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In a previous theoretical and simulation study [G. I. Guerrero-García, E. González-Tovar, and
M. Olvera de la Cruz, Soft Matter 6, 2056 (2010)], it has been shown that an asymmetric charge
neutralization and electrostatic screening depending on the charge polarity of a single nanoparticle
occurs in the presence of a size-asymmetric monovalent electrolyte. This effect should also impact
the effective potential between two macroions suspended in such a solution. Thus, in this work we
study the mean force and the potential of mean force between two identical charged nanoparticles
immersed in a size-asymmetric monovalent electrolyte, showing that these results go beyond the
standard description provided by the well-known Derjaguin-Landau-Verwey-Overbeek theory. To
include consistently the ion-size effects, molecular dynamics (MD) simulations and liquid theory
calculations are performed at the McMillan-Mayer level of description in which the solvent is taken
into account implicitly as a background continuum with the suitable dielectric constant. Long-range
electrostatic interactions are handled properly in the simulations via the well established Ewald sums
method and the pre-averaged Ewald sums approach, originally proposed for homogeneous ionic flu-
ids. An asymmetric behavior with respect to the colloidal charge polarity is found for the effective
interactions between two identical nanoparticles. In particular, short-range attractions are observed
between two equally charged nanoparticles, even though our model does not include specific inter-
actions; these attractions are greatly enhanced for anionic nanoparticles immersed in standard elec-
trolytes where cations are smaller than anions. Practical implications of some of the presented results
are also briefly discussed. A good accord between the standard Ewald method and the pre-averaged
Ewald approach is attained, despite the fact that the ionic system studied here is certainly inhomoge-
neous. In general, good agreement between the liquid theory approach and MD simulations is also
found. © 2011 American Institute of Physics. [doi:10.1063/1.3656763]

I. INTRODUCTION

The study of intermolecular forces among charged
colloids in aqueous media is a topic of great relevance in
physical chemistry due to the vast number of possible
technological applications.1–3 The net attractive or repulsive
character of such interactions determines the microscopic ar-
chitecture and the relevant macroscopic properties depending
on the colloidal stability. One of the theoretical cornerstones
that has allowed important advances in the past century is the
well known Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory, which relies on the Poisson-Boltzmann equation
for point-ions. The applicability of this theory, however, is
usually limited to low colloidal charges and diluted ionic
systems. In fact, interesting phenomenology such as reversal
of the electrophoretic mobility,4, 5 charge inversion,6, 7 and
like-charge attraction in the presence of multivalent ions8, 9

cannot be predicted within this theoretical framework.

a)Author to whom correspondence should be addressed. Electronic mail:
m-olvera@northwestern.edu.

As it has been suggested by several authors, the ion-
correlations neglected in the classical Poisson-Boltzmann the-
ory may play a fundamental role in the description of the
electrical double layer around charged colloidal particles in
aqueous solutions,10–14 and consequently affect the effective
interactions among these particles. For example, Monte Carlo
studies have shown that the potential of mean force (PMF)
between two identical macroions immersed in a charge-
asymmetric (2:1 or 1:2) supporting electrolyte of equal-sized
ions behaves differently, at a given ionic strength, depend-
ing on the magnitude of the counterion valence.15 On the
other hand, a previous study demonstrated that if the sol-
vent is taken into account explicitly, a charged-asymmetric
behavior is also observed in the renormalized charge of a
model nanoparticle immersed in a monovalent supporting
electrolyte.16 This characteristic, originated on the different
degrees of ionic hydration, can be included in a coarse-
grained model at the McMillan-Mayer level of description
by considering different effective ionic diameters that mirror
those hydration effects for each ionic species. Such an ap-
proach has already been implemented through Monte Carlo
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simulations of a size-asymmetric monovalent salt around
a model charged nanoparticle, showing too an asymmetric
charge neutralization and electrostatic screening which de-
pends on the sign of the macroion charge.17 One may surmise
that these effects should also be manifest in the effective in-
teractions between two identical charged nanoparticles.

Effective interactions among suspended charged
nanoparticles are important for describing the thermodynam-
ics of this type of solutions, including the phase diagrams
that have been obtained experimentally,18, 19 numerically,16, 20

