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The hypernetted chain/mean spherical approximation �HNC/MSA� integral equation for a totally
asymmetric primitive model electrolyte around a spherical macroparticle is obtained and solved
numerically in the case of size-asymmetric systems. The ensuing radial distribution functions show
a very good agreement when compared to our Monte Carlo and molecular-dynamics simulations for
spherical geometry and with respect to previous anisotropic reference HNC calculations in the
planar limit. We report an analysis of the potential versus charge relationship, radial distribution
functions, mean electrostatic potential, and cumulative reduced charge for representative examples
of 1:1 and 2:2 salts with a size-asymmetry ratio of 2. Our results are collated with those of the
modified Gouy–Chapman �MGC� and unequal radius modified Gouy–Chapman �URMGC� theories
and with those of HNC/MSA in the restricted primitive model �RPM� to assess the importance of
size-asymmetry effects. One of the most striking characteristics found is that, contrary to the
general belief, away from the point of zero charge the properties of an asymmetric electrical double
layer �EDL� are not those corresponding to a symmetric electrolyte with the size and charge of the
counterion, i.e., counterions do not always dominate. This behavior suggests the existence of a new
phenomenology in the EDL that genuinely belongs to a more realistic size-asymmetric model where
steric correlations are taken into account consistently. Such novel features cannot be described by
traditional mean-field theories such as MGC, URMGC, or even by enhanced formalisms, such
as HNC/MSA, if they are based on the RPM. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1949168�

I. INTRODUCTION

The electrical double layer �EDL� is the structure formed
by electrolyte ions around a charged surface, usually that of
a colloid or electrode. An understanding of the EDL proper-
ties is a crucial matter for science and technology because of
the large variety of related applications, that range from col-
loidal stability, electrokinetics, and the description of bio-
logical systems to daily manufactured products such as inks,
paint emulsions, foods, or medicaments.1,2 As an illustration,
the EDL determines completely the value of the zeta poten-
tial of a colloid in electrophoretic motion.3,4 The zeta poten-
tial, which is directly related to the measured mobility in
electrophoresis experiments, is a central quantity in colloid
science and many standard techniques of characterization,
stabilization, and separation of colloidal suspensions rely
critically on its knowledge.5–8 Depending on the form of the
dispersed macroparticle �or electrode� is that we are dealing
with an EDL of particular geometry, e.g., planar, spherical, or

cylindrical. The planar case is, by far, the most studied in-
stance, however, the spherical EDL �SEDL� deserves special
attention for its obvious relation to dispersions of globular
proteins, micelles, polymer beads, dendrimers, or many other
nearly spherical organic or inorganic macroions.1,2,5–7

Since the emergence of this topic, the unquestionable
relevance of the EDL has been paralleled by an intense
search of an adequate theoretical description of such charge
distribution. In order to build a successful theory of the EDL,
a good model is essential. Among some more refined repre-
sentations, nowadays, the usual election for the EDL is the
minimal but able restricted primitive model �RPM�. In this
well-known idealization of a single EDL a “colloid” or “elec-
trode” is mimicked by a rigid and uniformly charged object,
which is immersed in an electrolyte solution constituted by a
structureless solvent media and various ionic species, where
the latter are treated as equally sized hard spheres with punc-
tual charges at their centers. To avoid image effects it is
customary to suppose a uniform dielectric constant permeat-
ing all the space. During the past decades the RPM-EDL hasa�Electronic mail: marcelo@imp.mx
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been studied comprehensively via modern statistical me-
chanics approaches, namely, integral equations,9–23 density-
functional theories,24–33 and mean electrostatic potential
schemes.34–37 Additionally, the usage of simulation tech-
niques to evaluate the properties of these Coulombic systems
has supplied a large body of “experimental” data useful to
test the existing theories.10,38–47 At the end, and in spite of its
apparent simplicity, all the collected evidence sustains the
RPM as a concise and thriving model which, by embodying
the most important interactions in EDL systems, i.e., electro-
static and hard-core potentials, is capable to provide not only
an essentially correct account of the associated thermody-
namic properties but also to predict characteristic phenomena
of the EDL such as layering, charge reversal, charge inver-
sion, and overcharging. Briefly, we remember to the reader
that the stratified �oscillating� ionic distributions next to a
colloid are referred to as layering. On the other hand, charge
reversal means the excessive compensation of the native col-
loidal charge, prompted by strongly attracted counterions,
leading to an effective macroparticle’s charge of reversed
sign. This counterions layer, in turn, promotes a layer of
coions adsorption which, consequently, produces charge in-
version, i.e., a layer of inverted charge. Complementarily,
overcharging is the unusual adsorption of coions to the sur-
face of the colloid, which increases its original charge.48 In
fact, the continued progress of theories founded on the RPM
has made of them a tool of quantitative capacity to interpret
experimental results. As an example, very recently, the new
primitive model electrophoresis approach49,50 has incorpo-
rated consistently the ionic-size effects into the electrokinetic
equations and forged an enhanced treatment of electrophore-
sis, which fits correctly the measurements in multivalent
electrolytic ambients and explains reversed mobilities.49–52

Historically, the RPM-based theoretical attempts surged
as to better the classical Poisson–Boltzmann �PB� portrait of
the EDL. In the conventional PB treatment, instead of hard-
sphere ions, a punctual electrolyte is assumed and the ionic
distributions are obtained by solving the Poisson–Boltzmann
differential equation, thus eliminating the very important in-
terionic steric correlations present in the RPM. Although the
assumption of point ions could be acceptable in some cases
�e.g., if low-charged colloids in very diluted univalent salts
are being considered�, for high-coupled systems the inad-
equacy of such hypothesis has been clearly
attested.12,13,16,39,53,54 As a consequence, the original bare PB
theory is unable to predict any of the nonmonotonic charac-
teristics mentioned in the previous paragraph. Since its early
stages, the patent faults of the PB equation were already
noticed55–58 and, accordingly, a first modification to the
simple PB treatment was devised by introducing the concept
of the Stern layer or the Helmholtz plane. In this supple-
mented model, the only inclusion of a unique distance of
closest approach between the ions and the macroparticle re-
sulted in the normalization of the otherwise unphysical val-
ues of the radial distribution functions �RDFs� close to the
contact and, eventually, extended the applicability of the
PB-Stern or modified Gouy–Chapman �PBS or MGC� theory
to 1:1 systems with moderate charge or concentration.10,59

Nevertheless, MGC remained exempt of nonmonotonical

features and, thus, unsuccessful to cope with more demand-
ing conditions �viz., multivalent and/or highly concentrated
electrolytes or, else, high surface charges�.

Up to now, most of the theoretical work on EDL has
supposed the valence as the unique source of ionic asymme-
try. Obviously, in nature this is not the situation and, out of
the many possible sophistications to the model �e.g., a dis-
crete solvent, more species, etc.�, the consideration of ions
with different sizes is a first choice. Some works have been
already published along these lines60–67 but, notably, the pio-
neering attempt to include distinct ionic sizes was formulated
inside the framework of the PB equation by Valleau and
Torrie,60 who used Stern layers of unequal extent for the
counter- and coions. It must be noted that in this unequal
radius MGC �URMGC� scheme the ions are, at the same
time, voluminous and punctual objects, i.e., an electrolytic
particle behaves as a hard sphere when interacting with the
colloid �being dissimilar the coion and counterion distances
of closest approach to the macroparticle�, but among ions
they “see” each other as points. In summary, such addition to
MGC was rewarding since exposed interesting effects not
observed in the size-symmetric case, e.g., the displacement
of the potential of zero charge �PZC�, the occurrence of os-
cillations in the radial distribution functions and mean elec-
trostatic potential, and the apparent dominance of counteri-
ons to determine the properties of asymmetric EDL systems.
At first, all these phenomena seemed appealing since, for
instance, the nonzero PZC allowed the possibility to interpret
experimental data by obviating specific adsorption, and the
occurrence of fluctuating URMGC ionic densities and elec-
trostatic potentials meant that a “point-ion” theory should not
be necessarily uniform. Furthermore, for a n:n electrolyte
with a common counterion size, the convergence between
the MGC and URMGC outcomes was so clear that founded
the now widely accepted fact that the counterion size is what
really matters for the EDL. Quoting Valleau and Torrie:
“...we expect the double layer properties of a dilute �asym-
metric� electrolyte to become similar to those of a com-
pletely symmetric electrolyte having an effective size equal
to that of the counterion. �This remark will be asymptotically
exact for large fields in the Poisson–Boltzmann theory�...”.60

Notwithstanding, due to the absence of steric interionic cor-
relations, all the new features in URMGC are constrained in
space and can be rationalized purely in terms of ener-
getic arguments, leaving out determinant entropic
contributions,48,68,69 so that, at the end, URMGC will be in-
capable to produce a full description of the phenomenology
happening in general size-asymmetric systems. Even more,
we will make evident that an analysis based on the PB view-
point of a totally asymmetric EDL not only is partial but,
regarding the counterion predominance, can lead in wrong
directions.

For all the stated, to improve the theory of EDL the
asymmetry in ionic size must be included in a more consis-
tent way. That can be accomplished by means of the unre-
stricted primitive model �PM� of an electrolyte, for which
the condition of equal size in the RPM is relaxed. Not sur-
prisingly, in the last years, the PM-EDL for plane electrodes
has been studied through the avenues of integral equations
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and the mean electrostatic potential.64–66 Amid them, the
Greberg and Kjellander’s paper66 represents a valuable con-
tribution for its detailed appraisal of the effects of size asym-
metry on the ionic structure and, chiefly, for its thorough
discrimination of the different contributions to charge inver-
sion and to the mean force. In any case, the body of existent
literature on PM-EDL shares two limitations, namely, they
have dealt exclusively with the planar geometry, ignoring the
undoubtedly notable spherical instance,70 and have focused
on the structural properties or limited themselves to describe
semiquantitatively the behavior of the potential versus
charge relationship. Besides, and most importantly, due to
the conditions explored, the majority of modern studies go-
ing beyond PB �Refs. 10,28,32,63,64,67 and 71� have sub-
scribed the usual conclusion that the counterion–
macroparticle interaction is what determines the EDL
properties: “...Away from the pzc, the double layer is domi-
nated by the counterions and, for a binary system at least, the
properties of the double layer are essentially those of a sym-
metric salt with the charge and diameter of the
counterion....”63 We will show that this is not always the
case.

