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Guillermo Ivań Guerrero García† and Monica Olvera de la Cruz*,†,‡

†Department of Materials Science and Engineering, and ‡Department of Chemical and Biological Engineering, Northwestern
University, Evanston, Illinois 60208, United States

ABSTRACT: Small nanoparticles, globular proteins, viral capsids, and other
nanoscopic biomolecules usually display dielectric properties that are different
from those of the medium in which they are dispersed. These dielectric
heterogeneities can significantly influence the surrounding ion distribution,
which determines the self-assembly and colloidal stability of these nano-
particles in solution. Here, we study the impact of a dielectric discontinuity in
the structural and thermodynamic properties of a spherical nanoparticle made
of different dielectric materials when it is immersed in a charge-asymmetric 1:z
supporting electrolyte. The mean electrostatic potential, integrated charge, and
ionic profiles are analyzed as a function of both the salt concentration and the
nanoparticle’s valence via Monte Carlo simulations and the nonlinear
Poisson−Boltzmann theory. We observe that the electrostatic screening and
charge neutralization near the surface of a nanoparticle increase when the
nanoparticle’s dielectric permittivity increases in all instances. For 1:1 salts, this
effect is small and the nonlinear Poisson−Boltzmann theory displays a good agreement with simulation results. Nevertheless,
significant deviations are displayed by the mean field scheme regarding simulation results in the presence of multivalent ions. In
particular, for trivalent counterions we observe that increasing the dielectric permittivity or the valence of the nanoparticle
decreases the critical salt concentration at which occurs a sign inversion of the mean electrostatic potential at the Helmholtz
plane, which is closely related to the behavior of the ζ potential and the electrophoretic mobility. Moreover, we observe that the
phenomenon of surface charge amplification, or the augmenting of the net charge of a nanoparticle by the adsorption of like-
charged ions on its surface, can be promoted by polarization effects in weakly charged spherical nanoparticles with low dielectric
permittivity.

■ INTRODUCTION
The dielectric properties of charged nanoparticles are in general
different from those of the solvent in which they are dissolved.
This difference has been used to differentiate experimentally
empty virus capsids from similar capsids containing DNA, thus
resolving the dielectric constant of single nanoparticles via
electrostatic force microscopy.1 This physical property may be
used in a variety of technological applications including label-
free detection of the material composition of nanoparticles.
Electrostatic force microscopy also has been shown to be a
useful tool for determining experimentally the dielectric
properties of nonspherical dielectric nanoparticles,2 as well as
the dielectric properties of electrically insulating nanomaterials
or the quantum capacitance of conducting materials at the
nanoscale.3 On the other hand, it has been observed
experimentally that charged gold nanoparticles in aqueous
solutions can self-assemble in chain-like structures in the
presence of small concentrations of divalent ions.4 These
nanostructures may be used as building blocks for developing
nanoelectronic devices with convenient features. Biological
nanocolloids, including lipid bilayers5−7 and globular proteins,8

are another class of physical systems in which the dielectric
properties at the interior of nanoparticles may be significantly
different from those of the surrounding solvent. The presence

of dielectric heterogeneities in these small nanoparticles
influences the ionic distribution, or the so-called electrical
double layer, formed around them, which is known to
determine the self-assembly and physical properties of charged
nanoparticles in electrolyte solutions.
From a theoretical perspective, important advances have

been undertaken since the pioneering work by Onsager and
Samaras9 to model polarization effects in aqueous solu-
tions.10−13 As a particular example, it has been shown by
several studies that image charge effects can drive an attractive
net interaction between uncharged walls immersed in an
aqueous electrolyte solution in the absence of specific short-
range dispersion forces (as van der Waals interactions).14−17

This may occur if the dielectric constant of the walls is lower
than that of the solvent. Physically, this attraction is produced
by a depletion of ions near the dielectric discontinuity,
producing a lower pressure at short separation distances
between the uncharged walls in comparison with the pressure
of the electrolyte in bulk. A similar depletion of ions, due
mainly to ionic self-image electrostatic interactions, has been
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also observed in computer simulations of charged spherical
colloids in the presence of dielectric discontinuities.18−23

