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The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied
to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present.
Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we
propose a simple analytical O(N2) method which is based on Gauss’s law for computing exactly the Coulomb
interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a
surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable
for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and
molecular dynamics simulations.
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I. INTRODUCTION

A challenging problem that still plagues modern numer-
ical simulations is how to include long-range electrostatic
interactions in a tractable way, a question that in its most
general formulation lies undefeated [1]. In infinite periodic
crystalline systems this problem has been overcome in the last
century by using an approach originally proposed by Ewald
[2], which allows the calculation of electrostatic energies per
unit cell and of the respective Madelung constants [3,4]. This
motivated the use of such methodology in ionic liquids, and
nowadays Ewald-like schemes are frequently used to take into
account long-range interactions not only in charged liquids,
but also in the modeling of complex biological molecules
in solution that interact electrostatically [5]. The importance
of such Coulomb systems has prompted the improvement of
the original performance of O(N2) operations, advancing to
O(N log N ) in [6], or even to O(N ) [7,8], with sophisticated
computational schemes (for an extensive list, see [9]). Despite
their significant success, it must be noted that Ewald-like
schemes impose an artificial ordering typical of crystalline
systems, which is not expected in the liquid state. Thus
a desirable advance in the simulation of charged liquids
would be the ability of computing electrostatic long-range
interactions correctly, while including the natural isotropy and
homogeneity of fluids at the same time. This is the main issue
we address in the present work.

II. THEORETICAL APPROACH

In numerical simulations, the root of the problem stated
in the Introduction is that forcing long-range electrostatics
inside a computational box leaves the splintery question of
what to do with the interactions at the box boundaries, where
the long-range nature of electrostatics does not end obviously.
One of the most popular choices, even in simulations of fluids,
is to adopt periodic boundary conditions. Simply stated, it
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means that a system of N charges qi (i = 1, . . . ,N) each at
position bi is endowed with an infinite set of identical copies
(images) that stem from identifying the simulation box as the
primitive cell of an infinite regular lattice. In mathematical
terms, let a1, a2, and a3 be three vectors that define the three-
dimensional primitive cell, then any other cell of the periodic
lattice is identified by the lattice vector � = n1a1 + n2a2 +
n3a3, ni ∈ Z. The set {ri} of the positions of all charges is
ri = bi + �,∀�, i = 1,2, . . . N . The total electrostatic energy
of such a periodic system is infinite. It is therefore meaningful
to consider the electrostatic energy per unit cell:

U = 1

2

∑
�,i,j

′ qiqj

|ri − rj | , ri = bi , rj = bj + �, (1)

where the N charges interact purely via Coulomb forces within
an homogeneous isotropic dielectric environment. The sum
over i is for the charges in the main cell (� = 0, ri = bi)
while the sum over j and � is for all charges in the lattice.
The prime symbol indicates that pairs such that |ri − rj | = 0
are excluded from the sum.

As we mentioned earlier, Eq. (1) is exact for systems with
long-range order, such as ionic crystalline solids. However,
for ionic fluids it is just an approximation [5]. The advan-
tage of imposing an artificial periodicity is that Eq. (1) is
tractable analytically (besides legitimate questions about its
mathematical meaning, being a conditionally convergent sum
[10]). A most praised equivalent formula was introduced by
Ewald [2], who recast the summation into a form where the
charges interact with each other via an effective interaction
that includes all the periodic image contributions. Namely,
long-range terms are expressed in the reciprocal lattice Q
(defined by Q · � = 2πm,m ∈ Z), and the total energy
reads

U = UQ + U� + U0 + Ud, (2)

where the Fourier part is UQ = 2π
∑

Q �=0 q̂(Q)q̂(−Q)
exp(−Q2/4α2)/V Q2, the real space part is U� =∑′

�,i,j qiqj erfc(Dα)/2D, the constant contribution is
U0 = −α

∑
i q

2
i /

√
π , and the dipolar contribution is

016707-11539-3755/2011/84(1)/016707(7) © 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.016707


GRAZIANO VERNIZZI et al. PHYSICAL REVIEW E 84, 016707 (2011)

Ud = 2π (
∑

i qibi)2/3V [11]. The cell volume is V = a1 ·
(a2 × a3), D = |bi − bj − �|, and α is a parameter that in
practical applications can be fixed by requiring ∂U/∂α = 0
[12] (if the

∑
Q and

∑
� are not truncated, then U is always

independent from α). A derivation of Eq. (2) is presented in
the Appendix. A crucial requirement for the validity of Eq. (2)
is that the system must be globally electroneutral. In the rest
of this paper we too assume

∑
i qi = 0.