Consequently, in the present paper we report a compre-
hensive investigation of the PM-EDL for a spherical model
colloid using integral equations and simulation techniques
with a two-folded aim: �i� to produce a description of the
significant PM-SEDL system using a dependable statistical
mechanics treatment and �ii� to revindicate the importance of
size asymmetry in the EDL studies in order to get a more
faithful picture of a model colloidal suspension and as the
origin of an enriched phenomenology, previously unseen in
the symmetrical conditions. The rest of the paper is orga-
nized as follows. In Sec. II �and Appendixes A and B� we
describe the model and give the details of the HNC/MSA
theory for the PM-SEDL and of the employed simulation
methods. The results, comparisons, and their discussion are
included in Sec. III, and we close in Sec. IV with our con-
clusions and some prospectives for future work.

II. THEORY AND METHODS

A. The basic model

Our representation of the SEDL is constituted by a rigid,
charged spherical colloid of diameter D and surface charge
density �0, surrounded by a continuum solvent of dielectric
constant �. The macroion is in contact with two ionic species
which are treated as hard spheres of diameter Ri �i=1,2� with
embedded point charges of valence zi at their centers. It is
assumed for definiteness that R2�R1. The interaction poten-
tial between the macroion and an ion of type i is then
given by

UMi�r� = ��, r �
D + Ri

2
,

zie4��D/2�2�0

�r
, r �

D + Ri

2
,� �1�

with e the protonic charge. In turn, the interionic potential is

Uij�r� = �� , r �
Ri + Rj

2
,

zizje
2

�r
, r �

Ri + Rj

2
.� �2�

The Stern layer or, more properly, the Helmholtz plane,
already mentioned in the Introduction, is the geometrical
place corresponding to the closest approach distance for the
electrolyte ions to the colloid. If we consider an electrolyte
formed by a pair of ionic species of unequal sizes, the closest
approach distance to the surface for the smallest component,
�D+R1� /2, determines the inner Helmholtz plane �IHP�,
whereas the corresponding distance for the largest species,
�D+R2� /2, establishes the outer Helmholtz plane �OHP�. In
the limit of identical sizes the IHP and OHP coincide and the
usual definition of the Helmoltz plane is recovered.

B. The HNC/MSA equation for the PM-SEDL

In general, the Ornstein–Zernike equation and the hyper-
netted chain closure �HNC� for a multicomponent mixture of
M species are

hij�r12� = cij�r12� + �
l=1

M

�l� hil�r13�clj�r32�dV , �3�

and

cij�r12� = − �Uij�r12� + hij�r12� − ln�hij�r12� + 1�,

i, j = 1,2…M , �4�

where hij�r12� is the total correlation function for particles 1
and 2 of species i and j, distant by r12, which is related to the
radial distribution function by gij�r12�=hij�r12�+1, cij�r32� is
the direct correlation function for the particles 2 and 3, �i is
the bulk number concentration of each one of the species,
Uij�r12� is the direct interaction potential, dV=d3r13 is the
differential volume, and �=1/ �kBT�, where kB is Boltz-
mann’s constant and T the absolute temperature.

Applying the direct method,72–74 let the species M cor-
respond to macroions at infinite dilution in a binary electro-
lyte. Then Eqs. �3� and �4� for species M and j become

hMj�r12� = cMj�r12� + �
l=1

2

�l� hMl�r13�clj�r32�dV , �5�

and

cMj�r12� = − �UMj�r12� + hMj�r12� − ln�hMj�r12� + 1�,

j = 1,2. �6�

If the HNC closure, Eq. �6�, is used for the macroion-ion
direct correlation function in the Ornstein–Zernike equation
�5�, we get

034703-3 Electrical double layer around a colloid J. Chem. Phys. 123, 034703 �2005�
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gMj�r� = �0, r �
D + Rj

2
,

exp	− �UMj�r� + 	Mj�r�
, r �
D + Rj

2
,�

�7�

with

	Mj�r� = �
l=1

2

�l� �gMl�t� − 1�clj�s�dV , �8�

where r=r12, t=r13, and s=r23= �t−r� are the distances be-
tween particles 1 and 2, 1 and 3, and 2 and 3, respectively,
and dV= t2sin 
 d
 d� dt is the volume element in spherical
coordinates. The geometry of the system is illustrated in
Fig. 1.

It must be noted that the sizes of the macroion and of the
ionic species are arbitrary, and the only demanded condition
is the electrolyte bulk electroneutrality,

�1z1 + �2z2 = 0. �9�

In respect to the ion–ion direct correlation functions
cij�s� in the bulk MSA theory they can be written as

cij�s� = cij
int�s� + cij

ext�s� . �10�

These functions are dependent on the size and charge of the
ionic species and on other parameters of the system such as
the temperature and the dielectric constant, and are stated
explicitly in the Appendix A.

Introducing the MSA direct correlation functions in Eq.
�8�, we arrive to the following nonlinear system of integral
equations �the index M is dropped because there is only one
macroion present�,

g1�r� = exp�− �U1�r� + �1� g1�t�c11�s�dV

− �1� c11�s�dV + �2� g2�t�c21�s�dV

− �2� c21�s�dV, r �
D + R1

2
, �11�

and

g2�r� = exp�− �U2�r� + �1� g1�t�c12�s�dV

− �1� c12�s�dV + �2� g2�t�c22�s�dV

− �2� c22�s�dV, r �
D + R2

2
. �12�

From the specific cij�s� definition and considering the
electroneutrality restriction, Eqs. �11� and �12� can be recast
in a more compact form as

g1�r� = exp	I0�r� + �1I1�r� − �1I2�r� + �2I3�r� − �2I4�r�
 ,

�13�

and

g2�r� = exp	H0�r� + �1H1�r� − �1H2�r� + �2H3�r�

− �2H4�r�
 , �14�

with

I0�r� =
− z1e4��D/2�2�0

kBT�
�1

r
� , �15�

I1�r� =� g1�t�c11�s�dV , �16�

I2�r� =� c11
int�s�dV , �17�

I3�r� =� g2�t�c21�s�dV , �18�

I4�r� =� c21
int�s�dV , �19�

H0�r� =
− z2e4��D/2�2�0

kBT�
�1

r
� , �20�

H1�r� =� g1�t�c12�s�dV , �21�

H2�r� =� c12
int�s�dV , �22�

FIG. 1. Schematic representation of the model.
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H3�r� =� g2�t�c22�s�dV , �23�

and

H4�r� =� c22
int�s�dV . �24�

The detailed form of these terms is given in the Appendix B.
As a particular case, when R1=R2 in Eqs. �1� and �2�, the

integral equations �13� and �14� are reduced to the HNC/
MSA expressions for the RPM-SEDL, deduced by González-
Tovar and Lozada-Cassou.16 If the interionic-size correla-
tions are neglected in the diffuse EDL but the closest
approach distances between the macroion and the ionic spe-
cies are conserved, by setting R1=R2=0 in Eq. �2� and letting
R1 and R2 arbitrary in Eq. �1�, it is found that I2�r�= I4�r�
=H2�r�=H4�r�=0 and the integral version of the URMGC
theory is obtained. Additionally, if R1=R2=0 in Eq. �2� and
R1=R2 in Eq. �1�, the HNC/MSA equations are reduced to
the corresponding MGC equations in integral form.

Derived from the ionic profiles, two quantities of special
interest are the mean electrostatic potential �MEP� and the
integrated surface charge density, which, considering the
electroneutrality condition, can be written as

��r� =
4�e

�
�

r

�

�
i

gi�t��izi�t −
t2

r
�dt , �25�

and

��r� = −
e

r2�
r

� ��
i

gi�t��izi�t2dt , �26�

respectively. Such quantities yield important parameters of
the system when evaluated at specific positions. For ex-
ample, if r=D /2 Eqs. �25� and �26� become the MEP at the
macroion’s surface �0 and the native surface charge density
of the macroion �0, respectively,

�0 =
4�e

�
�

D/2

�

�
i

gi�t��izi�t −
t2

D/2
�dt , �27�

and

�0 = −
e

�D/2�2�
D/2

� ��
i

gi�t��izi�t2dt . �28�

Furthermore, for r= �D+R1� /2 Eq. �25� corresponds to the
MEP at the IHP �IHP, whereas for r= �D+R2� /2 the MEP at
the OHP �OHP is obtained, i.e.,

�IHP =
4�e

�
�

�D+R1�/2

�

�
i

gi�t��izi�t −
t2

�D + R1�/2�dt , �29�

and

�OHP =
4�e

�
�

�D+R2�/2

�

�
i

gi�t��izi�t −
t2

�D + R2�/2�dt .

�30�

A fundamental quantity in electrokinetics is the zeta po-
tential . This potential has been conventionally associated

with the MEP at the closest approach distance between an
electrolyte and a charged surface.13,16,75–78 Following this
convention, in a size-asymmetric or PM electrolyte =�IHP,
and when the ions are equally sized �in the RPM� =�IHP

=�OHP.
The integrated surface charge density is a very conve-

nient magnitude for infinite surfaces such as unbounded
planes or cylinders. Nevertheless, for finite surfaces, such as
spheres, ellipsoids or spherocylinders, is useful to consider
instead the cumulative reduced charge �CRC�,

Q*�r� =
Q�r�
�Q0�

=
1

4��D/2�2��0��4��D

2
�2

�0

+ 4��
D/2

r ��
i

gi�t��izie�t2dt� , �31�

where Q�r�=4�r2��r�. Beyond the macroparticle’s surface
this quantity corresponds to the total charge �native plus ad-
sorbed� inside a sphere of radius r, normalized with the bare
charge over the colloid. If D /2�r� �D+R1� /2 the absolute
value of the CRC is equal to one, whereas for r→� this
quantity goes to zero because of the electroneutrality condi-
tion. The CRC has also the property of indicating charge
reversal when Q*�r�Q0�0. Moreover, charge reversal and
overcharging are conveniently quantified by Q*�r� as a frac-
tion or a multiple of the native bare charge compensated
locally up to a certain distance.

