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Abstract
Wormlike micelles are long semiflexible cylindrical polymer structures formed by
amphiphiles. In solution, these linear micelles percolate in multiconected entangled networks,
where cross-links can break and recombine dynamically. Technological applications of
wormlike micellar fluids include tunable encapsulation/delivery of molecules or colloids in
biomedicine, oil industry, and/or cleaning processes. In this work, we propose that the
experimental activation energy, the spatial confinement, and the mean first passage and escape
times of a spherical tracer immersed in wormlike micellar network, in which caging effects are
observed, can be estimated from economic Brownian dynamics simulations of a single particle
interacting with an effective one-dimensional cosine-like potential of amplitude U0 and
periodicity L. The proposed one-fitting parameter method has been used to characterize the
long-time dynamics of wormlike micellar solutions formed by the self-assembly of a mixture
of zwitterionic and anionic surfactants at several temperatures and different concentrations of
surfactant and brine. The amplitude U0 has displayed a good agreement regarding the
corresponding experimental activation energy at different temperatures. The periodicity L has
shown to be an upper bound of the mesh size ξ and of the same order of magnitude regarding
the entanglement length le, obtained from rheology and microrheology experiments. The
escape time of the tracer in the effective potential τescape and the time t∗, at which a change of
curvature in the mean square displacement occurs, are upper and lower limits, respectively, of
the experimental relaxation time. Our method is simple and fast, and we foresee that it should
be applicable to model the long-time behaviour of tracers in other polymer systems, in which
caging effects are present.

Keywords: first passage time, wormlike micelles, polymers, effective potential, long-times
diffusion, caging effects, Bellour parametrization
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1. Introduction

Amphiphilic molecules are found to self-assemble in aqueous
solutions and form complex structures in several geometries,
ranging from simple spherical micelles and elongated struc-
tures such as wormlike micelles, to quasi 2D structures such
as lamellar, sponge and other topologically complex phases,
just to mention a few [1, 2]. Each structure has unique and
particular properties that can be used in technological appli-
cations [3]. In particular wormlike micelles, due to the pres-
ence of elongated structures, are capable of store mechanical
energy during a deformation, thus presenting a viscoelastic
response to the solution where they are embedded [4].
As the time scale of the deformation is directly related with the
typical excited structure, the response varies from a viscous to
an elastic behaviour at different times essentially. For example,
for an step-strain experiment, the response changes from an
elastic to a viscous material. The so called relaxation time,
which indicates the crossover between regimes, is also highly
dependent on the physical and chemical properties of the sys-
tem. Depending on the studied system, different mechanisms
are related to the elastic properties. In a typical polymeric sys-
tem, the polymer itself is able to store energy by deforma-
tion [5]. In addition, a relaxation process is observed due to
the diffusion of the polymer, which releases stress and pro-
duces a relaxation spectra with multiple characteristic times.
Cates and co-workers found that a breaking polymer, with a
breaking time shorter than the typical diffusion time, behaves
with a unique relaxation time [6]. Soon after this, it was found
that the self-assembly of surfactants in elongated structures can
be approximated by an unique relaxation time [7]. In this case,
the polymer-like breaking is an activated and temperature-
dependent process displaying an Arrhenius behavior typically.
Such comportment is quite different to the classical behaviour
displayed by a polymer, in which the dependence on time is
only related to a diffusion mechanism [5]. Thus, the activation
energy is also a very important parameter that characterises the
polymer relaxation. Other parameters have been found to be
useful to characterise the structure of a polymer-like network
such as the mesh size, which allows us to know approximately
the free available space among polymers. In this regard, it has
also been observed that this size is related directly to the elas-
tic modulus [5]. Thus, the development of experimental and
theoretical tools for predicting the activation energy, relaxation
time and characteristic lengths of a polymer-like system is still
of paramount importance for the physico-chemical community
with some examples of such methods already found in the lit-
erature [8–13]. These tools are also helpful to characterize the
experimental systems and can be useful to predict the physical
properties required for specific applications.

