering high definition, nearly photorealistic 3D scenes in
real time on a standard personal computer. Ever increasing
market demand for fast and realistic graphics has driven a
rapid development of inexpensive GPU devices, with a
doubling of computational power every 12 months. A modern
GPU is a highly parallel, multithreaded device with floating
point speed close to 1 TFLOPS and a bandwidth in the 100
GB/s range. The GPU derives its superb computational power
from its design, specialized in performing intensive computa-
tions on large sets of data in parallel. In recent years, the
GPU hardware has become available to nongraphical ap-
plications through the advent of general-purpose program-
mability of the device. Problems that can take advantage of
the high-throughput parallel computations can greatly benefit
from the GPU architecture and easily reach a 100-fold

increase in performance over equivalent implementation on
a CPU.1,2 A notable example is molecular dynamics (MD)
with reports of GPU implementations achieving speed-ups
in excess of 100 times compared to the standard MD codes.
However, the high level of data parallelization comes at the
expense of limited caching and flow control compared to
the CPU.1,3-5 Thus, in most cases, it is not possible to simply
recompile existing CPU codes on the GPU, and it is often
required to substantially redesign existing methods and to
develop new algorithms.

In order to reduce finite-size effects, periodic boundary
conditions are imposed in a typical MD simulation. That is,
if a particle crosses the simulation box boundary, it im-
mediately reappears from the opposite side. Equivalently,
this can be seen as if the system has been replicated infinitely
many times in each direction and each particle has infinitely
many images. In principle, one has to include contributions
from all the images of all the particles in order to compute
the total energy of the system. In practice, this is seldom
necessary, and it is sufficient to cut off interactions at a
certain distance rc and evaluate only the interaction between
particles that are within rc from each other. Formally, if we
assume that a system containing N particles is homogeneous
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and isotropic with density F, then the error introduced in
the total energy by truncating the potential at rc is6

where u(r) is the true, nontruncated potential and we
explicitly used the fact that the system is isotropic to write
the integral in spherical coordinates. If u(r) ∝ r-R with R >
3, the correction Utail ∝ rc

3-R can be made arbitrarily small
by increasing the cutoff distance rc. However, if u(r) falls
off slower than r-3, any such cutoff will result in a divergent
correction to the total energy. Most intermolecular potentials
fall off faster than r-3 and can be considered short-range.
Practically, we can safely truncate them at a suitable cutoff
distance, typically chosen to be less than half the diameter
of the simulation box, an approximation commonly known
as the nearest image convention. Important exceptions are
Coulomb and dipolar interaction potentials that fall off with
distance as r-1 and r-3, respectively. These electrostatic
potentials describe interaction between point charges and
dipoles ubiquitous in nature, most notably in biological
systems. It has been shown in the past that a truncation of
long-range interactions can lead to artifacts like the formation
of nonphysical structures in ionic liquids.7,8

A proper treatment of the electrostatic interaction is a
necessary feature in a general-purpose molecular dynamics
code. The Ewald summation method9 (henceforth referred
to as the ES method) and its derivatives are most commonly
used, though several alternatives exist.10,11 The trick behind
the ES method is to separate the electrostatic energy into a
short-range and a long-range contribution, with the long-
range contribution computed efficiently in reciprocal space.
The numerical effort needed to calculate the total electrostatic
energy using ES method scales as O(N3/2) with the system
size.6 The computational expense can be reduced to O(N
log N) by interpolating charges to a lattice and using fast
Fourier transform to compute the reciprocal space sum. This
is the basis of the smoothed particle mesh Ewald (SPME)
method,12 used in several MD packages. However, an
implementation of these methods on the GPU is a challenging
task since the long-range contribution has to be treated
carefully in order to harvest the full benefit of the massive
data parallelization. A successful implementation of the SPME
method on the GPU has been recently reported.2 Also, an
alternative algorithm based on the multipole expansion has been
proposed.13 Unfortunately, although very efficient, both schemes
are complex, and full apprehension of these algorithms requires
intimate knowledge of the GPU architecture.

In this paper, we take a different approach and present
results of the GPU implementation of a treatment of the
electrostatic interaction recently introduced by Yakub and
Ronchi (henceforth referred to as the YR method).14-16 This
approximation is particularly suitable for isotropic ionic
fluids. The expressions for the electrostatic energy and the
interparticle force are remarkably simple and can be easily
implemented into an existing MD code.