C. Computational methods

For a given value of �0, the set of nonlinear integral
equations, Eqs. �13� and �14�, was numerically solved via the
successive substitution �or Picard� method. In the past, this
technique has been successfully applied to work out integral
equations associated to similar Coulombic fluid
problems.12,13,32 We have produced accurate results by con-
tinuing the iterative procedure until the Euclidean norm be-
tween the consecutive input and output RDFs was less than
some prescribed small number, guaranteeing an error inferior
to 1%. As an extra test of consistency, at the end of the
Picard cycle, the final ionic profiles were used to check to
what extent they fulfilled the total electroneutrality condition
�in the form of Eq. �28��. In all our calculations �0 was
recovered up to a 99.9% at least.

For comparison intentions, the static properties of some
of our PM-SEDL samples were also computed by Monte
Carlo �MC� and molecular-dynamics �MD� simulations. We
have practiced both the MC and MD schemes in order to
assure the reliability of our simulation data given that, to the
best of our knowledge, the present results are the first com-
puter experiments effectuated for the PM-SEDL. In particu-
lar, we focused on 2:2, 0.5-M electrolytes with a size-
asymmetry ratio of 2 �characterized by the parameters listed
in Table I� bathing a macroion. This macroion was consid-
ered as a hard sphere of diameter D=10 Å with a charge ZMe
located at its center, with ZM =8 and e the protonic charge,
which correspond to a surface charge density �0

=0.407 C/m2. The solvent enters the model as a uniform
dielectric with an aqueous value of �=78.5 at a temperature
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T=298 K. In order to avoid image potential effects the di-
electric constant of the macroion and the ionic species was
considered equal to that of the solvent. The simulations were
carried out within a cubic box with one macroion fixed in the
center, surrounded by the electrolyte. The number of ions for
each species was adjusted to satisfy the electroneutrality con-
dition over all the system: N1Z1e+N2Z2e+ZMe=0. The usual
periodic boundary conditions with the minimum image con-
vention for the ions were imposed to the simulation box,
whose length �L� was considered sufficiently large to neglect
macroion–macroion interactions and to obtain stable profiles
�the specific parameters used are reported in Table I�. Fol-
lowing Degrève et al.40 and Degrève and Lozada-Cassou,41

the use of such a sufficiently large simulation box for SEDL
systems owning a plasma parameter79–82 �p�10 makes un-
necessary a treatment à la Ewald of the Coulombic interac-
tions. Precisely, in our study �p=3.1.

The MC simulations were performed in the canonical
ensemble using the standard Metropolis method.83,84 The
macroion–ion and ion–ion interaction potentials are given by
Eqs. �1� and �2�, respectively. In the thermalization process
4�104 MC cycles were carried out to get the system into
equilibrium and 2�105 MC cycles were performed in order
to take the canonical average after the equilibration. The ac-
ceptance ratio used was 0.4.

In the MD simulations the numerical integration of the
motion equations was accomplished through a reversible MD
technique.85 This method ensures numerical stability and is
equivalent to the velocity Verlet algorithm. In order to pro-
duce data in a feasible way and to avoid the problem of an
indefinable force at contact, a very steep but continuous in-
terparticle potential in lieu of a hard-core one was employed,
i.e.,

wij�r� = �A��Rij/r�2l − 2�Rij/r�l + 1� , r � Rij ,

0, r � Rij ,
 �32�

where A=kBT, l=30, and Rij is the closest approach distance
between any pair of particles either macroion–ion or ion–ion.
In consequence, the total MD potential among charges is the
sum of wij�r� and the Coulomb contribution as defined in
Eqs. �1� and �2�. The time step used was �t=10−3�, where
�=�m0R1

2 / �kBT� is the unit of time and m0 is a characteristic
unit of mass. The inertial masses of the components of the
system are m1=m0, m2=8.0m0, and mmacroion=13.03m0. Fi-
nally, the formal runs involved more than 8�106 MD steps
after equilibration.

III. RESULTS AND DISCUSSION

In order to assess the reliability of the HNC/MSA equa-
tion for the PM-SEDL a comparison of our results with
simulation data and, possibly, against alternative theoretical
approaches is called for. In the first case, collating with com-
puter experiments is very useful to discriminate the adequacy
of an approximate theory for a given model system. Addi-
tionally, confronting HNC/MSA with another available and,
supposedly, more robust formalisms allows us to test its de-
gree of accuracy and economy.

Previously, it has been shown that HNC/MSA agrees
very well with computer data for the RPM of planar, spheri-
cal, and cylindrical EDLs with symmetrical or asymmetrical
valences.12,14,40,41,44,45,47,86 On these grounds, now, we have
opted for a certainly strict comparison, namely, for a divalent
electrolyte with appreciable size asymmetry. The two avail-
able options for dissymmetry were considered; counterions
smaller than coions and vice versa.

At this point, it is important to mention that even if the
equations developed in the last section are sufficiently gen-
eral to include asymmetry in size and charge, here we will
restrict our attention to n :n electrolytes �i.e., �z+�= �z−�� to
center on the effect of different sizes. Following this conven-
tion, thereinafter, when we refer to PM we will only imply
distinct ionic diameters. This determination is based on the
fact that, previously, the planar, cylindrical, and spherical
RPM-EDLs for unequal valences have been studied in detail
without offering in essence any new qualitative trend �i.e.,
substantially different from those already observed in typical
n :n systems�.10,28,32,33,41,86 In this respect, it is necessary to
add that even if the existence of an intriguing shift in the
PZC has been reported in some recent works about 2:1 and
3:1 RPM electrolytes next to a planar wall,31,67,71 up to now,
this theoretical suggestion has not been completely corrobo-
rated by other theories or by computer simulations. Conse-
quently, the inclusion of ionic-size asymmetry in the elemen-
tal model of a colloidal suspension emerges as a true novelty,
to which whatever unprecedented phenomena occurring in
the SEDL can be certainly ascribed. Naturally, an unequivo-
cal identification of the genuine impact of ions with different
sizes implies an avoidance of the masking influence of non-
equal valences. At any rate, we foresee that, similar to the
RPM instance,48 the pure size-asymmetry effects to be ex-
posed here will be greatly enhanced in the more general case
of systems possessing simultaneous charge and size asym-
metry. In Fig. 2 �main panel� we present the radial distribu-
tion functions for HNC/MSA and MC simulations for a mac-
roion of diameter D=10 Å and surface charge density �0

TABLE I. Parameters of the 2:2, 0.5 electrolytes used in the Monte Carlo and molecular-dynamics simulations
of the asymmetric SEDL. A macroion with diameter D=10 Å and surface charge density �0=0.407 C/m2 are
employed in all the runs.

Run Method z1 z2 R1�Å� R2�Å� N1 N2 L

A MC −2 +2 4.25 8.50 1308 1304 38.35R1

B DM −2 +2 4.25 8.50 2894 2890 50.00R1

C MC +2 −2 4.25 8.50 1304 1308 38.35R1

D DM +2 −2 4.25 8.50 2890 2894 50.00R1
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=0.407 C/m2 in a 2:2, 0.5-M electrolyte of diameters R−

=4.25 Å and R+=8.5 Å. The inset of Fig. 2 shows RDFs for
the same system but collating HNC/MSA with the MD data.
Figure 3 contains a similar comparison between the MC and
MD simulations and the HNC/MSA theory for the same sys-
tem considered in Fig. 2, but now for a salt with inter-
changed ionic sizes, R−=8.5 Å and R+=4.25 Å. From these
evidences, it is rewarding the excellent concordance between
theory and both types of simulation for the two possible
asymmetries.

Complementarily, we also made some comparisons be-
tween the spherical HNC/MSA in the limit D→� and the
published data of the anisotropic reference HNC theory
�ARHNC� for a charged planar wall.66 We resorted to this
limit because, to the best of our knowledge, there are no

alternate structural results for a charged macrosphere in a
size-asymmetrical electrolyte.63,67 Furthermore, at least for
the planar geometry, ARHNC is an accurate description that
considers the inhomogeneous correlations in the electrolyte
due to the wall and that fits very closely the simulations of
the RPM-EDL. Thus, in Fig. 4 �main panel� are displayed the
HNC/MSA ionic profiles for a huge macroion of diameter
D=1000�R− and charge density �0=0.267 C/m2, sur-
rounded by a 1:1, 1-M electrolyte with R−=4.25 Å and R+

=8.5 Å, and the ARHNC RDFs corresponding to a charged
wall bearing the same �0 and under identical electrolytic
parameters. To cover a more exigent situation, in the inset of
Fig. 4 we plot the HNC/MSA distributions of a 2:2, 1-M
electrolyte of ionic dimensions R−=4.25 Å and R+

=6.375 Å around a large colloid, characterized by D=1000
�R− and �0=0.267 C/m2, along with the ARHNC outcomes
for the same electrolyte in contact with a wall of equal �0.
Clearly, for both the uni- and divalent systems, the coinci-
dence between HNC/MSA and ARHNC is notable, consid-
ering that HNC/MSA is a simpler and less computationally
demanding theory. In summary, the comparisons with Monte
Carlo, molecular dynamics, and ARHNC prove the trustabil-
ity of HNC/MSA for the PM-SEDL and gives us the confi-
dence to explore its predictions in a wider range of condi-
tions.