In order to tame the unwanted artifacts in simulations of
ionic fluids due to the existence of preferential crystalline
directions and planes of symmetry, a number of authors
suggested performing a spherical average of U over all
possible orientations of the lattice, or considered analogous
isotropic radial potentials [13–15]. Such a strategy leads to
new effective potentials between charges, and it has been
generalized to other types of interactions such as dipolar,
multipolar, power law, Lennard-Jones, and exponential po-
tentials [15]. Numerical studies that explored the validity of
such computational schemes seem to endorse the effectiveness
of such an approximation (see, e.g., [16,17]; the list is not
exhaustive). Despite the optimistic outlook, the recipe of taking
a spherical average of a periodic structure might seem certainly
a circuitous approach at first, since a heterogeneous system
cannot be both infinitely periodic and spherically symmetric
at the same time. This relates to the common assumption of
previous approaches, that the simulation box is itself somewhat
homogeneous.

The main focus of this paper is to (re)analyze such a
problem from a slightly more fundamental standpoint based
on the application of Gauss’s law. We obtain a new formula for
the spherically averaged periodic potential as we show below.
We begin by assuming that since a liquid is characterized by
a finite correlation length among its constituents, all long-
range ordering is inconspicuous. Therefore if one imposes
a periodicity on the primitive cell (which is larger than the
fluid correlation length), the actual position of the periodic
images should be of little relevance in the computation of
physical quantities, and consequently they should have little or
no influence on the structure, dynamics, and thermodynamics
of the charges within the simulation box. Ergo the orientation
of the lattice must be irrelevant for a liquid system with a
typical correlation length smaller than the simulation box size,
and different, rotated lattices should lead to the same physics
(see Fig. 1). For the sake of preciseness, we define a rotated
lattice by

�(O) = O� =
3∑

i=1

niai(O) , ai(O) = Oai , (3)

where O is a 3 × 3 rotation matrix. The new positions are
ri(O) = bi + �(O), meaning that all charges in the main cell
are unaffected by the rotation and only the periodic images
are actually rotated (see Fig. 1). Let U (O) from Eq. (1) be
the electrostatic energy of the rotated lattice. We then define
the spherical average over all possible orientations of the
lattice as

〈U 〉 = 1

8π2

∫
SO(3)

dO U (O) . (4)

FIG. 1. (Color online) The positions of the periodic images of the
main cell (square with thick borders) depend on the orientation of the
lattice. The arrangement of charges in the rotated periodic lattice (b)
differs from the one in the original lattice (a). Only the charges in the
main cell are not affected by the rotation of the lattice.

The average is over all orthogonal 3 × 3 matrices representing
proper rotations (det O = 1), that is, the group SO(3). The
volume of the group SO(3) is 8π2. We remind that since
each rotation matrix can be parametrized by three parameters,
the integral in Eq. (4) is a three-dimensional integral. By
substituting Eq. (1) into Eq. (4), and under the assumption
that the integral and the summation commute, we obtain

〈U 〉 = 1

2

∑
�,i,j

′
qi

∫ π

0
dω2(1 − cos ω)

×
∫

d�
qj

8π2

1

|bi − bj − O(ω,�)�| , (5)

where we introduced the convenient axis-angle representation
of a generic SO(3) matrix, i.e., the angle ω around the rotation
axis n̂ ∈ �, � being the unit sphere. The factor 2(1 − cos ω)
is the density of rotation matrices in the axis-angle parameter
space. The key remark now is that each � integral in the
summation can be interpreted as the potential at bi generated
by a spherical charge distribution centered at bj , with radius
|O�| = |�| and with charge density qj/(4π |�|2) [18]. Such
a simple observation allows us to evaluate all integrals exactly.
In fact, according to Gauss’s law the electrostatic potential
V generated by a density of charges distributed uniformly
over a sphere of radius R, with charge density σ (hence with
total charge Q = 4πR2σ ), and vanishing at infinity is V (r) =
Q/R for r � R and V (r) = Q/r for r > R, where r is the
distance from the center of the sphere. We use the compact
notation V (r) = Q