2. Methodology

The total electrostatic energy of a system of N charges placed
in a cubic box of length L with periodic boundary conditions
is

where ε0 is the vacuum permittivity, εr is the relative static
permittivity, rbi (rbj) is the position of charge qi (qj). nb) (nx, ny, nz),
where nx, ny, and nz are arbitrary integers, counts all periodic
images. The prime in the second sum indicates that the i ) j
term should be omitted for nb) 0, and the 1/2 prefactor accounts
for double counting. The sum in eq 2 is only conditionally
convergent and cannot be directly used in simulations. The idea
behind the Ewald method is to separate eq 2 into short- and
long-range parts, each expressed as a rapidly converging sum.
The total electrostatic energy can be written as the sum of these
two contributions plus a constant self-energy contribution6

The short-range contribution is calculated in the real space as

where erfc(x) ) 1 - erf(x) is the complementary error function
and R is the Ewald parameter. The long-range sum (Elong) is
evaluated in the reciprocal space as

where kb) (2π)/(L)nb are the reciprocal lattice vectors, and

is the charge structure factor. In addition, a self-energy term

arises, and it has to be added to the sum of short- and long-
range terms. Note that the Ewald parameter R is related to the
position of splitting between short- and long-range parts in the
Ewald sum. In a simulation, R has to be carefully tuned to
ensure the most optimal performance.

We briefly summarize the YR method. A detailed deriva-
tion is presented in the original paper.14 In an ordered phase,
the crystal lattice sets a natural direction for the simulation
box. This is not the case in fluids where all directions are
equivalent; that is, there is no preferred orientation of the
simulation box. Thus, Yakub and Ronchi proposed to average
eq 3 over all directions of the reciprocal lattice vector kb;
that is, Eel ) 〈Eel〉, where
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is the average over the polar angle θ and the azimuthal angle
φ. Note that the averaging is performed over all possible
orientations of kb while rbi is kept fixed; thus it is only
necessary to average the Elong term since Eshort and Eself terms
have no θ or φ dependence. If we impose electroneutrality,
∑i)1

N qi ) 0, the expression for the angularly averaged total
electrostatic energy takes a surprisingly simple form14

with the pair potential

where rij ) |rbi - rbj|, and rm ) (3/4π)1/3L is the radius of a
sphere of volume L3. Note that unlike the adjustable
parameter R in the Ewald method, rm is fixed by size of the
simulation box.14 One counts only the interactions between
particles at distances 0 e rij e rm. A drawback of eq 10 is
that the pair potential φ(C)(rij) is nonzero at its minimum at
rij ) rm, φ(C)(rm) ) 3qiqj/8πε0εrrm, that results in a jump in
the cutoff scheme. It is therefore convenient to shift this
potential by -φ(C)(rm) to bring the boundary values to zero.
That is, a modified interionic potential is defined

such that φ̃(C)(ri j) f 0 as rij f rm. By using the electroneu-
trality condition, sum Σi)1

N qi ) 0, once again, the expression
for the total electrostatic energy (eq 9) in terms of the
modified interionic potential can be written as

However, the expression for the interparticle force fbij )
-∇φij

(C) )-∇φ̃ij
(C) is not affected. Equation 11 is the effective

electrostatic pair potential φ̃(C) associated with the Coulombic
system and is the central result of the YR method. Thus, for
an isotropic electroneutral system subject to periodic bound-
ary conditions, long-range effects of the electrostatic interac-
tion can be expressed in terms of a finite range potential.

It is worth mentioning that the cutoff radius rm )
(3/4π)1/3L ≈ 0.62L is larger than L/2. This fact has to be
accounted for when calculating the electrostatic potential

on a charge qi located at rbi. Namely, the electrostatic
contribution of some charges has to be included twice, that
is, as the original charges and as their “phantom” images.14

These ions are contained in the shaded region in Figure 1
and are obtained by the overlap of a sphere of radius rm

centered on an ion and six spheres of the same radius
centered on the images of the ion. To illustrate the calculation
of the effective pair potential in the YR method, we show
four particles in the xy plane (z ) 0) with coordinates
P(0, 0, 0), A(xA, yA, 0), B(xB, yB, 0), and C(xC, yC, 0). Particle
A is in the nonoverlap region of the sphere centered at P,
and thus its interaction with P needs to be counted once.
That is, the effective pair potential between particles P and
A is

Particle B is in the overlap region of the sphere centered
at P, and thus its interaction with P needs to be counted
twice, both with particle B and its “phantom” image B′. The
effective pair potential between P and B is

Since particle C is outside the sphere centered at P, it needs
not be counted, and the effective pair potential between P
and C, φ̃PC, is zero.