A global and concise manner to analyze the properties of
the EDL for a large set of different states is in terms of the
relationship between the MEP at some point and the surface
charge. In this respect, the first charge derivative of the MEP
at the surface d�0 /d�0 is relevant because of its connection
with the differential capacity,31,87–92 whereas the MEP at the
IHP �IHP is conventionally associated with the zeta potential
, a key quantity in electrokinetic phenomena. Besides, and
as it will be shown, it is precisely in the behavior of these

FIG. 2. SEDL radial distribution functions for a 2:2, 0.5-M electrolyte
around a colloid of diameter and surface charge density D=10 Å and �0

=0.407 C/m2, respectively. The ionic species have diameters R−=4.25 Å
and R+=8.5 Å. In the main panel the circles and the continuous lines cor-
respond to Monte Carlo data and HNC/MSAPM results, respectively. In the
inset the same system is considered, with the dashed and continuous lines
corresponding to the molecular-dynamics simulations and to the
HNC/MSAPM theory, respectively. The distance r� is measured from the
macroparticle’s surface.

FIG. 3. SEDL radial distribution functions for a 2:2, 0.5-M electrolyte
around a colloid of diameter and surface charge density D=10 Å and �0

=0.407 C/m2, respectively. The ionic species have diameters R−=8.5 Å and
R+=4.25 Å. The symbols and curves have the same meaning as in Fig. 2.

FIG. 4. HNC/MSAPM and ARHNC radial distribution functions for
monovalent and divalent 1-M electrolytes. For HNC/MSAPM �continuous
lines� the ionic distributions are around a very large colloid of diameter D
=1000�R− and surface charge density �0=0.267 C/m2. For the ARHNC
theory �with symbols� the profiles are next to a wall of the same charge
density �0=0.267 C/m2. In the main panel the 1:1 ionic species have diam-
eters R−=4.25 Å and R+=8.5 Å and in the inset the 2:2 ionic diameters are
R−=4.25 Å and R+=6.375 Å. The distance r� is measured from the charged
surface.
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MEPs that the importance and extension of the size-
asymmetry effects under study are evidenced. Because of
this, we have calculated the functions �0��0� and �IHP��0�
for a size-asymmetric SEDL using the following four
theoretical schemes: URMGC, MGC, HNC/MSA in the
PM �HNC/MSAPM�, and HNC/MSA in the RPM
�HNC/MSARPM�. In a series of preliminary runnings we
have noticed that the manifestations of size asymmetry are
more emphatic when the counterions are smaller than coions,
thus, below we shall concentrate on the case where the di-
ameter of the coions is twice that of the counterions. For

comparison purposes, the parameters of the systems are ad-
justed such as for URMGC and HNC/MSAPM the unequal
colloid-counterion and colloid-coion closest approach dis-
tances are shared, and for MGC and HNC/MSARPM the
unique closest approach distance corresponds to that em-
ployed in HNC/MSAPM for colloid–counterion. Therefore,
in the rest of our calculations when the ionic diameters of a
PM electrolyte, R− and R+, are stated it is meant that the
different theories are solved for the following elections of the
colloid–ion and ion–ion distances of closest approach, di and
dij, respectively �with �0�0�:

di = �d− = �D + R−�/2 and d+ = �D + R+�/2 for HNC/MSAPM and URMGC,

d− = d+ = �D + R−�/2 for HNC/MSARPM and MGC,
 �33�

dij = �d−+ = d+− = �R− + R+�/2 for HNC/MSAPM,

d−+ = d+− = R− for HNC/MSARPM,

d−+ = d+− = 0 for URMGC and MGC.
� �34�

For the theories mentioned in the foregoing the depen-
dence of �0 and �IHP on the surface charge �0 is given in
Figs. 5�a� and 5�b�, respectively, for a macroion with D
=160 Å and �0�0 and a 1:1, 1-M electrolyte with R−

=4.25 Å and R+=8.5 Å. In those figures, for any nonzero
value of �0, visible quantitative discrepancies are seen when
the URMGC and HNC/MSAPM potential curves are con-
trasted, or when the same is done with the MGC and
HNC/MSARPM ones. Remarkably, the maximum coinci-
dence between the pair of URMGC and HNC/MSAPM

curves of �0��0� �and of �IHP��0�� occurs precisely at the
point of zero charge. In a similar way, the MGC and
HNC/MSARPM values of �0 �and of �IHP� converge at �0

=0, as it is known from the studies of the charge-symmetric
RPM-EDL10,12,13,16 �for the charge-asymmetric case see
Refs. 31,67,71,86,93�. On the other hand, for a given value
of �0, the differences between the results of a Poisson–
Boltzmann theory and the corresponding nonpunctual HNC/
MSA equation for �0 and �IHP grow when size asymmetry is
taken into account, e.g., at �0=0.1 C/m2, ��0�MGC

− ��0�HNC/MSARPM=10.04 mV whereas ��0�URMGC

− ��0�HNC/MSAPM=24.11 mV �see Fig. 5�a��, and ��IHP�MGC

− ��IHP�HNC/MSARPM=10.04 mV whereas ��IHP�URMGC

− ��IHP�HNC/MSAPM=24.12 mV �see Fig. 5�b��. Also, from Fig.
5 it is confirmed that the potential curves of URMGC ap-
proach asymptotically to those of MGC when �0 increases,
as first pointed out by Valleau and Torrie.60 Contrastingly, the
�0��0� and �IHP��0� curves obtained from HNC/MSAPM and
HNC/MSARPM exhibit a clear separation for all surface
charges, which means that counterions do not dominate in
the SEDL or, else, that the size of the coions matters even for
large �0. From these observations it is infered that �i� an
essentially punctual theory �MGC or URMGC� is not valid
to describe the SEDL under high coupling conditions in

which the size of the ions is relevant for all their interactions
�ion–ion or colloid–ion�, except maybe in the neighborhood
of �0=0, and, two important points, �ii� that including size
asymmetry in the model of an EDL is determinant since it
exacerbates the steric interionic effects previously found in
the RPM-EDL, and �iii� that the properties of the EDL are
not totally determined by the counterions.

Expectedly, it is found that all the referred phenomena
detected in monovalent electrolytes are more pronounced for
divalent ions, as it is evidenced in Figs. 6 where the associ-
ated HNC/MSAPM, HNC/MSARPM, URMGC, and MGC re-
sults for �0��0� and �IHP��0� are reported for a 2:2, 0.5-M
electrolyte with R−=4.25 Å and R+=8.5 Å, around a macro-
sphere of diameter D=160 Å and positive charge. For in-
stance, now the discrepancies between the MEPs of PB and
HNC/MSA have increased in such a way that even the po-
tentials of zero charge, �0��0=0� and �IHP��0=0�, for UR-
MGC and HNC/MSAPM do not coincide. Once more, UR-
MGC has MGC as a limit for �0→� whereas HNC/MSAPM

and HNC/MSARPM do not merge, notwithstanding, this time
the following very interesting feature shows up: the �IHP��0�
relationship for HNC/MSARPM exhibits the usual behavior
documented in prior studies of positively charged colloids in
2:2 solutions,16,92 i.e., it begins positive, reaches a maximum,
and becomes negative only at very high surface charges
��0�0.344 C/m2�, while, in contrast, �IHP��0� for
HNC/MSAPM behaves differently, that is, starts negative at
low �0, then regains “normal” positive values, experiences a
maximum, and, finally, becomes negative again at �0

�0.22 C/m2, much before HNC/MSARPM does. This new
fact could be consequential in electrokinetics since the signs
of the MEP at the IHP and of the electrophoretic mobility of
a colloid � frequently coincide �due to the identification 
=�IHP�, from which it should be possible to observe experi-
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mentally a macroion in a multivalent medium having a reen-
trant mobility, i.e., with inversion of � at low �0, a normal
sign for intermediate charges, and a posterior return to an
inverted � for high �0.

A more detailed examination of the size-asymmetry con-
sequences, already discussed at the level of the potential-
charge relationship, can be made in terms of the SEDL struc-
ture. Thence, in the next figures, Figs. 7 and 8, we proceed to
analyze the behavior of the ionic profiles of univalent solu-
tions described by the MGC, URMGC, HNC/MSARPM, and
HNC/MSAPM formalisms. To establish a connection with
our previous MEP curves, the RDFs were obtained for a 1:1,
1-M electrolyte, with R−=4.25 Å and R+=8.5 Å, dissolving
a macroion of size D=160 Å and surface charges �0

=0.083 56 C/m2 �in Fig. 7� and �0=0.3004 C/m2 �in Fig.
8�. For each colloidal charge, the HNC/MSARPM and

HNC/MSAPM data are compared in the main panels of the
figures; meanwhile, in the insets the MGC and URMGC
plots are collated to evaluate separately the effect of varying
�0 on the distributions gi�r� when size asymmetry is incor-
porated into the HNC/MSA or PB theories. From the insets
the almost complete convergence between the monotonic
URMGC and MGC RDFs for growing �0 is manifested, as it
could be awaited from the preceding results for �0��0� and
�IHP��0�.60 In any case, some distinctions between the UR-
MGC and MGC profiles must naturally persist for all �0

�with the only exception of the unphysical value �0=��, due
to the severe condition g2�r�=0 for r� �D+R2� /2. Such re-
striction demands a finite discontinuity in g2�D+R2� /2 for
URMGC and thus, for 0��0��, impedes a perfect coinci-
dence between the RDFs of URMGC and MGC in the vicin-
ity of the colloid surface. In other words, the total equiva-
lence of URMGC and MGC is possible just in the limit of
infinite surface charge, since only then the infinite and pre-
dominant electrostatic repulsion from the macroparticle will
force the coions in the MGC description to be completely
absent from the region �D+R1� /2�r� �D+R2� /2, even if
their punctual nature would allow them to be there. To be
more explicit, if we define the abbreviations C−= �D+R−� /2
and C+= �D+R+� /2, an inspection of the 1:1 counterion con-

FIG. 5. SEDL mean electrostatic potential at: �a� the surface of the colloid
and �b� the inner Helmholtz plane, as a function of the surface charge den-
sity �0, for a 1:1, 1-M electrolyte with R−=4.25 Å and R+=8.5 Å around a
macroion of diameter D=160 Å and non-negative surface charge density.
The solid and dotted lines stand for HNC/MSAPM and HNC/MSARPM, and
the dashed and dot-dashed lines correspond to URMGC and MGC, respec-
tively. The colloid–ion closest approach distances are d−= �D+R−� /2 and
d+= �D+R+� /2 for HNC/MSAPM and URMGC, and d−=d+= �D+R−� /2 for
HNC/MSARPM and MGC. The ion–ion closest approach distances are d−+

=d+−= �R−+R+� /2 for HNC/MSAPM, d−+=d+−=R− for HNC/MSARPM, and
d−+=d+−=0 for URMGC and MGC.