and via computer simulations.21 The main aim of the current
study is thus to determine these interactions when the
macroions are immersed in a size-asymmetric monovalent
electrolyte in order to examine the issues discussed above.
Charge- and size-asymmetric bulk electrolytes have been
extensively studied in the past.22 Here, we consider a model
system with three species of spherical particles: monovalent
cations, monovalent anions, and charged nanoparticles. To
isolate the effects induced by the size asymmetry between the
cations and anions from other types of short-range attractions,
the interactions among all these particles are modeled as
the superposition of a soft repulsive core plus a Coulomb
interaction between point charges situated at the center of
each particle. The solvent is taken into account only through
the value of the Bjerrum length in the electrostatic potential,
that is, as a uniform background with a continuous dielectric
constant. Since the anions have larger sizes than the cations
in typical monovalent salts, the anions are assumed to be
twice as large as the cations. The charge of the nanoparticles,
the largest species in our model system, is varied within
a wide range from negative to positive values. Molecular
dynamics (MD) simulations and liquid theory calculations
are then performed to evaluate the mean force and PMF
between two identical nanoparticles. Both approaches show
an analogous effect to that observed for a size-symmetric
but charge-asymmetric supporting electrolyte:15 the effective
interaction between two cationic nanoparticles is markedly
dissimilar from that between two anionic nanoparticles, even
when their valence magnitudes are the same. For the systems
studied in this work, however, this observation is attributable
mainly to the ion-size differences between the counterions
and coions, specially in their closest approach distances to
the charged nanoparticles. In particular, the PMF between
highly charged anionic nanoparticles displays an attractive
well located at a distance consistent with electrostatic
“bridging” by the monovalent cations. These results suggest
that short-ranged attractions in monovalent size-asymmetric
electrolytes are possible, even in the absence of specific
interactions. Such attractions would have important conse-
quences to bulk stability of nanoparticles and colloids and to
their adsorption to air-liquid or liquid-liquid interfaces with
dielectric discontinuities, since the adsorption of macroions

to interfaces depends on the partition of ions in the bulk,23, 24

and might modify protein adsorption and the Hofmeister
series.

As an additional objective for the current work, we also
test here the performance of two different approaches for
dealing with long-range electrostatic interactions within MD
simulations. Computer simulations of systems with Coulomb
potentials are not straightforward because simple truncation
schemes for these long-range interactions are inappropriate.
A typical approach to overcome this issue is attained by us-
ing the classical Ewald sums technique, which is the stan-
dard protocol used in simulating ionic fluids.25 In the best
case scenario, however, this scheme scales as O(N3/2), which
limits considerably the number of particles that can be sim-
ulated. Thus, more sophisticated computational approaches
of complexity O(Nlog N) (Ref. 26) have been considered in
the past for the study of large ionic systems. An alterna-
tive avenue to face this problem could be attained by using
graphics processing units (GPUs), which have shown an ex-
cellent performance in simulating systems with short-range
interactions.27, 28 In a previous work, the pre-averaged (P-
A) Ewald sums method,29 originally proposed for studying
homogeneous ionic systems, was implemented in GPUs.30

Given the good performance and excellent agreement with the
standard Ewald summation method shown in that instance, we
wondered if such scheme would be adequate to perform sim-
ulations of inhomogeneous systems, viewed as perturbations
of the homogeneous ones. Thus, we also test here the per-
formance of the P-A Ewald sums against the standard Ewald
summation for a inhomogeneous systems constituted by two
fixed nanoparticles immersed in a size-asymmetric monova-
lent electrolyte.

The layout of this paper is as follows. In Sec. II, we des-
cribe the details of the model system and provide an overview
of the computer simulation and liquid theory approaches.
Section III presents the results and discussion of this study.
We finish with some concluding remarks in Sec. IV.

II. MODEL, SIMULATIONS, AND THEORY

The model system studied here is constituted by two
identical nanoparticles immersed in a monovalent size-
asymmetric electrolyte with the solvent considered as a uni-
form dielectric background; we are thus considering such a
system at the McMillan-Mayer level of description. In this ap-
proach, the ionic species are considered as charged soft-core
spheres of effective diameter di with point charges zie embed-
ded in their centers, where zi is the valence of a charged parti-
cle of species i and e corresponds to the proton charge. Thus,
the repulsive core potential between a particle of species i and
a particle of species j separated at a distance r is modeled us-
ing a shifted-truncated Lennard-Jones potential:

βurc
ij (r) =

⎧⎪⎪⎪⎨
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∞, for r ≤ �ij

4

[(
σ
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−
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σ
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0, for r ≥ �ij + 21/6σ,

(1)
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TABLE I. Parameter values used in the MD simulations and the integral
equation approach.

Valence of each nanoparticle zM

Valence of cations z+ = +1
Valence of anions z− = −1
Diameter of each nanoparticle dM = 3.0 nm
Diameter of cations d+ = 0.425 nm
Diameter of anions d− = 2d+
Molar density of cations ρ+ = 1M
Molar density of anions ρ− = 1M
Dielectric constant ε = 78.5
Temperature T = 298 K
Bjerrum length lb = 0.714 nm

where β ≡ (kBT)−1, kB and T being, respectively, the Boltz-
mann constant and the temperature of the system, and �ij

= (di + dj)/2 − σ is the hard-core diameter. The parame-
ter σ is then set equal to the diameter of the smallest ionic
species, which in our case are the monovalent cations, so
that σ = d+. These parameters were selected in order to
have the same “hardness” between all charged particles, so
βurc

ij ((di + dj )/2) = 1, and the form of the potential guaran-
tees a soft continuous repulsion beyond the inner core, that is,
for r > �ij.