Nevertheless, the experimental measurement of forces between
small nanoparticles is significantly more difficult than in the
case of their mesoscopic counterpart, that is, colloidal particles
with linear dimensions of microns. Fortunately, in both
instances it is possible to characterize the electrostatic screening
of charged particles via electrophoretic mobility experi-
ments,24−28 in which an external electric field is applied.29,30

As a result, the charged colloids reach a terminal velocity that
can be used to define the corresponding electrophoretic
mobility. This quantity is a useful parameter for characterizing
the macroscopic behavior of colloids in solution, including their
coagulation and stability regimes. When these colloidal particles
move under the action of an electric field, a strongly adsorbed
layer of counterions that travels with the colloid defines a
slipping or shear plane. The mean electrostatic potential at the
slipping or shear plane of the charged colloids is the so-called ζ
potential,30 which can be directly related to the electrophoretic
mobility under several approximations.30−32 The exact location
of the ζ potential is generally unknown experimentally,
although it has been estimated to be located very near the
colloidal surface.29,30 Conventionally, the location of the ζ
potential is associated with the closest approach distance of the
ionic species, which is the so-called Helmholtz plane. Thus, the
properties of the ζ potential can be inferred from the mean
electrostatic potential at the Helmholtz plane as a first
approximation.
In this work we study the influence of polarization effects, ion

correlations, and excluded volume effects in structural and
thermodynamic properties of small charged nanoparticles in 1:z
electrolytes. Given the relevance of the electrokinetic behavior
of suspended nanoparticles in aqueous solutions,33−35 we
consider nanoparticles made of materials with different
dielectric permittivities. Then, we calculate via Monte Carlo
simulations the corresponding mean electrostatic potential at
the Helmholtz plane for a wide range of electrolyte
concentrations. The observed behavior is analyzed in terms of
the local charge neutralization produced by the associated ion
distribution of multivalent ions. These simulation results are
also collated with the nonlinear Poisson−Boltzmann theory in
spherical geometry, which is used as a theoretical baseline.

■ MODEL SYSTEM, SIMULATIONS, AND THEORY

A fixed spherical nanoparticle of radius rM is immersed in an
aqueous primitive model electrolyte enclosed by a spherical
hard cell, as shown in Figure 1a. In this approach, the
nanoparticle and the ions are represented by hard spheres with
point-charges embedded in their centers. The aqueous solvent
is approximated by a continuum medium of dielectric constant
εS = 78.5 at T = 298 K. The material at the interior of the
nanoparticle is modeled as a solid continuum medium of
dielectric constant εM. The total interaction between ionic
species can be written as the sum of hard core (hc) and
electrostatic interactions. The hard core interaction between
one particle of species i located at ri⃗ and a particle of species j
located at rj⃗ is given by
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where di is the diameter of the ionic species i and rij = |ri⃗ − rj⃗|
for i = +, −, M, and j = +, −. The diameter of cations and
anions is the same and equal to d+ = d− = a = 5 Å. The diameter
of the nanoparticle is 10 times the diameter of small ions, i.e.,
dM = 2rM = 10d+ = 50 Å.
The charged nanoparticle is fixed at the center of a spherical

hard cell of radius rcell. The electrolyte is confined by a spherical
hard cell via a potential
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Thus, the total hard core energy is zero if all ions are
completely enclosed by the spherical hard cell (with no
overlaps), and there are no overlaps among all charged particles
including the rigid central nanoparticle.
The electrostatic potential produced by a point charge in a

solvent of dielectric constant εS in the presence of an uncharged
spherical nanoparticle of dielectric constant εM can be
calculated by solving the Poisson equation

ϕ ρ
ε ε

∇ ⃗ = −r( )2

0 S (3)

subject to the continuity of the electrostatic potential and the
electric displacement at the dielectric interface, as well as the
vanishing of the electrostatic potential at large distances as
boundary conditions.36 From the solution of eq 3, it is possible
to write the total energy of N ions around a spherical uncharged
nanoparticle in terms of infinite series as36,19
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Figure 1. Schematic representation of the model system. The
dielectric constant at the interior of the nanoparticle is εM. The
dielectric constant outside the nanoparticle, εS, is the same for the ions
and the solvent.
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where lεS = (e0
2)/(4πε0εSkBT) is the Bjerrum length in the