FIG. 6. The same as in Fig. 5 but for a 2:2, 0.5-M electrolyte.
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tact values g−�C−� in Table II confirms the existence of small
but nonzero differences between the URMGC and MGC
RDFs close to the macroparticle. Moreover, an important
piece of information arises from Table II and the insets of
Figs. 7 and 8 for systems with �0�0 and R−�R+ when �0 is
enlarged, namely, that the URMGC counterion contact RDF
tends uniformly to that of MGC from below
�g−

URMGC�C−�↑g−
MGC�C−�� and that the URMGC coion RDF

at C+ goes uniformly to that of MGC from above
�g+

URMGC�C+�↓g+
MGC�C+��. In a more global way, it is noticed

therein that, ∀ r, g−
URMGC�r�↑g−

MGC�r� and
g+

URMGC�r�↓g+
MGC�r� as the colloidal charge grows, or,

equivalently, that the URMGC and MGC ionic profiles con-
verge when �0→� but they never cross mutually.

On the other hand, the comportment of the RDFs for
HNC/MSAPM and HNC/MSARPM in the main panels of
Figs. 7 and 8 contrasts with the PB picture at the insets. For
our 1:1 electrolyte with counterions smaller than coions, the
ionic distributions of HNC/MSA in the PM and RPM already
exhibit a nonmonotonic behavior and charge inversion �in
the case of RPM these features are unapparent due to the
scale�. Besides, from those graphs we arrive to one of the
main conclusions of this work, that size asymmetry enhances
significantly the nonmonotonical characteristics (e.g., oscil-
lations and charge inversion) of the SEDL. In relation with

the conduct of the SEDL structure for high �0, the
HNC/MSAPM ionic densities do not have the
HNC/MSARPM ones as a limit and, in fact, from Table II it is
seen that the contact values of the counterion RDF in
HNC/MSAPM exceed appreciably those of HNC/MSARPM

even for large values of �0. Additionally, for a constant sur-
face charge density, the HNC/MSAPM RDFs for counterions
and coions fluctuate more strongly and have a steeper slope
than the corresponding HNC/MSARPM, and, consequently,
crossings between the profiles for PM and RPM do occur.
This is, of course, due to the higher excluded volume in the
PM.48

For divalent suspensions the RDFs for a 2:2, 0.5-M elec-
trolyte, with R−=4.25 Å and R+=8.5 Å, and a macrosphere
of D=160 Å are displayed in Fig. 9 for a surface charge
�0=0.08356 C/m2 and in Fig. 10 for �0=0.3004 C/m2.
Again, in the main panels HNC/MSAPM and HNC/MSARPM

are plotted and in the insets URMGC and MGC. In general,
the situation described for the RDFs of monovalent electro-
lytes is repeated here: URMGC and MGC are monotonic,
whereas HNC/MSAPM and HNC/MSARPM oscillate, and,
for large �0, URMGC converges to MGC with no intersec-
tions between them and HNC/MSARPM is not the limit of
HNC/MSAPM. Furthermore, Table II ratifies that the coun-
terion contact values g−�C−� are larger for HNC/MSAPM

than for HNC/MSARPM, and Figs. 9 and 10 evince that the
ionic profiles of the former theory wave more intensely than
the ones of the latter. Rewardingly, this last pair of structural
features of HNC/MSA accords with the ARHNC information
for a 2:2 planar EDL obtained by Greberg and Kjellander.66

FIG. 7. SEDL radial distribution functions for a 1:1, 1-M electrolyte with
R−=4.25 Å and R+=8.5 Å next to a colloid of diameter D=160 Å and sur-
face charge density �0=0.083 56 C/m2. In the main panel the solid and
dashed lines stand for HNC/MSARPM and HNC/MSAPM, respectively,
whereas in the inset the solid and dashed lines correspond to MGC and
URMGC, respectively. The colloid–ion and ion–ion closest approach dis-
tances used in each theory are the same as in Fig. 5. Here �and in the rest of
figures� the distance r� is measured from the macroparticle’s surface.

FIG. 8. The same as in Fig. 7 but for a surface charge density �0

=0.3004 C/m2.
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As a clear example of how the microscopic structure
determines other properties of the EDL, on the grounds of
the discussion above we will formulate a rationale for the
contrasting high-�0 behavior of the �0��0� and �IHP��0�
curves obtained from PB and HNC/MSA. Aiming for that,
let us first condense some of our recent findings in a more
convenient form. For size-asymmetric SEDL systems with
counterions smaller than coions, if gi�r ;�0� represents an
ionic profile calculated at a given colloidal charge, �i� when
�0 is varied the URMGC RDFs approach from one side to
those of MGC, and the separation between the URMGC and
MGC profiles decreases progressively as �0 is enlarged, i.e.,
there are no crossings between the gi

URMGC�r ;�0� and
gi

MGC�r ;�0� functions, and the MGC RDFs bound those of
URMGC when �0→�, and �ii� the RDFs at contact for

counterions in HNC/MSAPM have larger values than in
HNC/MSARPM, and the ionic densities of HNC/MSAPM

have a more pronounced slope than the ones of
HNC/MSARPM do, i.e., gi

HNC/MSAPM�r ;�0� and
gi

HNC/MSARPM�r ;�0� present intersections, and, for large �0,
the RDFs of HNC/MSAPM are not bounded nor have
HNC/MSARPM as a limit. It must be noted that in all the
previous statements the comparisons between the theories
are performed at fixed �0. If we restate explicitly the �0

integral, Eq. �28�, for a binary electrolyte,

�0 = � e �+z+

�D/2�2��
D/2

�

�g−�t� − g+�t��t2dt , �35�

then, for �0�0, this surface charge integral is proportional
to the difference between the areas under the r2 functions
f−�r ;�0��g−�r ;�0�r2 and f+�r ;�0��g+�r ;�0�r2, for counte-
rions and coions, respectively. In such terms, if we consider
the data in Figs. 7–10, irrespective of the theory, each of the
four pairs of counterion/coion r2 functions, g−�r ;�0�r2 and

TABLE II. SEDL values of the radial distribution functions at d− and d+ for 1:1, 1-M and 2:2, 0.5-M electrolytes around a colloid of diameter D=160 Å and
variable �0, obtained from the HNC/MSAPM, HNC/MSARPM, URMGC, and MGC theories. The ionic species have diameters R−=4.25 Å for the counterions
and R+=8.5 Å for the coions in the PM. The colloid–ion and ion–ion closest approach distances used in each theory are the same as in Fig. 5. The surface
charge density �0 is in C /m2.

Electrolyte �0 g−
HNC/MSAPM g+

HNC/MSAPM g−
HNC/MSARPM g+

HNC/MSARPM g−
URMGC g+

URMGC g−
MGC g+

MGC

1:1 0.083 56 5.87 1.6 3.7 0.3 3.1 0.6 3.4 0.3
1:1 0.3004 28.8 0.06 25.4 0.01 24.4 0.3 24.6 0.04
2:2 0.083 56 6.2 0.5 5.6 0.2 4.9 0.6 5.3 0.2
2:2 0.3004 50.7 0.03 49.7 0.009 47.8 0.3 48.1 0.02

FIG. 9. SEDL radial distribution functions for a 2:2, 0.5-M electrolyte with
R−=4.25 Å and R+=8.5 Å next to a colloid of diameter D=160 Å and sur-
face charge density �0=0.083 56 C/m2. In the main panel the solid and
dashed lines stand for HNC/MSARPM and HNC/MSAPM, respectively,
whereas in the inset the solid and dashed lines correspond to MGC and
URMGC, respectively. The colloid–ion and ion–ion closest approach dis-
tances used in each theory are the same as in Fig. 5.

FIG. 10. The same as in Fig. 9 but for a surface charge density �0

=0.3004 C/m2.
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g+�r ;�0�r2, comprises a constant area. This rephrasing of the
total electroneutrality condition as a geometrical constraint
for the RDFs can now be employed to clarify why the
URMGC and MGC potential-charge curves converge when
�0→�, whereas the corresponding HNC/MSAPM and
HNC/MSARPM do not, or else, why the counterions do not
dominate in a description of the size-asymmetric SEDL that
surpasses the classical PB equation �for instance, HNC/
MSA�.