R
+ (Q

r
− Q

R
)θ (r − R) where θ (x) is the unit

step function: θ (x) = 0 for x � 0 and θ (x) = 1 for x > 0.
In the degenerate case with R = 0 the potential is simply
V (r) = Q/r . We thus obtain

〈U 〉 = 1

2

∑
i,j

′ qiqj

|bi − bj | + 1

2

∑
� �=0,i,j

qiqj

[
1

|�|

+
(

1

|bi − bj | − 1

|�|
)

θ (|bi − bj | − |�|)
]

, (6)

where we isolated the contribution from � = 0. The first
term in the second summation symbol is identically zero
because of the electroneutrality condition

∑
i qi = 0.

Moreover, the distance |bi − bj | cannot be larger than
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FIG. 2. (Color online) (a) Three different kinds of nearest
neighbors of a cubic cell. (b) Regions of the main cell where the
corrections to the Coulomb potential are relevant.

the size of the main cell, which in the conventional case
of a cubic simulation box of size L is |bi − bj | �

√
3L.

In this case we also have |�| = L

√
n2

1 + n2
2 + n2

3 =
0,L,

√
2L,

√
3L,

√
4L,

√
5L,

√
6L,

√
8L, . . . . However, only

two terms survive the limits imposed by the θ function, that
is, when |�| = L and |�| = √

2L.
They correspond to two shells of periodic cells surrounding

the simulation box (see Fig. 2), and they are precisely the 6 first
nearest neighbors with a face in common with the main cell
(type I), and the 12 nearest neighbors with an edge in common
(type II). We note explicitly that the 8 nearest neighbors with
a corner in common with the main cell (type III) do not
contribute to the average energy. The final form of Eq. (6),
which is also our main result, therefore reads

〈U 〉 = 1

2

∑
i,j

′
{

qiqj

|bi − bj | + qiqj

×
[

6

(
1

|bi − bj | − 1

L

)
θ (|bi − bj | − L) + 12

×
(

1

|bi − bj | − 1√
2L

)
θ (|bi − bj | −

√
2L)

]}
. (7)

The first term in the sum is the standard Coulomb energy
of the main cell, while the subsequent corrective terms are
due to averaging over all lattice orientations. From Eq. (7) it
is straightforward to extract the effective force between two
charges at distance r , and we find that it has innoffensive
finite discontinuities at r = L and r = √

2L. The θ functions
activates only when one of the charges is sufficiently close
to the box boundaries. Figure 2(b) illustrates the regions that
are relevant for the corrections to the Coulomb potential. A
necessary condition for the first corrective term [proportional
to θ (r − L)] to be nonzero is that a charge lies in the
region outside a sphere of radius L/2 (the yellow sphere in
Fig. 2 indicated with a thick arrow). Analogously a necessary
condition for the second corrective factor [proportional to
θ (r − √

2L)] to be nonzero is that a charge lies in the region
near the corners of the main cell, at a distance larger than
L/

√
2 from the center of the main cell (outside the blue regions

indicated with a dashed arrow).
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FIG. 3. (Color online) The red dots are numerical rotational
averages of Ewald Eq. (2). The thick blue line is obtained by Eq. (7).
The dashed curve is the energy of a pure Coulomb interaction (without
any corrective term).

III. NUMERICAL TESTS

We promptly test our result with a simple example. Let
us consider a cell of size L = 1 with N = 2 charges q1 = 1
and q2 = −1, at positions b1 = {−1/2, − 1/2, − 1/2} and
b2 = {δ,δ,δ}, respectively. The parameter δ ∈ [−1/2,1/2]
can be used to test different regions inside the main cell.
In particular, it enters the region where the first correction
activates [yellow sphere in Fig. 2(b), i.e., r = |b1 − b2| = 1]
at δ = (2