3. Implementation Details

A direct consequence of the cutoff radius rm ) (3/4π)1/3L
being larger than L/2 is that each ion has more than N
neighbors, rendering the use of a neighbor list impractical,
from the point of view of both the memory required to store
it and the overhead to update it. Instead, one simply loops
over all ions and decides which ones contribute once, which
twice, and which do not contribute at all to the sum in eq
13. This implies that when implementing the YR method
into the HOOMD Blue package, it is not possible to use the
sophisticated EvaluatorPair class template specifically de-
signed for the ease of implementing additional short-range
potentials. Instead, we implemented a specialization of the
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Figure 1. Main unit cell and spheres of radius rm centered
on an ion P and its nearest images P′. Shaded regions
indicate the overlap of these spheres. The effective interaction
of ion B with ion P is counted twice, both as the original ion
and its “phantom” image B′. Ion A is counted only once since
it is in a nonoverlap region, and the effective interaction
between ions P and C is zero. The blue line indicates the
boundaries of the cubic simulation box. See section 3 for
description of the dotted circle.
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PotentialPair template with a custom EvaluatorPairCoulomb
class designed to avoid costly use of the HOOMD’s neighbor
list system.

The CUDA kernel for computing the pair Coulomb
interaction in the YR approximation is described in Figure
2. Each thread handles one ion i of the main cell, and one
loops over all ions j different from i. If the interionic distance
rij e L - rm, that is, if both ions are inside the dotted circle
in Figure 1, their contribution to the Coulomb energy is
counted once. On the other hand, if L - rm < rij e rm, one
needs to include the contribution of the image ion rb̃ )
rbi + Leb as well, if rb̃ij ) rb̃i - rbj is inside one of the
shaded regions in Figure 1. eb is one of the vectors (- 1, -
1, - 1), (- 1, - 1, 0), (- 1, - 1, 1), ..., (1, 1, 1), excluding
(0, 0, 0). Finally, if rij > rm, the ion pair (i, j) is ignored. Since
the order in which the contributions from different ions are
added to the force and potential sums is irrelevant, a fully
coalesced memory read is trivially achievable.

In order to compare the performance and accuracy of the
YR method against the ES method in electrolyte systems,
we performed MD simulations of hydrated monovalent and
divalent electrolytes, with valence z+ ) -z- ) 1 and z+ )
-z- ) 2, respectively. We use the restricted primitive model
(RPM), where an ion is modeled as a hard sphere with a
point charge embedded in its center immersed in a continuum
dielectric medium. The excluded volume of ions is modeled
by the repulsive part of the shifted Lennard-Jones (LJ)
potential17,18

where σ is the diameter of bulk hydrated ions, taken as 6.6
Åand8.25Åformonovalentanddivalent ionsrespectively.19,20

εLJ ) 1kBT is the LJ interaction strength, where kB is the
Boltzmann constant and T is the temperature. RPM has been
quite successful in the prediction of thermodynamic proper-
ties of bulk ionic solutions, and in describing several
interesting phenomena associated with charged colloidal

systemsssuch as charge inversion and charge reversal.21,22

In charge inversion, co-ions and counterions switch their roles
near an electrified surface, and in charge reversal, the native
surface charge of a colloid is overcompensated by counter-
ions. These effects are due to the ion-size correlations, treated
in a coarse-grained description by associating an excluded
volume to the hydrated ions.