solvent, e0 the proton charge, ε0 the vacuum permittivity, and kB
the Boltzmann constant; Pn are the Legendre polynomials, f =
(εM − εS)/(εM + εS), θ is the angle between one particle i
located at ri⃗ and a particle j located at rj⃗, ri = |ri⃗|, rj = |rj⃗|, and rij =
|rj⃗ − ri⃗| (see Figure 1b). In analogy to the planar case,37,38 the
term Ucoul corresponds to the sum of only 1/r Coulombic
interactions among ions in a single solvent without polarization
effects; the term Uim represents the sum of interactions among
ions and the images of another ions, whereas the term Usi is the
sum of all self-image ion interactions.
The Gauss law allows us to calculate the electrostatic energy

between the nanoparticle and any ion at the interior of the
spherical hard cell as
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Using the superposition principle, the total electrostatic
energy of N ions surrounding a charged nanoparticle in the
absence of overlaps (see eqs 1 and 2) can be written as

= + + +U U U U Uel coul im si M (8)

The infinite series appearing in eqs 4−6 are rapidly
convergent, and only 100−200 terms are required to compute
them with a reasonable precision in the presence of divalent
ions.19 When the total number of particles increase, this
constraint becomes computationally expensive because the
calculation of the electrostatic energy scales as N2. Levin has
proposed an analytical approximation that speeds up this kind
of calculation significantly.22 Nonetheless, the dielectric
permittivity inside the nanoparticle has to be low to obtain
accurate values of the electrostatic energy. Another approx-
imation has been proposed by Cai and collaborators, in which
eqs 5 and 6 are reformulated in terms of numerical integrals
using a Gauss−Radau quadrature based on Jacobi poly-
nomials.39 This method has been used in off-lattice
simulations,23 and the explicit expressions used in this work
are given in Appendix A.
Monte Carlo (MC) simulations were performed using the

standard Metropolis algorithm in the canonical ensemble.40,41

Nc cations of valence z were added to the main simulation cell
in order to satisfy the global electroneutrality condition
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where zM is the valence of a negatively charged nanoparticle
immersed in a 1:z salt.
The total number of ions varied from 800 to 3200 ions for

the 1:z electrolytes. The salt concentration was varied using

different radii of the spherical hard cell, rcell, for a fixed number
of ions. In the thermalization process, at least 100 000 MC
cycles were performed, and between 300 000 to 1 000 000 MC
cycles were done to calculate the canonical average.
The ion profiles, ρi(r), and radial distribution functions, gi(r),

of ions of species i around the central spherical rigid
nanoparticle were calculated as a function of the distance
from the simulation data.
The radial distribution functions are defined as

ρ ρ=g r r r( ) ( )/ ( )i i i bulk (10)

where ρi(rbulk) is the bulk value of the electrolyte at a distance
rbulk far away from the central nanoparticle but still inside the
spherical hard cell.
The integrated charge is defined as
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which physically represents the net charge of the nanoparticle
and the ions contained in a shell of radius r. When r = rM, the
integrated charge is P(rM) = zM whereas P(rcell) = 0 because of
the electroneutrality condition.
The mean electrostatic potential can be calculated from
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where r∞ ≈ rbulk is a distance far away from the nanoparticle at
which the integrated charge is zero. This distance is used as the
reference state of the mean electrostatic potential at which
Ψ(rbulk) ≈ 0.
On the other hand, let us consider a macroscopic

multicomponent ionic liquid modeled as an infinite system of
charged particles in the three-dimensional space. The radial
distribution function of species i can be written formally in
terms of the potential of mean force, Wi(r), as

42
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If the potential of mean force, Wi(r), is approximated by the
electrostatic work required to bring an ion of species i from
infinite to a distance r from a central macroion, that is, Wi(r) ≈
zie0Ψ(r), using eqs 11 and 12, it is possible to recast eq 13 as
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which is the integral equation version of the nonlinear
Poisson−Boltzmann equation in spherical geometry.43 This
equation satisfies the Poisson equation for the mean electro-
static potential, which vanishes far away from the nanoparticle’s
surface when limr→∞Ψ(r) = 0, and fulfills the electroneutrality
condition for the whole system, limr→∞P(r) = 0, in the
thermodynamic limit. Noting that gi(r) = ρi(r)/ρi

bulk with ρi
bulk =

limr→∞ρi(r), it is easy to see that eq 14 constitutes a set of
nonlinear coupled integral equations. These integral equations
were solved numerically assuming a Helmholtz plane (or
closest approach distance between point-ions and the spherical
nanoparticle) equal to rH = rM + a/2 for the ionic species, and a
constant surface charge density at the surface of the
nanoparticle σ0 = (zMe0)/(4πrM

2). An adaptive Picard scheme
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was used to obtain a fast convergence of the nonlinear coupled
integral equations defined by eq 14 (see Appendix B).