√
3 − 3)/6 ≈ 0.08 and the region where the second

corrections activates too [blue spherical domain in Fig. 2(b),
i.e., r = √

2] at δ = (2
√

6 − 3)/6 ≈ 0.32.
In Fig. 3 the numerical rotational averages of the Ewald

sum Eq. (2) at different values of δ are represented by red
disks. They compare well with the plot of Eq. (7) (continuous
thick curve). The plot is characterized by three regions: the first
region where the two particles and the effective interaction is
a pure Coulomb potential (up to point A), the second region
where the two particles are at a distance such that the effective
potential contains a contribution from the first θ function (from
A to B), and the third region where both θ function corrections
contributes to the total energy (from B to C). For comparison,
we also plot the curve corresponding to a pure Coulomb
interaction for all values of δ (dashed curve). From the plot
it is evident that our method is different from the so-called
minimum image convention [19]. In particular, the growth
of the potential at large δ is quite a natural phenomenon in
ionic systems where the dipolar term in the Ewald summation
method is not neglected [20]. The deviations between our result
and the numerical integration of the Ewald formula are simply
due to numerical errors. While such errors can be reduced by
increasing the numerical accuracy of the integration, they are,
however, never completely avoidable since the infinite sums in
the Ewald formula must be truncated somewhere necessarily,
while our result Eq. (7) is finite and exact, and does not require
any truncation.

In order to further illustrate the applicability of Eq. (7) in
molecular simulations, we present here the result of a series of
Monte Carlo (MC) simulations. We consider the NV T ensem-
ble of a 1:1 restricted primitive model electrolyte for several
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TABLE I. Average electrostatic energy per particle and heat capacity for a 1:1 electrolyte, at
different molar concentrations.

This work This work Ewald sums Ewald sums
ρ (M) U ∗/NkBT Cv/NkB U ∗/NkBT Cv/NkB

2 −0.6277 ± 0.0028 0.149 ± 0.020 −0.6556 ± 0.0045 0.139 ± 0.020
1 −0.5268 ± 0.0029 0.147 ± 0.020 −0.5493 ± 0.0030 0.141 ± 0.020
0.5 −0.4353 ± 0.0023 0.134 ± 0.018 −0.4544 ± 0.0022 0.138 ± 0.017
0.1 −0.2582 ± 0.0021 0.111 ± 0.015 −0.2703 ± 0.0029 0.104 ± 0.015
0.05 −0.1990 ± 0.0020 0.083 ± 0.011 −0.2089 ± 0.0019 0.087 ± 0.006
0.01 −0.1010 ± 0.0017 0.049 ± 0.007 −0.1067 ± 0.0016 0.051 ± 0.008
0.005 −0.0736 ± 0.0013 0.037 ± 0.005 −0.0785 ± 0.0006 0.039 ± 0.005
0.001 −0.0339 ± 0.0010 0.018 ± 0.003 −0.0372 ± 0.0010 0.017 ± 0.003
0.0005 −0.0244 ± 0.0007 0.012 ± 0.002 −0.0267 ± 0.0007 0.012 ± 0.002
0.0001 −0.0112 ± 0.0003 0.005 ± 0.001 −0.0127 ± 0.0006 0.005 ± 0.001
0.00005 −0.0079 ± 0.0004 0.004 ± 0.001 −0.0091 ± 0.0004 0.003 ± 0.001
0.00001 −0.0037 ± 0.0003 0.001 ± 0.001 −0.0044 ± 0.0002 0.001 ± 0.001

molar concentrations, (i) in the bulk, and (ii) around a charged
macroparticle. All simulations were performed by using a
standard Metropolis scheme [19,21], in a cubic simulation
box of length L with periodic boundary conditions. Due to the
spherical average, our system is not translational invariant and
therefore in the calculation of the radial distribution functions
(RDFs) we consider only particles that are inside a spherical
shell S of radius L/2, centered in the cubic simulation box.
Since any periodic charged particle which is located outside
the spherical shell S is smeared on a homogeneous shell, it
cannot be used in the calculation of the RDFs. Thus for the
sake of simplicity we place one ion (or one macroparticle) at
the center of the simulation box and use a cutoff L/2 to obtain
the corresponding RDFs. The parameters for the 1:1 electrolyte
simulations are the diameter of equal-sized ions a = 4.25 Å,
the dielectric constant ε = 78.5, the temperature T = 298 K,
the valency z+ = |z−| = 1, and the total number of monovalent
ions N ≈ 512. The length L is fixed by the bulk electrolyte
concentration. A Monte Carlo cycle consists of N attempts to
move an arbitrary ion. The thermalization process takes about
5 × 104 MC cycles; all canonical averages are computed over
a 2 × 105 MC sweep at full thermal equilibrium.