To examine the fulfillment of the constant area restric-
tion as �0 is enlarged, in Figs. 11 and 12 the r2 functions,
f−�r ;�0��g−�r ;�0�r2 and f+�r ;�0��g+�r ;�0�r2, resulting
from the four theories in consideration: URMGC, MGC,
HNC/MSAPM, and HNC/MSARPM are plotted �in reduced
form� for a 2:2, 0.5-M electrolyte of ionic sizes R−=4.25 Å
and R+=8.5 Å, and a macroion of diameter D=160 Å bear-
ing two different charge densities, �0=0.083 56 C/m2 �in the
main sections of the figures� and �0=0.3004 C/m2 �in the
insets�. For the URMGC and MGC data of the lower charge,
presented in the main panel of Fig. 11, a comparison between
the r2 functions for coions immediately shows that some area
below the URMGC coion function is “lost” in the region
C−�r�C+, owing to the hard-core condition. On the other
hard, since the RDFs of URMGC and MGC do not intersect,
and remembering the PB reciprocity property for n :n elec-
trolytes in the region r�C+,

g+
PB�r�g−

PB�r� = 1, �36�

it is straightforwardly concluded that the ionic profiles
g−

URMGC�r ;�0� and g+
URMGC�r ;�0� are necessarily located in

the region enclosed by g−
MGC�r ;�0� and g+

MGC�r ;�0� �i.e.,
∀ r, g−

URMGC�r ;�0��g−
MGC�r ;�0�, and g+

URMGC�r ;�0�
�g+

MGC�r ;�0�� as the unique way in which the coion r2 func-
tion of URMGC can recover area in r�C+ to assure that the
difference functions, gd�r ;�0�r2= �g−�r ;�0�−g+�r ;�0��r2, of
URMGC and MGC preserve a constant area. Additionally,
when �0 grows �see inset of Fig. 11� the MGC coion RDF at
r=C+ goes down and the coion r2 function of URMGC has a
minor deficit of area in C−�r�C+, from which the separa-
tion between the URMGC and MGC RDFs diminishes and,
eventually, disappears at �0=�. By contrast, in the HNC/
MSA case �Fig. 12� there is also a loss of area in the zone
C−�r�C+ for the coion r2 function of HNC/MSAPM, how-
ever, the possibility of crossings between the ionic profiles of
HNC/MSAPM and HNC/MSARPM, stemming from the en-
hancement of the nonmonotonicity of the RDFs caused by
the size asymmetry, does not obligate the coincidence of
gi

HNC/MSAPM�r ;�0� and gi
HNC/MSARPM�r ;�0� for large �0, even

if the difference functions of both theories have the same
area. It is from these reasonings that the convergence, for
�0→�, between the structural properties of URMGC and
MGC and the nonconvergence for those of HNC/MSAPM

FIG. 11. SEDL reduced profiles f*�r��= f��D /2�+r�� /C−
2 for a 2:2, 0.5-M

electrolyte with R−=4.25 Å and R+=8.5 Å around a colloid of diameter D
=160 Å . The solid and dashed lines are for MGC and URMGC, respec-
tively. In the main panel the surface charge density is �0=0.083 56 C/m2,
and in the inset is �0=0.3004 C/m2. The colloid–ion and ion–ion closest
approach distances used in each theory are the same as in Fig. 5.

FIG. 12. SEDL reduced profiles f*�r��= f��D /2�+r�� /C−
2 for a 2:2, 0.5-M

electrolyte with R−=4.25 Å and R+=8.5 Å around a colloid of diameter D
=160 Å. The solid and dashed lines are for HNC/MSARPM and
HNC/MSAPM, respectively. In the main panel the surface charge density is
�0=0.083 56 C/m2, and in the inset is �0=0.3004 C/m2. The colloid–ion
and ion–ion closest approach distances used in each theory are the same as
in Fig. 5.
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and HNC/MSARPM can be understood. A similar analysis
done for 1:1 systems �not shown� confirms all the arguments
exposed.

Summing up, when the value of �0 rises, the difference
function gd�r ;�0�r2= �g−�r ;�0�−g+�r ;�0��r2 for each of the
MGC, URMGC, HNC/MSARPM, and HNC/MSAPM ap-
proximations can accomplish the constraint of a constant
area in two ways. On the one hand, when �0→�, the r2

integrals �or second moments� of gd
URMGC�r ;�0� and

gd
MGC�r ;�0� remain exactly equal whereas all the rest of in-

tegrals of such functions �including the �0 and �IHP integrals;
cf. Eqs. �27� and �29�� become progressively alike, since the
RDFs of URMGC and MGC approach asymptotically. On
the other hand, when �0 increases, the pair gd

HNC/MSAPM�r ;�0�
and gd

HNC/MSARPM�r ;�0� have the same r2 integral but other
integrals �such as the �0 and �IHP integrals� become differ-
ent, since the HNC/MSAPM and HNC/MSARPM ionic pro-
files do not merge. This cogently explains why the �0��0�
and �IHP��0� curves for URMGC and MGC converge for
large �0 and those for HNC/MSAPM and HNC/MSARPM

remain separated. Another way to understand the difference
in tendency of �0��0� and �IHP��0�, as �0→�, between the
point-ion models �URMGC and MGC� and the ionic-size
models �PM and RPM� is that for the point-ion models the
energy contribution dominates, forcing �0��0� and �IHP��0�
to converge in one curve. Whereas for the ionic-size models
the layering necessarily cannot be equal due to the different
excluded volumes associated with the RPM and PM, hence
�0��0� and �IHP��0� cannot converge.

To complete this study of the PM-SEDL we switch our
attention to the MEP and CRC profiles, ��r� and Q*�r�, re-
spectively, to gain more insight into the comportment of the
diffuse EDL in terms of its neutralization �or charge screen-
ing� capacity. In Figs. 13 and 14 the MEP and CRC functions
corresponding to the 2:2 data in Figs. 9 and 10 are portrayed,
respectively. We have preferred to graph the divalent and not
the univalent results since the effects to be discussed have
qualitative similarities in the 2:2 and 1:1 systems but are
more marked in the former case. In respect to the ��r� pro-
files, the URMGC and MGC MEPs included in the inset of
Fig. 13 confirm the monotonic character of the PB solutions
and the convergence between URMGC and MGC for �0

→�. In turn, all the HNC/MSA MEP profiles in the main
panel of Fig. 13 oscillate and present ample regions of in-
verted potentials or even show an alternation of signs �see,
for example, HNC/MSAPM for �0=0.3004 C/m2�. However,
the most salient feature in both the PB and HNC/MSA re-
sults of ��r� is that, in the proximity of the colloid, an SEDL
description in which size asymmetry is assumed exhibits
lower MEP values compared to the corresponding potentials
of the size-symmetric version of the same theory, i.e.,
�HNC/MSAPM�r ;�0���HNC/MSARPM�r ;�0� and �URMGC�r ;�0�
��MGC�r ;�0�, for �r−D /2��7.5 Å. A complementary and
more quantitative estimation of this can be obtained from the
values collected in Table III. The observed behavior of the
��r� functions close to the surface implies that a size-
asymmetric diffuse EDL �either of HNC/MSAPM or UR-
MGC� neutralizes more efficiently the native macroion
charge than that of a size-symmetric system �of

HNC/MSARPM or MGC�. This generalized dominance of the
neutralization power of an unequally sized electrolyte is re-
markable since in the PB approaches there are less counteri-
ons close to the macroparticle in URMGC than in MGC, in
other words, the counterion contact RDFs comply with
g−

URMGC�C− ;�0��g−
MGC�C− ;�0�, while in the HNC/MSA

theories the contact number of counterions in HNC/MSAPM

exceeds the prediction of HNC/MSARPM, i.e.,
g−

HNC/MSAPM�C− ;�0��g−
HNC/MSARPM�C− ;�0�. Such “anomaly”

can be justified nicely by the obligated absence of coions in
the zone C−�r�C+ for the HNC/MSAPM and URMGC
theories, which, irrespective of the PB or HNC/MSA ap-
proach, allows the counterions to compensate the colloidal
charge in a better way than it is done in HNC/MSARPM or
MGC, theories where the coions can be indeed present in
C−�r�C+ due to the condition d+=d−. This, however, does
not explain the additional neutralization power of
HNC/MSAPM over URMGC. For HNC/MSAPM the reason
is the increase of the excluded volume, which in turn pro-
motes the coion and counterion adsorptions, due to entropic
effects, as it has been discussed by Jiménez-Ángeles and
Lozada-Cassou.48 These last effects also explicate the in-

FIG. 13. SEDL mean electrostatic potential as a function of the distance to
the macroparticle’s surface for a 2:2, 0.5-M electrolyte with R−=4.25 Å and
R+=8.5 Å around a colloid of diameter D=160 Å . In the main panel the
dotted line is for HNC/MSAPM and �0=0.083 56 C/m2, the solid line is for
HNC/MSAPM and �0=0.3004 C/m2, the dot-dashed is for HNC/MSARPM

and �0=0.083 56 C/m2, and the dashed line is for HNC/MSARPM and �0

=0.3004 C/m2. In the inset the dotted line is for URMGC and �0

=0.083 56 C/m2, the solid line is for URMGC and �0=0.3004 C/m2, the
dot-dashed is for MGC and �0=0.083 56 C/m2, and the dashed line is for
MGC and �0=0.3004 C/m2. The colloid–ion and ion–ion closest approach
distances used in each theory are the same as in Fig. 5.
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crease of the counterion adsorption of the HNC/MSAPM

over HNC/MSARPM and, consequently, the enhancement of
the charge screening in the PM-SEDL.

The behavior of the neutralization capacity detected via
the mean electrostatic potential profiles fits very well with
the information provided by the cumulative reduced charges.
For instance, in the inset of Fig. 14 it can be verified that the
Q*�r� functions for URMGC and MGC are monotonic and
do not display any change of sign, contrasting with the main
panel of the same figure where HNC/MSAPM and
HNC/MSARPM have CRC curves with oscillations and ap-
preciable charge reversion. Additionally, a genuine and
clearer manifestation of the enhanced neutralization capacity

of size-asymmetric models over the symmetrical ones can be
gathered directly from the full set of CRC curves in Fig. 14.
There, it is visible the faster decay in the cumulative charges
corresponding to HNC/MSAPM and URMGC with
respect to those of HNC/MSARPM and MGC,
i.e., Q* HNC/MSAPM�r ;�0��Q* HNC/MSARPM�r ;�0� and
Q* URMGC�r ;�0��Q* MGC�r ;�0�, for �r−D /2��10 Å.

Notably, for a given �0, among all the reviewed theories,
the HNC/MSAPM formalism is always associated to the
strongest fluctuations and to the more accentuated sign inver-
sions in ��r� and to the largest neutralization and charge
reversal effects in Q*�r�. This fact, together with the rest of
findings revealed by the analysis of the ��r� and Q*�r� pro-
files, conforms an extra and compelling testimony to the rel-
evance of using size-asymmetric models when a more faith-
ful description of colloidal suspensions is sought.