■ RESULTS AND DISCUSSION
In analogy to the planar geometry, the Helmholtz plane is
defined by a sphere whose radius is the sum of the
nanoparticle’s radius plus the ionic radius, which is the closest
approach distance (rH = rM + a/2) between the nanoparticle
and the ions (see Figure 1a). In Figure 2, the mean electrostatic

potential at the Helmholtz plane, ΨH, is displayed as a function
of the salt concentration for different 1:z electrolytes around a
solid spherical nanoparticle. To study the effect of image
charges in the electrical double layer, a nanoparticle made of
different dielectric materials and valence zM = −12 is
considered. In all instances, we observe that the ΨH is less
negative (the negative nanoparticle is more screened electro-
statically) as the dielectric constant of the nanoparticle

increases. For the 1:1 electrolyte (displayed in Figure 2a),
these differences are small. Nevertheless, when the valence of
cations (counterions) increases, they become more evident, as
is shown in Figure 2b,c. In the presence of trivalent couterions,
a sign inversion of the ΨH occurs at high concentrations for the
nanoparticle with the highest dielectric constant. In all cases,
the nonlinear Poisson−Boltzmann theory predicts a ΨH value
that is close to the simulation results obtained for a
nanoparticle in the absence of image charge effects (i.e.,
when its dielectric properties correspond to those of water),
except for the trivalent cations at low salt concentrations. In
Figure 3, we present the effect of increasing the surface charge

density of the nanoparticle. Here, we consider a nanoparticle of
valence zM = −72 under the same conditions displayed in
Figure 2. In this instance, simulation results display the same
trends already observed for the lower nanoparticle’s valence.
Nevertheless, we observe that this time the critical concen-
tration at which the sign of ΨH inverts is shifted to lower
concentrations. This behavior suggests that the ζ potential and
the regime in which the electrophoretic mobility may be
inverted could be controlled by choosing nanoparticle materials
with appropriate dielectric properties in the presence of
multivalent counterions in aqueous solutions. In this regard,
we would like to mention that the observed inversion of the
mean electrostatic potential occurs, in general, not only at the

Figure 2. Monte Carlo mean electrostatic potential at the Helmholtz
plane around a spherical nanoparticle as a function of the ionic
concentration of a 1:z electrolyte. The valence of the nanoparticle is
zM = −12. Black circles, red squares, and blue triangles correspond to
nanoparticles of dielectric constants 2, 78.5, and ∞, respectively. Here,
and in the rest of the figures, the diameter of all ions is a = 5 Å, the
diameter of the nanoparticle dM = 10a = 50 Å, the dielectric constant
of the aqueous solvent εS = 78.5, and the temperature of the whole
system T = 298 K; the error is smaller than the symbol size. Green
dashed lines are the theoretical predictions of the nonlinear Poisson−
Boltzmann theory with a Stern layer in spherical geometry.

Figure 3. The same as in Figure 2 but for a nanoparticle of valence zM
= −72.
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Helmoltz plane but also in a region of several ionic radii close
to the nanoparticle’s surface. As a result, the proposed
mechanism for the inversion of the ζ potential and the
electrophoretic mobility is expected to be robust regarding the
precise location of the shear plane under the current conditions
and assumptions of our model system. On the other hand, the
nonlinear Poisson−Boltzmann theory predicts values of the
mean electrostatic potential that agree qualitatively with
simulation data in the absence of polarization effects.
Nevertheless, the predictions of this mean field theory
deteriorate significantly when the valence of the nanoparticle
or counterions augments, and this theoretical approach is
unable to predict the sign inversion of ΨH at high
concentrations in the presence of trivalent ions, as is shown
in Figure 3c.
The charge neutralization of the nanoparticle as a function of

the distance for different dielectric materials is displayed in
Figure 4. The valence of the nanoparticle is zM = −12 for a
concentration 0.223 M of 1:z electrolytes. Here, we observe