The electrostatic energy per particle, U ∗/NkBT , and the
heat capacity Cv are defined via

U ∗ = 〈U 〉
4πε0ε

, (8)

Cv = U ∗2 − U ∗2

kBT 2
, (9)

where U ∗ corresponds to the total energy per cell in our
approach, (. . .) is the canonical ensemble average, and kB is
the Boltzmann constant. Such quantities are shown in Table I
for several electrolyte concentrations. For comparison, we list
our results next to values obtained by the standard Ewald
summation technique with conducting boundary conditions,
and without taking spherical averages over all orientations of
the infinite periodic lattice. From Table I, it is evident that
the thermodynamic quantities calculated using our proposed

approach are of the same order of the standard Ewald
summation method, which is a limit case in absence of angular
rotations. Morover, the RDFs in our approximation are similar
to the ones obtained by the standard Ewald sum method, as
one can see in Fig. 4 for a 2-M monovalent salt.

We consider also the case of an electrical double
layer around a charged macroparticle. We use a macropar-
ticle’s diameter D = 20 Å at different valences zM =
4,8,12,16,20,24,28,32, for two electrolyte’s concentrations:
0.01 and 2 M. An important quantity characteristic of this kind
of Coulombic system is the mean electrostatic potential, which
is defined by [22,23]

ψ(r) = e

ε0ε

∫ ∞

r

2∑
i=1

ziρigi(t)

[
t − t2

r

]
dt. (10)

For both electrolyte concentrations, we calculated the mean
electrostatic potential at the macroparticle’s surface, ψ0,
and at the Helmholtz plane, ψHP (which is defined as the
closest approach distance between ions and the macroparticle).

0 1 2 3 4 5 6 7
r / a 

0

0.5

1

1.5

2

 g
ij

(r
)

FIG. 4. (Color online) Radial distribution functions correspond-
ing to a 1:1, 2-M bulk electrolyte in the restricted primitive model.
Circles correspond to our approach and squares to Ewald sums.
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TABLE II. Mean electrostatic potential at the surface (ψ0) and
at the Helmholtz plane (ψHP ) around a charged macroparticle of
valence zM , in presence of a 1:1 electrolyte at a concentration
0.01 M.

This work Ewald sums This work Ewald sums
ψ0 (mV) ψ0 (mV) ψHP (mV) ψHP (mV)

zM (±2) (±2) (±2) (±2)

4 54.90 54.91 42.14 42.15
8 104.69 104.78 79.21 79.3

12 145.21 145.67 107.11 107.56
16 176.60 177.42 126.04 125.82
20 202.59 203.08 139.65 140.18
24 225.70 225.22 150.56 150.03
28 243.59 242.98 156.39 155.03
32 262.47 261.52 163.17 162.54

These results are summarized in Tables II and III, which
exhibit similar values between the two approaches. The RDFs
corresponding to a macroparticle of valence zM = 32 are
displayed in Fig. 5 for a 2-M monovalent salt, showing how
the two different approximations have a similar behavior. In
addition, the values of ψ0 and ψHP as a function of the total
number N of particles inside the simulation box for the same
macroparticle are plotted in Fig. 6(a). Here, it is seen that our
approach and the standard Ewald sums method display very
similar values of the mean electrostatic potential and the same
asymptotic behavior when the number of charged particles
increases. Although the proposed method is O(N2) (as the
standard Ewald summation method) its simplicity foresees a
better performance in terms of computational speed. This is
observed in Fig. 6(b), where the number of MC cycles per
second performed as a function of the total number of charged
particles are collated. For the number of particles reported,
it is found that our approach can be from two to five times
faster than the standard Ewald summation under analogous
conditions.