MD simulations were performed in an NVT ensemble at
a reduced temperature T* ) kBT/ε ) 1 with a time step of
0.005τ, where ε ) 1kBT and τ ) (mσ2/ε)1/2 are the reduced
LJ units23 of energy and time, respectively, and m is the
mass of ions, set to unity. The relative static permittivity of
the solvent is εr ) 78.4, corresponding to an aqueous
solution. The average electrostatic energy per ion is defined
as

where Eel is defined in eq 12 and 〈...〉 stands for the time
average. The heat capacity per ion is defined as

where CV is the heat capacity in real units. These averages
and corresponding standard deviations were calculated from
the snapshots collected every 100 time steps, which is well
beyond the sample correlation time determined from the
associated autocorrelation function.6 A total of 100 000 to 1
million MD time steps were performed, where the longer
runs correspond to the more dilute systems. The time
averages are calculated from the second half of each run,
well beyond the equilibration time.

The YR method is implemented in the development
version of the HOOMD Blue package,24 revision 3109.
HOOMD Blue currently supports only single precision
arithmetic. Simulations were performed on NVIDIA GTX
295 and GTX 480 GPUs installed in a custom built
workstation with an Intel Core i7 920 CPU, 12 GB of RAM,
running the Fedora 12 Linux operating system, CUDA 2.2,
and NVIDIA Linux driver version 195.36.24. In all runs,
only one of the two GPUs on the GTX 295 card was used
while the other was kept idle. No monitors were attached to
either GTX 295 or GTX 480 cards. On GTX 295, maximum
performance is achieved with 64 CUDA threads per block,
while on GTX 480, the most optimal thread per block count
was 160. Simulations with the ES method were performed
in LAMMPS25,26 on 32 CPU cores, that is, on four IBM
iDataplex blades with two quad-core 2.4 GHz Intel Xeon
E5520 processors, 48 GB of memory, and interconnected
through a DDR InfiniBand network.

4. Results and Discussion

The YR method requires O(N2) computations to evaluate
the total electrostatic energy, as opposed to O(N3/2) computa-
tions in the ES method. However, due to its simplicity,
computation of the electrostatic interaction in the YR method
requires a relatively small number of simple arithmetic

Figure 2. Pseudocode for computing pair Coulomb interac-
tions in the YR method. blockIdx and threadIdx are standard
CUDA structures that contain information about the current
execution block and thread, respectively.
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operations compared to significantly more complex calcula-
tions needed for the same evaluation in the ES method.
Therefore, the YR method is significantly faster than the ES
method even for 105 particles, as shown in Figure 3. The
performance gain is even higher when compared to the
parallel execution of the ES method, since a significant
amount of time is spent in communication between proces-
sors for this range of simulation sizes. Note that while the
YR method is free of adjustable parameters, the performance
of the ES method is sensitive to changes in the real-space
cutoff and the reciprocal space precision. We use a real space
cutoff of approximately one-fifth of the simulation box size
and the reciprocal space calculations were performed with a
precision of 10-5. Simulations on the NVIDIA GTX 480
were approximately twice as faster as that on the NVIDIA
GTX 295.

Next, we evaluate the thermodynamic predictions of the
YR and ES methods for a range of concentrations of
monovalent and divalent electrolytes. The number of ions
in the simulation box can be chosen arbitrarily as long as
the electroneutrality condition is preserved. In this study, we
use 1912 ions, a number chosen to balance a full utilization
of the GPU with reasonably short execution times. The
calculated values of electrostatic energy and heat capacity
from the ES and YR methods are shown in Tables 1 and 2
for monovalent and divalent electrolytes, respectively. We
observed an excellent agreement between the two methods
for a wide range of concentrationsseven for divalent ions,
where the electrostatic correlations are stronger. Note that
there is an appreciable difference in the heat capacities
obtained by the ES and the YR methods for dilute systems,
in particular for the monovalent case. We attribute this to
the inability of the MD to successfully equilibrate a dilute
system of charges,27,28 and we believe this is not a drawback
of the YR method.

To evaluate the concordance of the YR and ES methods
in reproducing the structural details of the electrical double
layer, we calculate the radial distribution functions, g++ (r*)
and g+- (r*), of the like- and unlike-charged ions, respec-
tively, where r* ) r/σ is the reduced distance from the center
of the reference ion. These quantities are averaged from
snapshots taken every 10 time steps. Radial distribution