To this repulsive core should be added the pair poten-
tial representing the electrostatic interaction between an ion
of species i and an ion of species j, which is expressed by

βuel
ij (r) = lb

r
zizj , (2)

where lb = e2/(4πε0εkBT) is the corresponding Bjerrum
length, ε0 is the vacuum permittivity, and ε is the dielectric
constant of the background medium. At the McMillan-Mayer
level of description considered here, as stated above, all the
solvent effects are then taken into account via this continuum
dielectric medium that fills the whole space. For an aqueous
solution ε ≈ 80.

While the focus of the present work is in the mean force
and the PMF between two equally charged nanoparticles, sim-
ilar parameter values, which are summarized in Table I, have
already been used in a previous study of the distribution of
size-asymmetric monovalent ions around a single charged
nanoparticle, though with hard-sphere cores instead of the
soft-sphere cores considered here.17 The range of valence val-
ues for the nanoparticles considered in the present study goes
from zM = −54 up to zM = +54, including zM = 0.

Coulomb interactions are long-ranged, so special tech-
niques are required to take them into account properly. The
usual approach to handle the electrostatic interactions with
the distant particles images in computer simulations is via the
standard Ewald sums method, which is the customary tech-
nique to study ionic fluids nowadays. Nonetheless, in a previ-
ous work30 the P-A Ewald sums approach proposed by Yakub
et al.29 was implemented in GPUs and showed to yield results
comparable to those from the standard Ewald sums method.
Interestingly, it has been proposed very recently that the P-
A Ewald method and the Wolf method31 are both particular

limits of the zero-dipole summation method,32 which is in-
tended to prevent nonzero-charge and nonzero-dipole contri-
butions arising spuriously from a simple truncation scheme.
On the other hand, the P-A Ewald approach is best suited
to study homogeneous or isotropic ionic systems, and also
has the advantage that its GPU implementation can be much
faster than an optimized central processing unit version of
Ewald sums method for a small to a sizable number of par-
ticles (∼105).30 We wondered if such method could be used
too in the study of inhomogeneous systems, so in the present
work we test its performance using the molecular dynamics
HOOMD program27, 33 versus the classical Ewald sums scheme
using the LAMMPS package.34, 35

A cubic simulation cell with periodic boundary condi-
tions is used here for the MD simulations. Two identical
nanoparticles were located at fixed positions along one diago-
nal of the cubic simulation box, symmetrically with respect to
the center of the cell, while surrounded by the freely moving
monovalent ions contained within the same cell. The charged
particles in the simulation box fulfill the electroneutrality con-
dition,

2zM + zcNc + z+N+ + z−N− = 0, (3)

where N+ and N− are, respectively, the number of bulk mono-
valent cations and anions, while zc and Nc are the correspond-
ing valence and number of monovalent counterions added to
compensate the charge of the two nanoparticles (of course, in
the case of anionic nanoparticles the added counterions are
small cations, whereas for cationic nanoparticles the added
counterions are large anions, that is, zc = z+ for zM < 0 and zc

= z− for zM> 0, etc.). The MD simulations were performed
in the NVT ensemble via a Nosé-Hoover thermostat36, 37 at a
reduced temperature T′ = kBT/ε = 1, where ε = kBT is the
thermal energy. In Lennard-Jones reduced units, the distance,
mass, and energy were rescaled regarding the mass and diam-
eter of the smallest ionic species and the thermal energy, that
is, m′

i = mi/m+, x′ = x/d+, and u′ = u/ε. The time step used

was 0.005τ , where τ =
√

m′+d ′2+/ε′ is the reduced Lennard-
Jones unit of time. The total number of ions N = N+ + N−
+ Nc used in a typical simulation was around 2000. One mil-
lion of MD time steps were used to thermalize the system.
The total repulsive core and electrostatic forces acting over
each nanoparticle where sampled each 10 MD time steps (in
a compromise between efficiency and reduction of time corre-
lations), and between 14 × 106 to 24 × 106 of MD time steps
were performed to calculate the time average of the forces.