TABLE III. Mean electrostatic potential at the surface (ψ0) and
at the Helmholtz plane (ψHP ) around a charged macroparticle of
valence zM , in presence of a 1:1 electrolyte at a concentration 2 M.

This work Ewald sums This work Ewald sums
ψ0 (mV) ψ0 (mV) ψHP (mV) ψHP (mV)

zM (±1) (±1) (±1) (±1)

4 17.09 17.07 4.42 4.40
8 33.87 34.02 8.54 8.60

12 50.50 51.04 12.51 13.05
16 67.27 67.58 16.63 16.94
20 84.09 84.37 20.80 21.08
24 100.66 101.01 24.76 25.10
28 117.38 117.74 28.86 29.22
32 133.86 134.34 32.74 33.23

0 1 2 3 4 5 6 7
 r / a
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FIG. 5. (Color online) Radial distribution functions correspond-
ing to a 1:1, 2-M electrolyte in the restricted primitive model around a
charged macroparticle. The valence and diameter of the macroparticle
are D = 20 Å and zM = 32, respectively. Circles correspond to our
approach and squares to Ewald sums.

IV. CONCLUSIONS

The results in the last section show that the effective
potential we present in this paper is suitable to application
in simulations of ionic fluids. A major limitation of our result
is that it is valid only for three-dimensional systems. One
could easily derive an equivalent expression of Eq. (7) in two
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FIG. 6. (Color online) (a) Mean electrostatic potential at the
macroparticle’s surface (circles) and at the Helmholtz plane (squares)
around a macroparticle as a function of the total number N of charged
particles inside the simulation box. The macroparticle of valence and
diameter D = 20 Å and zM = 32, respectively, is immersed in a 1:1,
2-M electrolyte in the restricted primitive model. The empty and filled
symbols correspond to our proposed approach and Ewald summation
method, respectively. (b) Number of Monte Carlo (MC) cycles per
second as a function of the total number N of charged particles inside
the simulation box. The diamonds and the triangles correspond to our
proposed approach and Ewald summation method, respectively.

016707-5



GRAZIANO VERNIZZI et al. PHYSICAL REVIEW E 84, 016707 (2011)

dimensions, but only for a logarithmic potential. In general,
our arguments can be repeated for long-range potentials in
d dimensions of the type 1/rd−2. We also emphasize that
the dipolar term Ud in the Ewald summation formula Eq. (2)
must be included and cannot be dropped in order to obtain a
perfect match with Eq. (7). This is interesting because several
works [19,21] discuss how the dipolar term can be dropped
according to what kind of dielectric boundary conditions
one imposes, while our formula has been derived without
making any particular choice about the boundary conditions.
Furthermore, we notice that in contrast with previous similar
methods [14], ours does not rely on the homogeneity of
the system within the main cell, which makes it suitable to
study anisotropic systems frequently occurring in molecular
biology and fluid state physics. As a final remark, Fig. 2(b)
suggests that the effective energy in Eq. (7) is amenable
to local computational algorithms, meaning that only the
particles within the simulation box are sufficient for computing
the total electrostatic energy of the rotational average of an
infinite periodic lattice, despite the long-range nature of the
interactions. Computational-intensive resources for evaluat-
ing special functions, or reciprocal lattices, are no longer
necessary. Although our O(N2) method is outperformed
by, for instance, a O(N log N ) optimized Ewald summation
scheme, its simplicity should be particularly appealing for
implementations with parallel computing at an intermediate
number of charges [17].
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APPENDIX: ELEMENTARY DERIVATION OF THE EWALD
SUMMATION FORMULA

The energy per cell of a infinite periodic ionic lattice is
defined as

U = 1

2

∑
�,i,j

′ qiqj

D
, D ≡ |bi − bj − �|. (A1)

It is convenient to introduce the following integral representa-
tion of the Coulomb potential:

1

D
= 2√

π

∫ ∞

0
dt e−D2t2

. (A2)

The large-D behavior of Eq. (A2) is controlled by the integra-
tion over small-t values, and the small-D behavior is controlled
by the integration over large-t values. Such an observation is
relevant for the application of the Ewald method [2], which
basically consists of decomposing the small-distance behavior
of the integration domain from the large-distance behavior,
and afterwards by tuning the movable boundary separating
the two domains to achieve equal convergence rates for the
two sums. Namely, by decomposing the integration region∫ ∞