that the net charge of the nanoparticle as a function of the
distance (characterized by the integrated charge, P(r)) is less
negative near the nanoparticle’s surface as a function of the
dielectric permittivity of the nanoparticle. For the 1:1
electrolyte, the charge neutralization is similar for the different
dielectric materials. In the presence of divalent cations, the
integrated charge profiles are well-separated. Here, we observe
that P(r,ε) > P(r,ε′) for all r if ε >ε′, where ε and ε′ represent
different values of the dielectric constant of a charged
nanoparticle immersed in a divalent electrolyte. Physically,
this means that the charge neutralization is higher for higher
dielectric permittivities of the nanoparticle. In addition, the
integrated charge also displays a sign inversion, or the so-called
charge reversal,44 for the material with the highest dielectric
constant. In the case of trivalent cations, the differences in the
integrated charge profiles already displayed by divalent cations
are more conspicuous. We still observe that P(r,ε) > P(r,ε′) if ε
> ε′, but now only in a smaller region close to the
nanoparticle’s surface. For the material with the highest
dielectric constant, we observe that the magnitude of the
maximum charge reversal is more than half the magnitude of
the original bare charge. For the material with the lowest
dielectric permittivity, we observe that very close to the
nanoparticle’s surface the magnitude of the integrated charge
can be larger than the native bare charge, that is, |P(r)| > |zM| as
is illustrated in Figure 4c. The adsorption of like-charged ions
on the nanoparticle’s surface increasing locally its net charge is
the so-called surface charge amplification.44,45 In this case, the
surface charge amplification of a small dielectric nanoparticle is
driven by the appearance of a strong ionic exclusion produced
by polarization effects, even in the presence of size symmetric
ions, as we will show below. The integrated charges obtained
via the nonlinear Poisson−Boltzmann theory are close to
simulation data in the absence of polarization effects, which is
consistent with the behavior of the ΨH displayed in Figure 2.
To understand the differences of the integrated charge

profiles displayed in Figure 4, we show the corresponding ionic
profiles for divalent and trivalent counterions in water. In
Figure 5, the radial distribution functions, gj(r), for divalent
cations are plotted as a function of the distance. Here, we
observe that for the lowest dielectric permittivity the divalent
counterions display a strong repulsive interaction with the
nanoparticle. As a result, divalent counterions display a
maximum beyond the Helmholtz plane (i.e., the distance of
closest approach between ions and the nanoparticle). In the
absence of polarization effects (i.e., when the dielectric
properties of the nanoparticle and water are the same), the
contact value of both ionic species at the Helmholtz plane
increases in comparison to that of the previous case. As cations
are the counterions of the negative nanoparticle, they are
preferentially adsorbed because of electrostatic interactions. For
the material with highest dielectric constant, the adsorption of
both ionic species is further enhanced. This behavior can be
explained qualitatively in terms of the self-energy of one point
charge immersed in a macroscopic medium in front of another
medium with larger dielectric permittivity. In particular, let us
consider a sharp interface between the two different dielectric
media in planar geometry. The self-energy of a charged point
particle in these conditions is given by37
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Figure 4. Monte Carlo integrated charge, P(r), as a function of the
distance to the center of a spherical nanoparticle, which is immersed in
a 0.223 M electrolyte with valences (a) 1:1, (b) 1:2, and (c) 1:3. The
valence of the nanoparticle is zM = −12. Black circles, red squares, and
blue triangles correspond to nanoparticles of dielectric constants 2,
78.5, and ∞, respectively. Green dashed lines correspond to the
theoretical predictions of the nonlinear Poisson−Boltzmann theory
with a Stern layer in spherical geometry.
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where x is the perpendicular distance from the dielectric
discontinuity to the position of a point charge of valence z (or
charge ze0), ε1 the dielectric constant of the medium in which
the charged particle is located, and ε2 the dielectric constant of
the other dielectric medium (e.g., a colloidal particle). As a
result, if ε2 < ε1, then the ionic self-energy is positive. This can
be associated with a repulsive interaction between the charged
particle and the dielectric interface. On the contrary, if ε2 > ε1,
then the ionic self-energy is negative and the interaction
between the charged particle and the dielectric interface
becomes attractive. Quantitatively, these effects are enhanced
when the interactions with the images of other charges due to
the spherical dielectric discontinuity are taken into account
according to eq 5. In addition, notice that the magnitude of the
self-energy of a charged point particle grows as the square of its
valence. Thus, the behavior observed in the case of divalent
ions should be exacerbated for the trivalent cations. This is
precisely what is observed in Figure 6, in which the radial
distribution functions for trivalent counterions are plotted as a
function of the distance. In Figure 6a we observe that the
maximum displayed by trivalent cations is shifted far away from