At a given instant, the net force exerted over one nanopar-
ticle, labeled as A and located at the position 	rA, is the sum of
the direct force exerted by the other nanoparticle, labeled as B
and located at 	rB , plus the sum of the forces exerted by each
one of the mobile ions, located, respectively, at the positions
	r (γ )
i , where γ = +, − and i = 1, 2, ..., Nγ . Thus, it is a super-

position of the repulsive core and electrostatic components,

	FA(	rA) = 	FA
rc(	rA) + 	FA

el (	rA), (4)
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given by

	FA
xx(	rA) = −	∇Auxx

MM (|	rA − 	rB |)

−
∑

γ=+,−

Nγ∑
i=1

	∇Auxx
Mγ

(∣∣	rA − 	r (γ )
i

∣∣), (5)

where xx stands for rc or el, and 	∇A denotes the gradient with
respect to 	rA. Due to the symmetry of the system, the en-
semble average of the net force over the nanoparticle A must
lie in the direction of 	rA − 	rB , and moreover, be a function
only of the separation distance between the centers of the two
nanoparticles r = |	rA − 	rB |. Thus, after averaging over all the
configurations, one obtains the corresponding magnitudes for
the mean forces:

F (r) = Frc(r) + Fel(r), (6)

where

Fxx(r)r̂AB = 〈 	FA
xx(	rA)

〉
, (7)

with xx again standing for rc or el, while 〈···〉 denotes time
average in the MD simulations, and r̂AB is the unit vector
pointing in the direction from B to A. With these definitions,
positive values of F(r) correspond to repulsive mean forces
between the nanoparticles, while negative values correspond
to attractive mean forces, and the same applies to its compo-
nents.

The PMF represents the work necessary to move one
nanoparticle from infinite to a distance r with respect to the
other nanoparticle, and can be calculated from the mean force
by integrating it numerically,

W (r) =
∫ ∞

r

F (r)dr. (8)

Thus, the PMF can then be written as the sum of the cor-
responding repulsive core and Coulomb components of this
potential,

W (r) = Wrc(r) + Wel(r), (9)

with

Wxx(r) =
∫ ∞

r

Fxx(r)dr, (10)

where, once more, xx stands for rc or el.
The analogous results from the liquid theory approach are

attained as follows. We start by solving the Ornstein-Zernike
(OZ) equations,

hij (r12) = cij (r12) +
∑

k=M,+,−
ρk

∫
d	r3cik(r13)hkj (r32),

(11)
for i, j = M, +, −, where rmn = |	rm − 	rn|, complemented with
the hyper-netted chain (HNC) closure,

cij (r) = −βuij (r) + hij (r) − ln(1 + hij (r)). (12)

Thus, the inputs for this closed set of non-linear integral
equations are the pair potentials uij(r) = urc

ij (r) + uel
ij (r), de-

termined by Eqs. (1) and (2), and the bulk number densities
ρ i, whereas the outputs are the total and direct correlation
functions hij(r) and cij(r), respectively. The method employed

for the solution of this set of equations is based on the Ng
prescription.38 All our calculations were performed on an ar-
ray of 216 points with a lattice spacing of 0.002 nm. The OZ
self-consistency and the Stillinger-Lovett first moment condi-
tion are converged to at least 1 part in 108. For the present
study, we are considering the limit of infinite nanoparticle di-
lution, so ρM = 0. The relation,

βW (r) = − ln(1 + hMM (r)), (13)

thus provides the corresponding total PMF, which, in this
limit of infinite dilution, is equivalent to the effective pair po-
tential between two nanoparticles.39

In addition, it is also useful to compare the Wel(r) ob-
tained from the computer simulations to the electrostatic com-
ponent of the well-known DLVO potential, given by

βWDLVO(r) = lb

r

z2
M exp(−κD(r − dM ))

(1 + κDdM/2)2
, (14)

where

κD =
√

4πlb(ρ+z2+ + ρ−z2−) (15)

is the inverse Debye screening length.40 Since this effec-
tive potential is the usual starting point in many studies
of colloidal suspensions,41, 42 it is of great interest to test
its strengths and limitations under the conditions considered
here.

III. RESULTS AND DISCUSSION

We start our analysis of the mean forces and PMFs
between two identical nanoparticles by comparing the case
of neutral (zM = 0) macroions immersed in our model
size-asymmetric monovalent electrolyte against an identical
system but with the electrostatic interactions turned off, that
is, one in which lb = 0 (physically corresponding to a system
where all particles are uncharged, among other possibilities).
The latter provides us with a baseline to quantify the contribu-
tion from the depletion forces due to the repulsive core inter-
actions. The corresponding results for βF(r)lb and βW(r) as a
function of the separation distance r are presented in Figure 1.
It is observed here that the mean forces and PMFs between the
two neutral nanoparticles immersed in the size-asymmetric
electrolyte are virtually the same for both cases, that is, for
lb = 0.714 nm and lb = 0. This seems to imply that, for zM