0 = ∫ α

0 + ∫ ∞
α

, and by using the integral∫ ∞

α

dt e−D2t2 =
√

π

2D
erfc(αD), (A3)

where erfc(x) is the complementary error function:

erfc(x) = 2√
π

∫ ∞

x

dt e−t2
, (A4)

we obtain

U =
∑
�,i,j

qiqj√
π

∫ α

0
dt e−D2t2 − α√

π

∑
i

q2
i

+
′∑

�,i,j

qiqj

2D
erfc(αD). (A5)

In Eq. (A5) we added and subtracted the term with D = 0
in the first sum. That allows the application of the Poisson
summation formula:∑

�

f (x + �) = 1

V

∑
Q

eix·Qf̂ (Q), (A6)

where the reciprocal lattice is defined by Q · � = 2πm,m ∈
Z, V is the volume of the primitive cell, and f̂ (k) is the Fourier
transform of f (x):

f̂ (k) ≡
∫
R3

d3x e−ik·xf (x). (A7)

We have∑
�,i,j

qiqj√
π

∫ α

0
dt e−D2t2

= 1

V
√

π

∑
Q,i,j

qiqj e
i(bi−bj )·Q

∫
R3

d3x e−iQ·x
∫ α

0
dt e−x2t2

= π

V

∑
Q,i,j

qiqj e
i(bi−bj )·Q

∫ α

0
dt

1

t3
e−Q2/4t2

= 2π

V

∑
Q

q̂(Q)q̂(−Q)
e−Q2/4α2

Q2
, (A8)

where
q̂(Q) ≡

∑
j

qj e
−ibj ·Q. (A9)

In the first line of Eq. (A8) we used the Poisson summation
formula, then in the second line we evaluated the Gaussian
integral over dx3, and finally we used the definition Eq. (A9).
The final expression for U is

U = 2π

V

∑
Q

q̂(Q)q̂(−Q)
e−Q2/4α2

Q2
− α√

π

∑
i

q2
i

+
∑
�,i,j

′ qiqj

2D
erfc(Dα). (A10)

The term Q = 0 in the first sum requires special care. In fact,
the asymptotic expansion at small Q of the argument in the
sum is

q̂(Q)q̂(−Q)
e−Q2/4α2

Q2
∼

(∑
i qi

)2

Q2

+
∑

m,n qmqni(bm − bn) · Q

Q
−

[(∑
i qi

)2

4α2

+1

2

∑
m,n

qmqn

(
(bm − bn) · Q

Q

)2
]

+ O(Q). (A11)
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The divergence of order O(1/Q2) is removed by the elec-
troneutrality condition

∑
i qi = 0, which also expunges the

divergence of order O(1/Q) and the first term of the O(1)
constant term. The remaining term is anisotropic. We therefore
take its spherical average (for a more rigorous mathematical
derivation of the same result, see [11])

1

4π

∫ π

0
d cos θ

∫ 2π

0
dφ

1

2

∑
m,n

qmqn(bm − bn)2 cos2 θ

= 1

6

∑
m,n

qmqn(bm − bn)2 = −1

3

∑
m,n

qmqnbm · bn

= −1

3

(∑
m

qmbm

)2

, (A12)

which shows that the total dipole moment of the cell
contributes to the Ewald sum. We can then write

Eq. (A10) as

U = 2π

V

∑
Q �=0

q̂(Q)q̂(−Q)
e−Q2/4α2

Q2
− α√

π

∑
i

q2
i

+
∑
�,i,j

′ qiqj

2D
erfc(Dα) + 2π

3V

(∑
m

qmbm

)2

, (A13)

which is the final expression for the Ewald sum we used in this
paper. Equation (A13) is independent from α. However, for
numerical estimates the infinite sums must be truncated, and
such a truncation yields a function U (α), which is α dependent.
However, there is an interval of values for α where U is roughly
constant. In our numerical utilizations of the Ewald method, we
implemented the feature for α to be automatically selected in
the region where ∂U (α)/∂α = 0 [12]. Once α has been fixed,
the Ewald method provides an efficient way to estimate the
total electrostatic energy per cell of the periodic ionic lattice.
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