the nanoparticle’s surface in comparison with the case of
divalent cations under similar conditions (see Figure 5a).
Moreover, we see that the adsorption of trivalent counterions
can be lower than the adsorption of monovalent co-ions very
close to the nanoparticle’s surface. A very interesting
consequence is that monovalent co-ions can increase the
magnitude of the native charge of the nanoparticle, as is shown
in Figure 4c. This phenomenon is the so-called surface charge
amplification, which has been comprehensively studied in
spherical geometry in the absence of polarization effects in
previous studies.44,45 In those works, we showed that the ionic
size asymmetry of ions and excluded volume effects can
promote a preferential adsorption of small ions to weakly
charged colloidal particles at high electrolyte concentrations. In
the presence of polarization effects, repulsive image charge
contributions can promote the exclusion of ions from the
region that is located very close to the nanoparticle’s surface.
This exclusion can be significantly stronger for multivalent
counterions regarding monovalent co-ions. As a result, the
charge asymmetry of equally sized 1:z electrolytes may induce
the appearance of the surface charge amplification by
promoting a preferential adsorption of monovalent co-ions to
the nanoparticle’s surface, increasing locally the nanoparticle’s
net charge. The occurrence of the surface charge amplification
due to polarization effects also has been observed by Wang and
Ma near an infinite planar wall in the presence of mixed
electrolytes,46 which is consistent with our simulation results in

Figure 5. Monte Carlo radial distribution functions, gj(r), as a function
of the distance to the center of a spherical nanoparticle, which is
immersed in a 1:2 electrolyte at an ionic concentration of 0.223 M.
The valence of the nanoparticle is zM = −12. Circles, squares, and
triangles correspond to nanoparticles of dielectric constants (a) 2, (b)
78.5, and (c) ∞, respectively. Dashed and solid lines are guides to the
eye associated with divalent counterions and monovalent co-ions,
respectively.

Figure 6. The same as in Figure 5 but for a 1:3 electrolyte.
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spherical geometry. On the other hand, regarding the material
with the highest dielectric constant displayed in Figure 6c, we
observe that the contact values of both ionic species increase
significantly in comparison to the divalent instance displayed in
Figure 5c. Another significant difference is the appearance of a
spatial region where the role of co-ions and counterions is
interchanged, which is the so-called charge inversion.47,44 This
charge inversion produces the sign inversion of the
corresponding mean electrostatic potential at the Helmholtz
plane already displayed in Figure 2c.

■ CONCLUSIONS
We have studied the role of polarization effects in the charge
neutralization and electrostatic screening of a solid spherical
nanoparticle made of different materials immersed in a 1:z
aqueous electrolyte. The role of the salt concentration as well as
the surface charge density of the nanoparticle have been also
analyzed via Monte Carlo simulations and the nonlinear
Poisson−Boltzmann theory in spherical geometry. In general,
we observe that the charge neutralization and electrostatic
screening of the charged nanoparticle near its surface augments
as a function of its dielectric permittivity. For weakly charged
nanoparticles, different dielectric materials produce small
differences in the electrical double layer of 1:1 salts. In contrast,
the structural and macroscopic properties of the electrical
double layer for divalent and trivalent counterions display a
stronger dependence on the dielectric properties of the
nanoparticle. Several authors have proposed that the colloidal
surface charge density is closely related to the regimes in which
the sign of the mean electrostatic potential at the Helmholtz
plane can be inverted by multivalent ions.48,49 Our results
display the same trend. However, our simulations also suggest
that the ζ potential and the regime in which the electrophoretic
mobility of a nanoparticle may be inverted by multivalent
counterions could be controlled by the dielectric properties of
the suspended nanoparticles in aqueous solvents.
Our numerical simulations display a short-range repulsion