= 0, the effects coming from the ionic electrostatic interac-
tions are negligible in comparison to the excluded volume
effects with regard to the correlations involving the nanopar-
ticles. This is in agreement with a previous study of the
electrical double layer around a single nanoparticle.17 Hence,
the short-range attraction illustrated by the first minimum
in the PMF is due mainly to depletion forces operating when
the nanoparticles are separated at a distance slightly larger
than the “effective” hard-sphere contact distance r ≈ dM

≈ 7.06d+. This attraction decreases as the separation between
the nanoparticles increases, and at some point the mean force
becomes repulsive, which corresponds to the maximum in
the PMF at r ≈ dM + d+; at this separation distance there
is just enough room to fit a small cation between the two
nanoparticles. For larger separations, the damped oscillatory
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FIG. 1. Mean force (a) and potential of mean force (PMF) (b) between two
neutral nanoparticles. The triangles correspond to MD results for F(r) and
W(r) when the nanoparticles are immersed in a 1:1 size-asymmetric elec-
trolyte at 1M. The data represented by filled and empty triangles are obtained,
respectively, by using the standard Ewald method and the pre-averaged Ewald
approach. The empty circles represent MD results for a system with the same
parameters for dM, d+, d−, and ρ+ = ρ−, but with lb = 0 instead of lb
= 0.714 nm. The lines show the corresponding HNC predictions of F(r) and
W(r): dashed lines represent lb = 0.714 nm and solid lines represent lb = 0.
Here, and in the rest of the figures, the numerical uncertainties are smaller
than the size of the symbols.

behavior typical of hard spheres systems is shown by F(r)
and W(r). It is also clear that, under these circumstances, the
HNC results show a very good agreement with the simulation
data. The largest discrepancy is found at the contact distance
r = dM, where the liquid theory approach seems to slightly
overestimate the attraction. In addition, for lb = 0.714 nm,
the simulation predictions obtained with the P-A Ewald
approach closely match those attained with the standard
Ewald summation method.

More noticeable differences between the theoretical and
simulation calculations exist for situations involving charged
nanoparticles (lb = 0.714 nm from now on). Figure 2 illus-
trates the results corresponding to two cases: zM = −9 and zM

= +9. As can be appreciated at once, the sign of the nanopar-
ticle valence plays a crucial role in the determination of the
effective interaction between two identical charged nanoparti-
cles, even though the magnitude of these valences is the same
in both cases. This charge-asymmetric behavior for the effec-
tive interactions between the two identical nanoparticles is,
of course, a direct consequence of the size-asymmetry in the
supporting electrolyte, which indeed induces different ionic
distributions around each macroion.17 In each case, the HNC
results and the MD data show again the same general behav-
ior, with the theoretical approach once more overestimating
the attraction near the contact distance r ≈ dM. This feature
is perhaps more easily observed in the corresponding PMFs,
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FIG. 2. Mean force (a) and PMF (b) between two identical charged nanopar-
ticles immersed in a 1:1 size-asymmetric electrolyte at 1M. Circles and
squares correspond, respectively, to MD results for zM = −9 and zM = +9.
Filled and empty symbols represent simulation data obtained, respectively,
with the standard Ewald method and the pre-averaged Ewald approach. Solid
and dashed lines display, respectively, the corresponding HNC predictions
for zM = −9 and zM = +9.

shown in the inset, where the difference between the depths
of the attractive wells around r ≈ dM are more conspicuous,
clearly indicating that it is harder for cationic nanoparticles
to reach contact. Nonetheless, there is also a secondary min-
imum in the PMF for zM = +9 at r ≈ 9.5d+ that indicates
a slight trend for nanoparticle binding at that separation dis-
tance.

To elucidate the origin of the features just discussed, we
present separately in Figure 3 the respective repulsive core
and Coulomb components of the PMFs shown in the previous
figure. The first general observation here is that the results
attained from the P-A Ewald approach turn out to be prac-
tically identical to those obtained from the classical Ewald
summation, even at the level of each one of these compo-
nents, which clearly validates the use of the P-A Ewald sums
scheme for the present conditions. With regard to the charge-
asymmetric behavior, the differences between the two cases
are indeed mirrored in the behavior of these components. For
the case of negatively charged nanoparticles (Figure 3(a)),
Wrc(r) has an attractive well at r ≈ dM, that is larger in magni-
tude than Wel(r) at r ≈ dM, which is basically repulsive in this
region. The result is the net attraction displayed by W(r) at
contact for zM = −9. In contrast, for the positively charged
nanoparticles (Figure 3(b)), the attractive well of Wrc(r) at
r ≈ dM is certainly of smaller magnitude that the repulsive
Wel(r) at the same separation distance, thus yielding for zM