To end, we want to point out that, for our n :n systems, at
the distances where the RDFs show a charge inversion the
CRCs go through a minimum or maximum, as it was noted
previously by Wang et al. in the RPM-EDL for cylindrical
geometry.33 This signifies that, for a valence-symmetric RPM
or PM electrolyte, charge inversion implies charge reversal.
What is more, from basic electrostatics for the SEDL, it is
possible to prove that d��r� /dr=−Q�r� /� r2 �similar equa-
tions for other geometries are given in Refs. 33,48�, thus, the
distances at which the CRC is zero correspond precisely to
those where the mean electrostatic potential presents extre-
mum values, whence, the existence of oscillations in Q*�r�
should not be enough to produce fluctuations in ��r�, i.e., a
change of sign in the CRC is indeed required.

IV. CONCLUSIONS

In this work a survey of the size-asymmetric spherical
electrical double layer in the primitive model was performed
by using the HNC/MSA integral equation. After the correct-
ness of the HNC/MSA description was attested by compar-
ing our numerical results with simulations and previous
ARHNC data �in the planar limit�, we have carried out a
study of the structural and charge-potential relationship for
archetypal cases of 1:1 and 2:2 systems with a size-
asymmetry ratio of 2. To assess the importance of the size-
asymmetry effects, we collated our predictions with those of
HNC/MSA in the RPM, and also with the corresponding
classical Poisson–Boltzmann approaches: URMGC and
MGC, to exhibit the notable quantitative and qualitative dis-
crepancies existing between the punctual and nonpunctual
EDL theories. The main conclusion of this paper is that size
asymmetry is an essential improvement to consider in studies
of the SEDL since it heightens ionic-size correlation effects

FIG. 14. SEDL cumulative reduced charge as a function of the distance to
the macroparticle’s surface for a 2:2, 0.5-M electrolyte with R−=4.25 Å and
R+=8.5 Å around a colloid of diameter D=160 Å . In the main panel the
dotted line is for HNC/MSAPM and �0=0.083 56 C/m2, the solid line is for
HNC/MSAPM and �0=0.3004 C/m2, the dot-dashed is for HNC/MSARPM

and �0=0.083 56 C/m2, and the dashed line is for HNC/MSARPM and �0

=0.3004 C/m2. In the inset the dotted line is for URMGC and �0

=0.083 56 C/m2, the solid line is for URMGC and �0=0.3004 C/m2, the
dot-dashed is for MGC and �0=0.083 56 C/m2, and the dashed line is for
MGC and �0=0.3004 C/m2. The colloid–ion and ion–ion closest approach
distances used in each theory are the same as in Fig. 5.

TABLE III. SEDL mean electrostatic potentials at the macroion’s surface ��0� and at the inner Helmholtz plane ��IHP� for the HNC/MSAPM, HNC/MSARPM,
URMGC, and MGC theories. The parameters are the same as in Table II. The surface charge density �0 is in C/m2 and the MEPs are in mV.

Electrolyte �0 �0
HNC/MSAPM �IHP

HNC/MSAPM �0
HNC/MSARPM �IHP

HNC/MSARPM �0
URMGC �IHP

URMGC �0
MGC �IHP

MGC

1:1 0.083 56 33.4 8.5 47.8 22.9 54.1 29.2 56.4 31.5
1:1 0.3004 124.3 34.8 147.4 58.0 171.5 82.0 171.7 82.2
2:2 0.083 56 26.7 1.8 36.2 11.3 45.3 20.4 46.3 21.4
2:2 0.3004 82.6 −6.9 94.2 4.8 139.2 49.7 139.2 49.7
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�e.g., nonmonotonicity, charge inversion, and charge rever-
sal� already seen in the RPM case and, consequently, unveils
new and interesting phenomenology absent in size-
symmetric systems. As a conspicuous example of these novel
effects, it is evidenced that counterions do not always domi-
nate in the PM-SEDL, contrasting with the PB point of view,
and the wherefores of this fact are traced back to the detailed
characteristics of the EDL structure. In particular, the con-
trasting high-�0 behavior displayed by the PB and HNC/
MSA potential-charge relationships, i.e., the convergence, for
�0→�, between the URMGC and MGC �0��0� and
�IHP��0� curves and the nonmerging between the
HNC/MSAPM and HNC/MSARPM ones, was elucidated by
the following rational: for a system with fixed parameters,
when �0 increases the RDFs of URMGC and MGC, and all
their integrals and associated EDL properties �e.g., �0 and
�IHP�, go similar, whereas for HNC/MSAPM and
HNC/MSARPM, even if their RDFs can have the same sec-
ond moment, in general, their corresponding shapes and en-
suing properties ��0 and/or �IHP� could be completely differ-
ent. This mathematical behavior is due to the fact that in the
point-ion models �URMGC and MGC�, as �0→�, the en-
ergy contribution dominates, whereas in the ionic-size mod-
els �PM and RPM� the steric effect is important and different
for the PM, which is higher than that of the RPM.

In forthcoming publications the effect of charge asym-
metry and some other appealing phenomena occurring in the
PM-SEDL, as overcharging48 and the advent of anomalous
differential capacities,92 will be addressed by means of our
integral equation approach.
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APPENDIX A: EXPLICIT MSA BULK DIRECT
CORRELATION FUNCTIONS

The direct correlation functions of a PM bulk electrolyte
in the mean spherical approximation have been obtained ana-
lytically by Blum94,95 and Hiroike96 for the general case of n
species with arbitrary size and charge. The only restriction is
the electroneutrality condition,

�
i=1

n

�izi = 0. �A1�

The MSA direct correlation functions can be expressed
as

cij�s� = cij
hs�s� + cij

elec�s� , �A2�

where cij
hs�s� is the hard-sphere contribution and cij

elec�s� is the
electrostatic part.

1. Electrostatic contribution

Following the Baxter method97 Blum found that the ex-
cess properties of an electrolyte can be written in terms of
the parameter �. When a binary mixture of hard charged
spheres of diameters R1 and R2 and valences z1 and z2 is

considered, this parameter can be obtained solving the tran-
scendental algebraic equation �it is assumed for definiteness
that R2�R1�,

�2 = ��D��� , �A3�

where

D��� = �1X1
2��� + �2X2

2��� , �A4�

X1��� =
z1

1 + �R1
+

R1
2����

1 + �R1
, �A5�

X2��� =
z2

1 + �R2
+

R2
2����

1 + �R2
, �A6�

� =
− c	�1R1z1�1 + �R1�−1 + �2R2z2�1 + �R2�−1

1 + c	�1R1

3�1 + �R1�−1 + �2R2
3�1 + �R2�−1


, �A7�

� = �1 + �R1��1 + �R2� , �A8�

c =
�

2
�1 −

�

6
��1R1

3 + �2R2
3��−1

, �A9�

and

� =
e2

�kBT
, �A10�

with �1 and �2 being the numerical densities of the two spe-
cies.

If we define

� =
R2 − R1

2
, �A11�

R12 =
R1 + R2

2
, �A12�

and

Pij =
zizje

2

�kBT
, �A13�

then cij
elec�s� �i , j=1, 2� is given explicitly by

c12
elec�s� = �0, 0 � s � � , �A14�

c12
elec�s� = �0s−1 + �1 + �2s + �3s3, � � s � R12, �A15�

c12
elec�s� = − P12s

−1, s � R12, �A16�

where

�0 = 2����R1
4 − 2R1

3

3�1 + �R1�
��2 + � z1�R2 − R1�

�
��

− � z1z2�

1 + �R2
�� , �A17�

�0 =
��R2 − R1�2

16�
��4�R1

2 + R2
2� − 4�2R1

2R2
2

− �R1 − R2�2���2 + �4�z1 + z2��� + 4z1z2�2� , �A18�
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�1 =
�

�
��z1�R2 − R1� + z2�R1 − R2��� − 2�z1z2

− �R1 + R2�z1z2�2 + �R1
3

3
�1 + �R2���R1 − 2�

+
R2

3

3
�1 + �R1���R2 − 2���2� , �A19�

�2 =
�

�
��z1 + z2�� + �2z1z2 + �R1

2 + R2
2 − �2R1

2R2
2

−
�R1 − R2�2�

2
��2� , �A20�

and

�3 =
��2

3
. �A21�

c11
elec�s� = i0 + i1s + i2s3, 0 � s � R1, �A22�

c11
elec�s� = − P11s

−1, s � R1 �A23�

with

i0 =
�

�1 + �R1�2�− 2�z1
2 − 2R1z1

2�2

+ �2

3
R1

3��R1 − 2��1 + �R1���2� , �A24�

i1 =
�

�1 + �R1�2 ��2R1
2 − ��R1

2�2��2 + �2z1�� + �2z1
2� ,

�A25�

and

i2 =
��2

3
. �A26�

Finally,

c22
elec�s� = j0 + j1s + j2s3, 0 � s � R2, �A27�

c22
elec�s� = − P22s

−1, s � R2, �A28�

where

j0 =
�

�1 + �R2�2�− 2�z2
2 − 2R2z2

2�2

+ �2

3
R2

3��R2 − 2��1 + �R2���2� , �A29�

j1 =
�

�1 + �R2�2 ��2z2�� + �2z2
2 + �2R2

2 − ��R2
2�2��2� ,

�A30�

and

j2 =
��2

3
. �A31�

2. Hard-sphere contribution

The exact solution for the Percus–Yevick equation of a
hard-sphere mixture with n species was analytically obtained
by Lebowitz.98 Following the notation of Lebowitz, we de-
fine for a binary mixture

� =
�

6
��1R1

3 + �2R2
3� , �A32�

a1 = �1 − ��−3�1 + � + �2 +
�

6
R1

3��1 + �2��1 + 2�� −
�

2
�R2

− R1�2�2��

6
R2�1R1

3 + �R1 + R2� +
�

6
R1R2��1R1

2

+ �2R2
2�� +

�

2
R1

3�1 − ��−4���1 + �2��1 + � + �2�

−
�

2
�1�2�R2 − R1�2��R1 + R2� +

�

6
R1R2��1R1

2

+ �2R2
2�� , �A33�

a2 = �1 − ��−3�1 + � + �2 +
�

6
R2

3��1 + �2��1 + 2�� −
�

2
�R2

− R1�2�1��

6
R1�2R2

3 + �R1 + R2� +
�

6
R1R2��1R1

2

+ �2R2
2�� +

�

2
R2

3�1 − ��−4���1 + �2��1 + � + �2�

−
�

2
�1�2�R2 − R1�2��R1 + R2� +

�

6
R1R2��1R1

2

+ �2R2
2�� , �A34�

d =
�

12
��1a1 + �2a2� , �A35�

g11�R1� = �1 +
�

2
+

�

4
�2R2

2�R1 − R2��1 − ��−2, �A36�

g22�R2� = �1 +
�

2
+

�

4
�1R1

2�R2 − R1��1 − ��−2, �A37�

g12�R12� = �R2g11�R1� + R1g22�R2���R1 + R2�−1, �A38�

b1 = −
�

4
�4�1R1

2g11
2�R1� + �2�R1 + R2�2g12

2�R12�� , �A39�

b2 = −
�

4
�4�2R2

2g22
2�R2� + �1�R1 + R2�2g12

2�R12�� , �A40�

and
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b = −
�

2
��1R1g11�R1� + �2R2g22�R2���R1 + R2�g12�R12� .