In general, important parameters of the mechanical resp
onse of a polymer-like system can be obtained by performing
numerical simulations [14]. In such a scenario, the equations
of motion are numerically evaluated and solved in a computer
in order to obtain the corresponding structure as a function
of time. However, a suitable model for the intermolecular

Figure 1. 2D representation of a tracer immersed in a WM solution
and the corresponding effective model. ξ is the mesh size and le is
the entanglement length.

interactions is needed, and, depending on the required com-
putational time and system size, numerical simulations of
polymer-like systems over several decades of time can be very
expensive computationally. Moreover, extracting the mechan-
ical response properties often requires complex methodolo-
gies. From an experimental point of view, it is possible to
perform direct measurements of the macroscopic mechanical
properties using devices such as a rheometer. In this case, the
torque exerted on a mechanical geometry can be related to the
stress response under a particular deformation [18]. However
a theoretical framework is still required to relate the mechan-
ical properties to either the activation energy or the charac-
teristic lengths of the system. Moreover, this often requires
information that cannot be extracted from a typical rheometer
[8–13]. On the other hand, other experimental methods can
be used to obtain the physical properties of the polymer-like
structure by direct measurement of the motion of molecules,
such as NMR and neutron scattering experiments, for example
[13, 15–17]. An alternative indirect method is to track the
motion of a micrometer tracer particle on the polymer-like
structure in order to extract the structural relaxation from
the dynamics displayed by the tracer particle. This tech-
nique is called microrheology, and it is based on a gener-
alized Langevin equation that includes information related
to the microscopic friction and the macroscopic viscosity
[9–11, 19]. Thus, observing the Brownian motion of a tracer
particle allows us to extract viscoelastic properties of a
polymer-like network in a wider range of times regarding a
typical rheological apparatus. Using, for example, light scat-
tering techniques, the Brownian motion can be extracted in
several decades of time, providing then information of the vis-
coelastic spectra in a wider range [20]. This opens the possibil-
ity of using this kind of results to extract several characteristic
lengths of a polymer-like system. As we will see below, the
contribution of this work relies on a new and more efficient
methodology to extract some characteristic properties of such
networks by using an effective potential approach.

On the other hand, Lifson and Jackson [21] proposed in the
60s to use a one-dimensional periodic potential to determine
the dynamic properties of colloidal particles immersed in a
supporting polyelectrolyte solution. In particular, they found
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Figure 2. Cosine potential. The separatrix manifold is represented as a vertical blue dashed line.

that the ratio of the long- and short-time diffusion coefficient
of a colloidal particle could be calculated as the expected value
of a function that depended on an effective periodic poten-
tial, with a spatial periodicity L and maximum height U0. This
mathematical result has been demonstrated by other authors
using different approaches [22, 23]. In this work, we propose
to use a simple periodic cosine potential as an effective peri-
odic potential to estimate the activation energy of a spheri-
cal tracer in a wormlike micellar (WM) polymer network, if
the experimental parametrization of the mean square displace-
ment (MSD) of the tracer in terms of the phenomenological
Bellour equation is known. Afterwards, we propose to
adjust the width L of the periodic effective potential in a Brow-
nian dynamics simulation to reproduce the experimental MSD
at the time t∗, at which a change of curvature occurs. If we
follow this prescription, our numerical Brownian dynamics
results display that (i) the periodicity L of the effective poten-
tial is an upper bound of the experimental mesh size ξ and is
of the same order of magnitude regarding the entanglement
length le, and (ii) it is possible to estimate of the escape and
the mean first passage time (MFPT) of a particle under the
influence of the effective periodic potential of amplitude U0

and periodicity L, providing upper and lower bounds for the
relaxation time of the viscoelastic material.

2. Model and methods

A two-dimensional representation of a tracer immersed in
a WM solution and the corresponding effective model are
depicted in figure 1, where the complexity of a random
localization of the wormlike micelles giving the intercon-
nected network, and hindering the motion of the tracer, is
reduced using a simpler periodic structure with a characteristic
length L.