= +9 a less favorable attractive well at contact for the to-
tal W(r). It is also interesting to notice that Wrc(r) seems to
have wider oscillations for cationic nanoparticles, with a more
clearly defined secondary minimum at r ≈ 9.5d+, than for
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FIG. 3. Contributions to the PMF between two identical charged nanopar-
ticles immersed in a 1:1 size-asymmetric electrolyte at 1M. The nanoparti-
cle valence is zM = −9 in (a) and zM = +9 in (b). Triangles, circles, and
squares correspond, respectively, to W(r) and its repulsive core and electro-
static contributions obtained via MD simulations. Filled and empty symbols
represent, respectively, the data obtained using the standard Ewald method
and the pre-averaged Ewald approach. Lines joining symbols are intended as
an eye-guide.

anionic ones. Moreover, the position of this secondary min-
imum roughly corresponds to a separation distance between
the two nanoparticles at which an anion fits tightly in the mid-
dle: r ≈ dM + d−. With regard to Wel(r), on the other hand,
for the case corresponding to zM = +9 it seems to be almost
monotonously repulsive, whereas for the case corresponding
to zM = −9 it shows and oscillatory behavior with an almost
negligible minimum at r ≈ 8.1d+, which roughly corresponds
to the situation of two nanoparticles with a cation squeezed
in between (r ≈ dM + d+). This electrostatic bridging effect
thus seems to play a rather small role, for this instance, in the
overall behavior of the PMFs; however, as suggested below, it
may be more relevant at larger magnitudes of the nanoparticle
valence. For comparison purposes, the corresponding DLVO
predictions are also plotted in Figures 3(a) and 3(b). For an-
ionic (cationic) nanoparticles, it is found that DLVO clearly
overestimates (underestimates) the Wel(r) obtained from the
computer simulations. The discrepancies between WDLVO(r)
and the simulation results for W(r) illustrate the relevance of
including consistently the ionic sizes in an approach beyond
the classical Poisson-Boltzmann picture of point-like ions.
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FIG. 4. Mean force (a) and PMF (b) between two identical charged nanopar-
ticles immersed in a 1:1 size-asymmetric electrolyte at 1M. Circles and
squares correspond, respectively, to MD results for zM = −36 and zM = +36.
Filled and empty symbols represent simulation data obtained, respectively,
with the standard Ewald method and the pre-averaged Ewald approach. Solid
and dashed lines display, respectively, the corresponding HNC predictions
for zM = −36 and zM = +36.

The effects of a larger magnitude of the nanoparticle
charge are illustrated in Figure 4 where the mean forces and
the matching PMFs for zM = −36 and zM = +36 are plot-
ted. As for the previous cases, the agreement between the P-A
Ewald approach and the standard Ewald method is very good
with regard to the MD data, but the discrepancy of these with
the liquid theory results is now more conspicuous; overall, the
HNC approach seems to underestimate the repulsion between
the two identical nanoparticles. Nonetheless, the general be-
havior predicted by both approaches is quite similar, in par-
ticular with regard to the charge-asymmetry effects: the effec-
tive interaction between cationic nanoparticles is significantly
more repulsive than the one between anionic nanoparticles.
Moreover, in the second case there is even an attractive well
for W(r) (rather shallow and located at around r ≈ 8.6d+ ac-
cording to the simulation data, slightly deeper and closer to
the origin according to the liquid theory results), with the en-
suing effect on the respective F(r).

Further insights into the source of the effects discussed
above is attained by looking at the corresponding contribu-
tions from the repulsive core and electrostatic constituents of
the PMFs, which are plotted in Figure 5. Again, even at the
level of each one of these components the results from the P-A
Ewald approach are virtually indistinguishable from those at-
tained with the standard Ewald method, justifying once more
the use of the more efficient P-A Ewald sums scheme in
GPUs. Likewise, the charge-asymmetric behavior of the ef-
fective interactions is also reflected in each one of these con-
tributions. In the case of negatively charged nanoparticles, il-
lustrated in Figure 5(a), it is observed that near the contact
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an eye-guide.

distance r ≈ dM both the Wrc(r) and Wel(r) are repulsive, the
first being clearly larger than the second. Both contributions,
however, display similar minima at the separation distance r
� dM + d+ for which there is just enough room to accom-
modate one cation in between the nanoparticles. This again
suggests an electrostatic bridging between the two anionic
nanoparticles, now somewhat larger than the one observed
in Figure 3(a) since the presence of a counterion amid them
is more electrostatically favorably. Figure 5(b), on the other
hand, shows that for positively charged nanoparticles both
constituents of the PMF are repulsive not only near the con-
tact distance r ≈ dM, but also for all values of r. Furthermore,
the electrostatic contribution in the case of cationic nanopar-
ticles is larger than the repulsive core one for the whole range
of separation distances.