between ions and a weakly charged nanoparticle with low
dielectric permittivity due to polarization effects. These
repulsive image charge interactions promote the exclusion of
ions from a region that is located very close to the
nanoparticle’s surface. We have shown that this ionic exclusion
can be significantly stronger for multivalent counterions
regarding monovalent co-ions with the same ionic size. As a
result, the charge asymmetry of 1:z electrolytes may induce the
phenomenon of surface charge amplification, i.e., the
adsorption of like-charged ions on the nanoparticle’s surface
increasing locally its net charge. This phenomenon has been
also observed in the presence of a size-asymmetric salt around a
weakly charged nanoparticle without polarization effects.44,45 In
both scenarios, we have shown that the appearance of an
exclusion region of counterions, due to steric or image charge
effects, may induce a preferential adsorption of co-ions
promoting the surface charge amplification of the nanoparticle.
On the other hand, the electrostatic screened charge of small

nanoparticles at large separation distances, or the so-called
renormalized charge, plays a fundamental role in the stability
regimes and kinetics of aggregation of colloidal solutions.50−52

In a recent study, we have shown that the classical Derjaguin−
Landau−Verwey−Overbeek (DLVO) theory is unable to
predict the rich phenomenology displayed by highly charged
nanoparticles suspended in a monovalent supporting electrolyte
even in the absence of polarization effects.53 In that study, it

was estimated theoretically that polarization effects were small
for hydrated monovalent salts, which is in agreement with the
simulation results of the mean electrostatic potential at the
Helmholtz plane presented here.
As an extension of the present work, we mention that in the

presence of multivalent aqueous electrolytes or molecular
solvent with structure,54,55 polarization effects may be
significant depending on the difference of the dielectric
properties between the solvent and solutes. The impact of
polarization effects in the renormalized charge of small
nanoparticles in the presence of multivalent ions can be
determined using a versatile numerical method developed
recently in our group.56 This scheme includes the exact bridge
functions that are crucial at short distances from computer
simulations and recovers the corresponding asymptotic Yukawa
potential at large separation distances, which may be
significantly different from that predicted by the classical
DLVO theory.53

■ APPENDIX A
As has been shown by Cai and collaborators,39 eqs 5 and 6 can
be recast as

∑ ∑= ⃗ ⃗ ≠ε

= =

U
l

z z I r r i j
2

( , ) for
i

N

j

N

i j i jim
1 1

1

(16)

and

∑= ⃗ ⃗
ε

=

U
l

z I r r
2

( , )
i

N

i i isi
1

21

(17)

where

∑λ
λ

λ
⃗ ⃗ =

− +
| ⃗ − |⃗

+
⃗ − ⃗λ= ( )

I r r
f ew
r r

ew

r r
( , )

( )
i j

i

j i i m

M
m i

j c i

0

1 i

m

2

(18)

ε ε
ε ε

=
−
+

f M S

M S (19)

τ= − × τ
−

−e f f(1 ) 2
f

(
1

2 ) 1
(20)

τ =
− f
2

1 (21)

λ =
| |⃗
r
ri
M

i (22)

=
−

τ⎛
⎝⎜

⎞
⎠⎟c

S
2

1m
m (23)

Sm and wm for m = 0,...M, are the Jacobi−Gauss−Radau
points and weights such that the Jacobi polynomials are
orthogonal under an appropriate weight on the interval
[−1,1].39,57,58 We have observed that M = 10 terms is an
optimal number to maintain a good balance between efficiency
and accuracy for the simulated systems, in agreement with Gan
and Xu.23

■ APPENDIX B
Let us define

=g r K g r g r( ) [ ( ), ( )]i i 1 2 (24)
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for r ≥ rM + a/2 as an abbreviated form of eq 14. If we
discretize the distance to the center of the nanoparticle as rj =
jΔr, where Δr is a small distance in comparison to the ionic
size, it is possible to define

=g r K g r g r( ) [ ( ), ( )]i j i j j
new

1
old

2
old

(25)

The accuracy of the numerical solution can be imposed by
requiring that γ < γ0, where

∑ ∑γ = −
=

g r g r( ( ) ( ))
i j

i j i j
1

2
new old

(26)

and γ0 is a small finite number. According to the classical
Piccard method, a new approximation to the solution of eq 24
can be written as