The effective one dimensional potential we propose is a
simple cosine potential of the form:

U(x, U0, L) = U0

(
1 − cos

(
2πx

L

))
, (1)

where U0 and L are the amplitude and periodicity of
the external potential, respectively, as shown in figure 2.
Overdamped Brownian dynamics simulations are performed
using the method proposed by Ermak and McCammon
without hydrodynamic interactions [24]. According to this pre-
scription, the position of the particle at time t + dt is cal-
culated from the previous position at time t by using the
equation:

x(t + dt) = x(t) +
D0F(x(t))dt

kBT
+ R(dt), (2)

where D0 is the translational diffusion coefficient of the parti-
cle at short-times, F(x) = − dU(x)

dx is the force that the particle
experiences due to the external periodic potential U(x), and
R(dt) is a random displacement, having a normal distribution
with zero mean value and variance 2D0 dt, fulfilling the so-
called fluctuation–dissipation theorem. In Brownian dynam-
ics simulations, the magnitude of the time step dt is crucial.
If it is too short, the computational time can increase signifi-
cantly. If it is too large, the stochastic differential equation can
display incorrect values of the dynamic properties of the sys-
tem. A time step of 3 μs allowed us to reproduce the analytic
MSD of the Brownian harmonic oscillator with an error lower
than 1 percent for a wide range of spring constants. In a typical
Brownian dynamics simulation a maximum Nmax = 1 × 1011

times steps have been performed, which is equivalent to a
total time of 3 × 105 s. Once the positions of the tracer are
known as a function of time and assuming that the statistical
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Table 1. Experimental activation energies EExp
a of a spherical tracer of 800 nm of diameter immersed in WM solutions with zwitterionic

surfactant TDPS, anionic surfactant SDS and brine reported in reference [34] at several temperatures and different concentrations of brine,
keeping constant the zwitterionic surfactant concentration Cz = 46 mM. The brine concentration [NaCl] is 0.5 M and 0.225 M for R = 0.45
and R = 0.55, respectively, where R = [SDS]/[TDPS] is the surfactant ratio. U0 is the one-dimensional height barrier obtained in this work
from equation (6), by using DExp

0 and DExp
M from reference [11] The uncertainty of U0 is less than 1 percent.

T (C) R EExp
a (KJ mol−1) DExp

0 (m2 s−1) DExp
M (m2 s−1) U0[kBT]

This
work 3U0 (KJ mol−1)

This
work

20 0.45 53 ± 7 4.20 × 10−13 9.72 × 10−18 7.23 52.79
25 0.45 53 ± 7 3.86 × 10−13 1.57 × 10−17 6.92 51.43
30 0.45 53 ± 7 3.16 × 10−13 2.26 × 10−17 6.62 49.98
20 0.55 62 ± 1 3.95 × 10−13 7.53 × 10−19 8.56 62.55
25 0.55 62 ± 1 5.20 × 10−13 1.45 × 10−18 8.36 62.12
30 0.55 62 ± 1 3.56 × 10−13 3.21 × 10−18 7.73 58.41

properties do not depend on the initial time, the MSD can be
calculated as:

MSD(t j) =
1

Nmax − j

Nmax− j∑
i=1

[x(ti + j dt) − x(ti)]2, (3)

where ti = i dt.
In spite of the simplicity of the periodic potential defined

by equation (1), interesting phenomena have been reported
in the literature when this potential has been applied to col-
loidal systems as an external field: from the experimental point
of view, it is found that a colloidal particle subjected to such
potential presents a diffusive regime at short times with a diffu-
sion coefficient corresponding to free diffusion, followed by a
caging dynamics due to the trapping effect of the potential, and
finally a second linear regime is found, with a diffusion coeffi-
cient that can be orders of magnitude lower that the first regime
[28]; it has been seen a freezing-melting transition due to the
interaction between particles trapped in neighbouring minima
[25]; numerical simulations have shown that the competition
between both particle–particle and particle–substrate interac-
tions leads to a rich variety of adsorbate phases or particle
distributions [26]; optical ray tracing calculations have shown
interesting energy landscapes in the presence of anisotropic
colloidal particles [27]; the long- and short-times diffusion
coefficient ratio has been studied comprehensively as a func-
tion of the height barrier U0 in equation (1) via experi-
ments and numerical calculations in the absence of hydro-
dynamic interactions [28], and numerically in the presence
of hydrodynamic interactions [29]; the long-times dynamics
of a colloidal tracer under the influence of an external poten-
tial given by equation (1) has been studied via numerical sim-
ulations, at non-low height barrier U0 values, showing that
(i) the most likely first passage time of the tracer is roughly
independent of the height barrier U0, and (ii) the most likely
first passage time of the tracer can be approximated, as a first
approximation, as the specific time at which occurs a change
of curvature in the corresponding MSD [30].