Since the HNC results provide a qualitatively good and
relatively accurate description of the effective interactions
gathered from the computer simulation runs, it seems sen-
sible to use the computationally less demanding liquid the-
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FIG. 6. Liquid theory predictions using the HNC closure for the mean
force and the PMF between two identical nanoparticles immersed in a 1:1
size-asymmetric electrolyte at 1M. Panes (a) and (c) correspond to anionic
nanoparticles, whereas panes (b) and (d) correspond to cationic nanoparticles.
Solid, dotted, short-dashed, long-dashed, dotted-dashed and dotted-double-
dashed lines represent the data for |zM| = 3, 9, 18, 27, 36, 45, respectively.

ory approach for a more extensive exploration of the ef-
fects of the nanoparticle charge. This analysis is displayed in
Figure 6, where the mean forces and the PMFs pertaining to
different values of the nanoparticle valence are plotted. It is
immediately clear that, regardless of the sign of zM, for low
values of its magnitude an attractive effective interaction, due
mainly to depletion forces, appears near the contact distance
r ≈ dM. As the magnitude of zM increases, this attractive in-
teraction is overcome by the electrostatic repulsion between
the identical nanoparticles, until it disappears completely for
large enough values of |zM|. As commented above, at this
point the net repulsion at contact is evidently stronger be-
tween cationic nanoparticles than between anionic ones. The
charge-asymmetric behavior of W(r) is, however, even more
marked beyond this contact region. For the case of anionic
nanoparticles, illustrated in Figures 6(a) and 6(c), a secondary
minimum in W(r), situated around r = 8.5d+ ≈ dM + d+ and
seemingly induced by the bridging role of the small cations,
develops and deepens as the magnitude of zM goes up, in ac-
cord to the results of the previous figures. Contrastingly, for
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FIG. 7. Maximum reversed value of the mean force, F*, and maximum re-
versed value of the PMF, W*, between two identical nanoparticles immersed
in a 1:1 size-asymmetric electrolyte at 1M as a function of the nanoparticle
valence zM. Symbols and solid lines correspond, respectively, to MD data and
HNC results. Filled and empty symbols correspond to calculations using the
standard Ewald method and the pre-averaged Ewald approach, respectively.

the case of cationic nanoparticles, illustrated in Figures 6(b)
and 6(d), once the contact attraction is overwhelmed by the
electrostatic repulsion, the effective interaction between iden-
tical nanoparticles becomes repulsive for all separation dis-
tances.

The relative importance of these attractive forces can
be better appreciated by looking at the data presented in
Figure 7, where the minimum values of the mean force and
PMF between two identical nanoparticles, denoted by F* and
W*, respectively, are plotted as a function of the nanoparti-
cle valence (F* ≤ F(r) and W* ≤ W(r) for all separation dis-
tances r). The continuous lines represent the HNC results, and
the symbols report the computer simulation data. The corre-
sponding values for the electrostatic component of the DLVO
potential, derived under the assumption of point-like ions
in the supporting electrolyte, are necessarily zero since this
component is always repulsive. As seen in Figure 7, around
the point of zero nanoparticle charge the effective interac-
tions display an attraction which is related mainly to deple-
tion forces. As the magnitude of the nanoparticle valence in-
creases, this contact attraction decreases due to the augmented

direct electrostatic repulsion. In the case of cationic nanopar-
ticles (surrounded by large counterions) this diminishment
is monotonic, whereas for anionic nanoparticles (covered by
small counterions) the effective interaction becomes again
more attractive as the magnitude of the nanoparticle charge
augments. This last observation is consistent with recent the-
oretical and simulation studies which show that, for a single
charged nanoparticle immersed in a size-asymmetric monova-
lent electrolyte under similar conditions to the present study,
charge reversal in the presence of small counterions grows
monotonically as a function of the colloidal valence for high
surface charge densities, whereas for large counterions the
charge reversal observed near the point of zero charge dis-
appears at larger colloidal charges.43