functions calculated by the two methods show excellent
agreement, as is clear from the curves being virtually
indistinguishable in Figures 4 and 5. Further, in both
methods, g++(r*) and g+- (r*) approach one far from the
central ion and at the border of the simulation box, as shown
in the insets of Figures 4 and 5. This condition is necessary
to ascertain that the system is free of finite size effects, and
it is often not met in truncation schemes for handling
electrostatic interactions, even for significantly large simula-
tion box sizes.29 For the monovalent ions at 0.01 M (Figure
4a), the contact values show an attraction and a repulsion
between unlike- and like-charged ions, respectively, as is
expected of bare Coulomb interactions. Interestingly, for the
1 M concentration (Figure 4b), the excluded volume of
hydrated monovalent ions leads to a slight attraction between
like-charged ions. For the divalent case at 0.005 M (Figure
5a), we observe repulsion and attraction of like- and unlike-
charged ions, respectively, that increased in comparison to
the monovalent instance at 0.01 M (Figure 4a). In addition,
at a 0.5 M concentration (Figure 5b) of divalent ions, we
observe a region of charge inversion between r* ≈ 1.7 and
r* ≈ 2.6.

A more stringent test is the calculation of the integrated
charge of ions,30

Figure 3. Time steps per second against the number of
particles for the YR method on an NVIDIA GTX 480 GPU,
and the serial and parallel executions of the ES method on
an Intel Xeon computer cluster, for 0.1 M concentration of
monovalent salt. The time steps per second for the ES method
are defined per unit processor.

Table 1. Average Electrostatic Energy per Ion, E* )
〈Eel〉/NkBT and Heat Capacity per Ion, C* ) Cv/NkB

Calculated by the ES and YR Methods for 1:1 Bulk
Hydrated Electrolyte at Different Salt Concentrations (F)a

F [M] EES* EYR* CES* CYR*

1.0 -0.4470(4) -0.4472(3) 0.095(1) 0.093(1)
0.75 -0.4144(3) -0.4145(4) 0.091(1) 0.094(2)
0.5 -0.3722(3) -0.3721(3) 0.095(1) 0.092(1)
0.25 -0.3066(3) -0.3067(3) 0.085(1) 0.084(1)
0.1 -0.2316(2) -0.2319(3) 0.074(1) 0.077(1)
0.075 -0.2105(1) -0.2106(3) 0.069(1) 0.072(1)
0.05 -0.1828(2) -0.1828(2) 0.062(1) 0.065(1)
0.025 -0.1415(2) -0.1419(2) 0.055(1) 0.055(1)
0.01 -0.09829(5) -0.09842(3) 0.0424(2) 0.0428(2)
0.0075 -0.08712(6) -0.08713(4) 0.0366(2) 0.0375(1)
0.005 -0.07329(4) -0.07331(2) 0.0314(2) 0.0321(1)
0.0025 -0.05403(7) -0.05415(3) 0.0212(1) 0.0239(2)
0.001 -0.03530(2) -0.03529(1) 0.0170(1) 0.0150(1)

a Uncertainties in the last digit are indicated in parentheses.

Table 2. Average Electrostatic Energy per Ion, E* )
〈Eel〉/NkBT and Heat Capacity per Ion, C* ) Cv/NkB

Calculated by the ES and YR Methods for 2:2 Bulk
Hydrated Electrolyte at Different Salt Concentrations (F)a

F [M] EES* EYR* CES* CYR*

1.0 -2.056(3) -2.056(4) 0.27(1) 0.28(1)
0.75 -1.931(2) -1.931(3) 0.28(1) 0.28(1)
0.5 -1.773(2) -1.773(2) 0.28(1) 0.30(1)
0.25 -1.533(2) -1.533(2) 0.31(1) 0.31(1)
0.1 -1.254(3) -1.254(2) 0.32(1) 0.31(1)
0.075 -1.173(2) -1.173(3) 0.31(1) 0.31(2)
0.05 -1.063(2) -1.063(3) 0.31(2) 0.31(1)
0.025 -0.888(3) -0.887(2) 0.30(1) 0.29(1)
0.01 -0.676(2) -0.675(3) 0.29(2) 0.26(2)
0.0075 -0.616(2) -0.617(2) 0.24(1) 0.25(1)
0.005 -0.535(3) -0.535(3) 0.27(2) 0.25(2)
0.0025 -0.413(2) -0.414(2) 0.20(1) 0.21(1)
0.001 -0.283(1) -0.285(1) 0.159(3) 0.164(9)

a Uncertainties in the last digit are indicated in parentheses.
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where Fj is the bulk density of ion species j in the simulation
box. Pi(r) corresponds to the net charge inside a sphere of
radius r centered at an ion of species i and hence measures
the neutralization of such an ion by the surrounding ionic
cloud. At the surface of an ion of species i (r ) 0), the
integrated charge is equal to its valence zi, whereas suf-
ficiently far from the ion (rf∞), Pi(r) approaches zero due
to the electroneutrality condition. P+ (r) is identical to -P-(r)
for electrolytes symmetric in valence and size.