α α′ = − +g r g r g r( ) (1 ) ( ) ( )i j i j i j
new old new

(27)

and

= ′g r g r( ) ( )i j i j
old new

(28)

if Ki[g1
old(rj),g2

old(rj)] corresponds to a numerical finite value and
α is a constant number. Large values of α may trap the
numerical solution in a local minimum and tiny values of α are
time-consuming. Thus, we propose the following prescription
to update adaptively the value of α: if γnew < γold then α = 1.1α,
otherwise α = 1/α. In this way, even if the starting α is minute,
it takes only a few tens of iterations to increase an order of
magnitude because the growth of α is exponential. If the error
increases, the magnitude of α is decreased at a similar rate.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: m-olvera@northwestern.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
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Tovar for valuable discussions and insightful suggestions. This
work, including the computer cluster where part of the
simulations were performed, was funded by the Office of the
Director of Defense Research and Engineering (DDR&E) and
the Air Force Office of Scientific Research (AFOSR) under
Award FA9550-10-1-0167. This research was supported in part
through the computational resources and staff contributions
provided for the Quest high performance computing facility at
Northwestern University, which is jointly supported by the
Office of the Provost, the Office for Research, and Northwest-
ern University Information Technology.

■ REFERENCES
(1) Fumagalli, L.; Esteban-Ferrer, D.; Cuervo, A.; Carrascosa, J. L.;
Gomila, G. Label-free Identification of Single Dielectric Nanoparticles
and Viruses with Ultraweak Polarization Forces. Nat. Mater. 2012, 11,
808−816.
(2) Gomila, G.; Esteban-Ferrer, D.; Fumagalli, L. Quantification of
the Dielectric Constant of Single Non-spherical Nanoparticles from
Polarization Forces: Eccentricity Effects. Nanotechnology 2013, 24,
505713.
(3) Mottaghizadeh, A.; Lang, P. L.; Cui, L. M.; Lesueur, J.; Li, J.;
Zheng, D. N.; Rebuttini, V.; Pinna, N.; Zimmers, A.; Aubin, H.

Nanoparticles Charge Response from Electrostatic Force Microscopy.
Appl. Phys. Lett. 2013, 102, 053118.
(4) Maheshwari, V.; Kane, J.; Saraf, R. F. Self-Assembly of a
Micrometers-Long One-dimensional Network of Cemented Au
Nanoparticles. Adv. Mater. (Weinheim, Ger.) 2008, 20, 284−287.
(5) Dilger, J. P.; McLaughlin, S. G. A.; McIntosh, J. T.; Simon, S. A.
The Dielectric Constant of Phospholipid Bilayers and the Permeability
of Membranes to Ions. Science 1979, 206, 1196−1198.
(6) Gurnev, P. A.; Bezrukov, S. M. Inversion of Membrane Surface
Charge by Trivalent Cations Probed with a Cation-Selective Channel.
Langmuir 2012, 28, 15824−15830.
(7) Gramse, G.; Dols-Perez, A.; Edwards, M. A.; Fumagalli, L.;
Gomila, G. Nanoscale Measurement of the Dielectric Constant of
Supported Lipid Bilayers in Aqueous Solutions with Electrostatic
Force Microscopy. Biophys. J. 2013, 104, 1257−1262.
(8) Warshel, A.; Sharma, P. K.; Kato, M.; Parson, W. W. Modeling
electrostatic effects in proteins. Biochim. Biophys. Acta 2006, 1764,
1647−1676.
(9) Onsager, L.; Samaras, N. T. T. The Surface Tension of Debye-
Hückel Electrolytes. J. Chem. Phys. 1934, 2, 528−536.
(10) Ben-Yaakov, D.; Andelman, D.; Podgornik, R.; Harries, D. Ion-
specific Hydration Effects: Extending the Poisson-Boltzmann Theory.
Curr. Opin. Colloid Interface Sci. 2011, 16, 542−550.
(11) Hatlo, M. M.; van Roij, R.; Lue, L. The electric double layer at
high surface potentials: The influence of excess ion polarizability.
Europhys. Lett. 2012, 97, 28010.
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J.; Reinmüller, A. Structure and Transport Properties of Charged
Sphere Suspensions in (Local) Electric Fields. Eur. Phys. J.: Spec. Top.
2013, 222, 2835−2853.
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