IV. CONCLUDING REMARKS

This work presents an study of the effective interac-
tions between two identical spherical macroions immersed
in a 1:1 ionic solution at a 1M concentration, focusing in
particular on the effects induced by the asymmetry of ionic
sizes in the supporting electrolyte. This is done by consid-
ering a model system in which the effective diameter of the
anions is twice that of the cations. The consistent inclusion
of ionic size-asymmetry (standing for the different hydration
shell radii) provides a simpler approach to some of the mech-
anisms involved in more sophisticated but resource-expensive
explicit solvent models. The main consequence of this size-
asymmetry is a corresponding charge-asymmetric behavior
of the effective macroion-macroion interactions: the PMF be-
tween two anionic nanoparticles, for example, is markedly
distinct to the PMF between two cationic nanoparticles, even
though the magnitude of the charge of these macroions is
the same in both cases. This is indeed explained by the dif-
ferences in the arrangement of the monovalent ions around
the charged nanoparticles. As was described previously,17 the
local density of counterions in the vicinity of the nanoparti-
cles is, as expected, larger than the corresponding density of
coions. For cationic nanoparticles, however, these counterions
are located farther away than for anionic ones, thus shifting
the corresponding charge screening to larger distances from
the surface of the macroion. For high surface charge densi-
ties, charge reversal can be significantly enhanced by small
counterions, and even disappear for large counterions.43 This
charge-asymmetric arrangement of counterions and coions all
over the charged nanoparticles also plays a determining role
in the depletion forces induced by the short-range repulsive
interactions among all these components, as illustrated by the
respective plots of Wrc(r) in Figures 3 and 5. The nature of
these depletion forces is illuminated by the analysis of the ef-
fective interactions between neutral nanoparticles, which turn
out to be practically equivalent to those obtained under the
same general conditions but with all the electrostatic interac-
tions turned off (i. e., setting lb = 0).

A particularly interesting feature of the charge-
asymmetric behavior of the effective nanoparticle-
nanoparticle interactions is the emergence of attractive forces
between highly charged anionic nanoparticles that operate at
separations beyond the effective contact distance. A previous
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Monte Carlo study demonstrated that an analogous charge-
asymmetric behavior is also observable for the PMFs
between two identical macroions immersed in a 2:1 or 1:2
size-symmetric electrolyte.15 In that case, the presence of
divalent counterions was critical to the onset of the effective
electrostatic bridging. For the conditions considered in this
work, however, the medium-range attraction is induced by
the ionic size-asymmetry and has a depletion-like component
besides the bare electrostatic bridging contribution. Thus, in
the case of highly charged anionic nanoparticles the (smaller)
counterions are adsorbed so strongly to each macroion
that the configuration in which both share a layer of these
counterions seems to be favorable despite the direct Coulomb
repulsion between the nanoparticles. In contrast, the very
strong repulsion observed between highly charged cationic
nanoparticles indicates that the presence of large counterions
completely inhibits any close binding among the macroions.
This suggests that size-asymmetric monovalent electrolytes
could enhance the solubility of strongly screened nanoparti-
cles (at small Debye lengths, for example), even if attractive
van der Waals dispersion forces are present, as it has been ob-
served experimentally.19 All the effects commented here are
neglected by the widely used DLVO potential, which predicts
the same behavior for the effective interaction between any
two identical charged nanoparticles, regardless of their charge
polarity, as long as they are immersed in the same supporting
electrolyte. A similar situation is expected from other more
sophisticated mean-field approaches that still rely on Yukawa-
like linearized solutions of the Poisson-Boltzman theory,44

thus emphasizing the relevance of taking into account the
ion-ion correlations properly. Nonetheless, as the ionic
concentration decreases the ionic correlations, and hence
the ionic size asymmetry, become indeed less important, so
for sufficiently diluted solutions the above phenomenology
is expected to disappear. In such scenario, a mean-field
description using point-like ions would be appropriate.

A deeper understanding of the type of mechanisms dis-
cussed here should allow the possibility of fine-tuning the
physicochemical properties and the phase stability of complex
fluids with the aim of enhancing their industrial and biomed-
ical applications. Since the liquid theory approach also pro-
vides a sensible close description of these effects, it is reason-
able to use it for a preliminary exploration of the parameter
space, searching for the more promising regions to be under-
taken by computer simulation means. In order to perform this
task, alternative closures to HNC could be employed,45, 46 and
density functional theory schemes may be also considered in-
stead of the integral equation approach for the calculation of
the PMFs.13, 47

With regard to the specific details of the model sys-
tem and computer simulation techniques under consideration,
some further comments are deserving. The use of soft-sphere
core potentials allows a straightforward calculation of the net
(direct plus mediated) forces between the two nanoparticles
through the use of Eqs. (4) and (5), thus facilitating substan-
tially the task of calculating the corresponding effective in-
teractions in comparison to an equivalent model system but
with hard-sphere cores instead.15 On the other hand, a fun-
damental hypothesis of the P-A Ewald approach is the ho-

mogeneity of the Coulombic system. Hence, it is remarkable
that the good agreement displayed with respect to the stan-
dard Ewald summation method even in systems with some de-
gree of anisotropy. Furthermore, the P-A Ewald technique has
the extra virtue of being very efficient for a small to sizable
number of particles in GPUs,30 thus allowing faster calcula-
tions. These advantages should be profitable when extend-
ing this line of inquire to more sophisticated models which
may include charge images,48 molecular electrolytes,49 ionic
solubility,50 etc.
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