�A41�

The cij
hs�s� �i , j=1, 2� are then given by

cii
hs�s� = − ai − bis − ds3, s � Ri, i = 1,2, �A42�

cii
hs�s� = 0, s � Ri, i = 1,2, �A43�

c12
hs�s� = c21

hs�s� = − a1, 0 � s � � , �A44�

c12
hs�s� = c21

hs�s� = − a1 − �0s−1 − �1 − �2s − ds3,

� � s � R12, �A45�

c12
hs�s� = c21

hs�s� = 0, s � R12, �A46�

where

�0 = �2�b − 3d�2� , �A47�

�1 = 8�3d − 2�b , �A48�

and

�2 = b − 6�2d . �A49�

Finally, if we define the constants

A1 = i0 − a1, A2 = i1 − b1, A3 = i2 − d , �A50�

B1 = j0 − a2, B2 = j1 − b2, B3 = j2 − d , �A51�

E1 = �0 − a1, F1 = �0 − �0, �A52�

F2 = �1 − a1 − �1, F3 = �2 − �2, F4 = �3 − d , �A53�

we can write the bulk correlation functions as

cij�s� = cij
hs�s� + cij

elec�s� = cij
int�s� + cij

ext�s� , �A54�

where

c11
int�s� = P11s

−1 + A1 + A2s + A3s3, 0 � s � R1, �A55�

c11
int�s� = 0, s � R1, �A56�

c22
int�s� = P22s

−1 + B1 + B2s + B3s3, 0 � s � R2, �A57�

c22
int�s� = 0, s � R2, �A58�

c12
int�s� = c21

int�s� = P12s
−1 + E1, 0 � s � � , �A59�

c12
int�s� = c21

int�s� = P12s
−1 + F1s−1 + F2 + F3s + F4s3,

� � s � R12, �A60�

c12
int�s� = c21

int�s� = 0, s � R12, �A61�

c11
ext�s� = − P11s

−1, s � 0, �A62�

c22
ext�s� = − P22s

−1, s � 0, �A63�

and

c12
ext�s� = c21

ext�s� = − P12s
−1, s � 0. �A64�

APPENDIX B: EXPLICIT FORM OF THE Ii„r… AND Hi„r…
TERMS IN THE HNC/MSA INTEGRAL EQUATIONS
FOR THE PM-SEDL

Due to the radial symmetry of the system, the angular
dependence �
 ,�� of the Eqs. �11�, �12�, �16�–�19�, and
�21�–�24� can be resolved since the angular integrals can be
performed analytically.

The final form of the Ii�r� and Hi�r� terms can be given
if we define

J�xf,l,r,t� =
1

�l + 2�rt
�xf

l+2 − �r − t�l+2� �B1�

and

J��xi,xf,l,r,t� =
1

�l + 2�rt
�xf

l+2 − xi
l+2� . �B2�

Thus, if

D

2
+

R1

2
� r �

D

2
+

3

2
R1, �B3�

we have

I1�r� = �
D/2+R1/2

r+R1

KI1a�r,t�dt + �
D/2+R1/2

�

KI1b�r,t�dt , �B4�

and, if

D

2
+

3

2
R1 � r � � , �B5�

then

I1�r� = �
r−R1

r+R1

KI1a�r,t�dt + �
D/2+R1/2

�

KI1b�r,t�dt , �B6�

where

KI1a�r,t� = 2�g1�t�t2�P11J�R1,− 1,r,t� + A1J�R1,0,r,t�

+ A2J�R1,1,r,t� + A3J�R1,3,r,t�� �B7�

and

KI1b�r,t� = − 2�P11g1�t�
t

r
�r + t − �r − t�� . �B8�

If

D

2
+

R1

2
� r � � , �B9�

then

I2�r� = 4��P11R1
2

2
+

A1R1
3

3
+

A2R1
4

4
+

A3R1
6

6
� . �B10�

If

D

2
+

R1

2
� r �

D

2
+

R2

2
+ � , �B11�

then

034703-17 Electrical double layer around a colloid J. Chem. Phys. 123, 034703 �2005�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

141.217.58.222 On: Thu, 27 Nov 2014 04:57:39



I3�r� = �
D/2+R2/2

r+�

KI3a�r,t�dt + �
r+�

r+R12

KI3b�r,t�dt

+ �
D/2+R2/2

�

KI3c�r,t�dt , �B12�

if

D

2
+

R2

2
+ � � r �

D

2
+

R2

2
+ R12, �B13�

then

I3�r� = �
D/2+R2/2

r−�

KI3b�r,t�dt + �
r−�

r+�

KI3a�r,t�dt

+ �
r+�

r+R12

KI3b�r,t�dt + �
D/2+R2/2

�

KI3c�r,t�dt ,

�B14�

and, if

D

2
+

R2

2
+ R12 � r � � , �B15�

then

I3�r� = �
r−R12

r−�

KI3b�r,t�dt + �
r−�

r+�

KI3a�r,t�dt

+ �
r+�

r+R12

KI3b�r,t�dt + �
D/2+R2/2

�

KI3c�r,t�dt ,

�B16�

where

KI3a�r,t� = 2�g2�t�t2�P12J��,− 1,r,t� + E1J��,0,r,t�

+ �P12 + F1�J���,R12,− 1,r,t�

+ F2J���,R12,0,r,t� + F3J���,R12,1,r,t�

+ F4J���,R12,3,r,t�� , �B17�

KI3b�r,t� = 2�g2�t�t2�F2J�R12,0,r,t� + F3J�R12,1,r,t�

+ F4J�R12,3,r,t� + �P12 + F1�J�R12,− 1,r,t��

�B18�

and

KI3c�r,t� = − 2�P12g2�t�
t

r
�r + t − �r − t�� . �B19�

If

D

2
+

R1

2
� r � � , �B20�

then

I4�r� = 4��P12
�2

2
+ E1

�3

3
+ �F1 + P12�

�R12
2 − �2�

2

+ F2
�R12

3 − �3�
3

+ F3
�R12

4 − �4�
4

+ F4
�R12

6 − �6�
6

� .

�B21�

If

D

2
+

R2

2
� r �

D

2
+

R1

2
+ R12, �B22�

then

H1�r� = �
D/2+R1/2

r−�

KH1b�r,t�dt + �
r−�

r+�

KH1a�r,t�dt

+ �
r+�

r+R12

KH1b�r,t�dt + �
D/2+R1/2

�

KH1c�r,t�dt ,

�B23�

and, if

D

2
+

R1

2
+ R12 � r � � , �B24�

then

H1�r� = �
r−R12

r−�

KH1b�r,t�dt + �
r−�

r+�

KH1a�r,t�dt

+ �
r+�

r+R12

KH1b�r,t�dt + �
D/2+R1/2

�

KH1c�r,t�dt ,

�B25�

where

KH1a�r,t� = 2�g1�t�t2�P12J��,− 1,r,t� + E1J��,0,r,t�

+ �P12 + F1�J���,R12,− 1,r,t�

+ F2J���,R12,0,r,t� + F3J���,R12,1,r,t�

+ F4J���,R12,3,r,t�� , �B26�

KH1b�r,t� = 2�g1�t�t2�F2J�R12,0,r,t� + F3J�R12,1,r,t�

+ F4J�R12,3,r,t� + �P12 + F1�J�R12,− 1,r,t�� ,

�B27�

and

KH1c�r,t� = − 2�P12g1�t�
t

r
�r + t − �r − t�� . �B28�

If

D

2
+

R2

2
� r � � , �B29�

then

H2�r� = I4�r� . �B30�

If
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D

2
+

R2

2
� r �

D

2
+

3

2
R2, �B31�

then

H3�r� = �
D/2+R2/2

r+R2

KH3a�r,t�dt + �
D/2+R2/2

�

KH3b�r,t�dt ,

�B32�

and, if

D

2
+

3

2
R2 � r � � , �B33�

then

H3�r� = �
r−R2

r+R2

KH3a�r,t�dt + �
D/2+R2/2

�

KH3b�r,t�dt ,

�B34�

where

KH3a�r,t� = 2�g2�t�t2�P22J�R2,− 1,r,t� + B1J�R2,0,r,t�

+ B2J�R2,1,r,t� + B3J�R2,3,r,t�� �B35�

and

KH3b�r,t� = − 2�P22g2�t�
t

r
�r + t − �r − t�� . �B36�

Finally, if

D

2
+

R2

2
� r � � , �B37�

then

H4�r� = 4��P22R2
2

2
+

B1R2
3

3
+

B2R2
4

4
+

B3R2
6

6
� . �B38�
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