The integrated charge of a positive ion, P+(r*), for the
monovalent and divalent electrolytes are displayed in Figures
6 and 7, respectively. As expected from the radial distribution
functions, the concordance of the YR and ES methods is
very good for both monovalent and divalent salts, especially
near the ionic surface. The fluctuations in the integrated
charge near the border of the simulation box are displayed
in the insets of Figures 6 and 7. As a check of the global
electroneutrality condition, we require that the integrated
charge P+(r*) approaches zero near the boundary, which is
indeed met by the two methods disregarding minor statistical
fluctuations. For the monovalent electrolyte at 0.01 M
concentration (Figure 6a), the profile of P+(r*) shows a
monotonic neutralization of the ionic charge. In contrast, for
1 M concentration (Figure 6b), a nonmonotonic neutralization
is observed. In fact, there is a region near the ionic surface
where the sign of the integrated charge is opposite the sign

of the central ion, indicating charge reversal. This behavior
is caused by the large excluded volume associated with the
hydrated monovalent ions. For the 0.005 M concentration
of divalent electrolyte (Figure 7a), a monotonic ionic
neutralization behavior akin to that of the 0.01 M monovalent
case (Figure 6a) is observed. However, for the 0.5 M
concentration of the divalent electrolyte (Figure 7b), the
magnitude of maximum charge reversal near the ionic surface
increased compared to the 1 M monovalent instance (Figure
6b), and several oscillations in the integrated charge are
observed.

5. Conclusion

We have implemented an efficient method for long-range
electrostatic interactions in the molecular dynamics on
graphics processing units (GPU) based on the scheme
originally proposed by Yakub and Ronchi.14 The method is
implemented in the MD package HOOMD Blue.24 In order
to test the accuracy of this method applied to the electrolyte
systems, thermodynamic and structural properties of bulk
hydrated monovalent and divalent salts were calculated. An
excellent agreement was found with respect to the conven-
tional Ewald summation method, available in LAMMPS. The
current implementation of the YR method is particularly
suited for moderate to high concentrations of charges. Its
limited applicability to dilute systems is not a flaw of the
method but, we believe, is an artifact of MD simulations
related to their inability to reach thermodynamic equilibrium
in a reasonable time. Additionally, the GPU implementation

Figure 4. Pair distribution functions, g++ (r*) and g+- (r*),
for 1:1 electrolyte at different concentrations. Bold and dashed
lines indicate the ES and YR methods, respectively. Notice
that the profiles obtained by the ES and YR methods are
virtually indistinguishable. Behavior near the box boundary is
shown in the insets.

Pi(r) ) zi + ∫0

r
[ ∑

j)+,-
zjFjgij(r')]4πr′2dr' (19)

Figure 5. Pair distribution functions, g++ (r*) and g+- (r*),
for 2:2 electrolyte at different concentrations. Bold and dashed
lines indicate the ES and YR methods, respectively. Notice
that the profiles obtained by the ES and YR methods are
virtually indistinguishable. Behavior near the box boundary is
shown in the insets.
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is significantly faster than the fully optimized Ewald sum-
mation method for the simulation sizes commonly used in
simulations of electrolytes (102 to 105).

We would like to mention that there is another class of
finite or short-range methods for electrostatic interactions
such as the Wolf method and its variations31-33 that can
potentially also benefit from the GPU’s high FLOPS count.
However, in such schemes, the cutoff and the damping
constant must be calibrated for each particular system,
whereas the YR method is free of adjustable parameters. The
present implementation can be easily extended to study more
complicated systems including charged spherocylinders,34,35

nanoparticles and colloids,33,36-40 asymmetric ionic li-
quids,41-44 and polyelectrolyte solutions and networks,45-48

with the incorporation of the corresponding short-range
interactions that are already available in the GPU codes.
Efforts in these directions are currently underway.
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