According to Bellour et al [31], the dynamics of a spherical
tracer immersed in a WM solution follows roughly the same
dynamical regimes as the previously explained for the sinu-
soidal potential and can be accurately fitted to the following
four-parameters phenomenological equation:

Figure 3. Mean square displacement MSD(t) of a spherical tracer
immersed in a WM solution at a temperature T = 25 C and
R = 0.45, with the following Bellour parameters obtained from
experimental data reported in reference [11]: DExp

0 =

3.86 × 10−13 m2 s−1, DExp
M = 1.57 × 10−17 m2 s−1, 2δExp =

1.17 × 10−16 m2, and αExp = 0.274. Brownian dynamics used a
short-times diffusion coefficient D0 = DExp

0 , and an amplitude
U0 = 6.92/(kBT) and periodicity L = 1.20 × 10−7 m in the
effective one-dimensional potential.

MSDBellour(t, D0, DM,α, δ)

= 2δ2

(
1 − exp

{
−
(

D0t
δ2

)α}) 1
α
(

1 +
DMt
δ2

)
,

(4)

where D0 and DM are the short- and long-time diffusion coef-
ficients of the tracer corresponding to the free diffusion at
short times and the hopping process at the macro scale. α and
δ are fitting parameters that allow us to reproduce the onset
of the plateau displayed by the experimental MSD, which is
more conspicuous at large activation energies. The Bellour
model contains partially the solution to the Langevin equation
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Table 2. Bellour parameters DExp
0 , DExp

M , δExp, and αExp associated to experimental MSD curves of a spherical tracer of 800 nm of diameter
immersed in WM solutions with zwitterionic surfactant TDPS, anionic surfactant SDS and brine reported in reference [11] at several
temperatures and different concentrations of brine, keeping constant the zwitterionic surfactant concentration Cz = 46 mM. The brine
concentration [NaCl] is 0.5 M and 0.225 M for R = 0.45 and R = 0.55, respectively, where R = [SDS]/[TDPS] is the surfactant ratio. U0

was obtained in this work from equation (6). By using D0 = DExp
0 and U0 as fixed parameters in Brownian dynamics simulations, the width

L of the periodic effective potential was adjusted until the simulation and the experimental MSD were approximately the same at the critical
time t∗, where a change of curvature in the MSD is observed.

T (C) R DExp
0 (m2 s−1) DExp

M (m2 s−1) 2δ2Exp (m2) αExp U0[kBT]
This
work L (m)

This
work

20 0.45 4.20 × 10−13 9.72 × 10−18 1.12 × 10−16 0.310 7.23 1.20 × 10−7

25 0.45 3.86 × 10−13 1.57 × 10−17 1.17 × 10−16 0.274 6.92 1.20 × 10−7

30 0.45 3.16 × 10−13 2.26 × 10−17 9.22 × 10−17 0.310 6.62 1.04 × 10−7

20 0.55 3.95 × 10−13 7.53 × 10−19 1.23 × 10−16 0.310 8.56 1.38 × 10−7

25 0.55 5.20 × 10−13 1.45 × 10−18 1.45 × 10−16 0.310 8.36 1.48 × 10−7

30 0.55 3.56 × 10−13 3.21 × 10−18 1.15 × 10−16 0.310 7.73 1.26 × 10−7

Figure 4. Logarithmic derivative of the mean square displacement
MSD(t) displayed in figure 3.

for a particle in a parabolic potential, plus a smooth transi-
tion between short-times diffusion and a long-times diffusion
regime, which is related to the escape of the particle from the
potential. The Bellour equation has associated a logarithmic
derivative given by:

d ln MSDBellour(t, D0, DM,α, δ)
d ln(t)

= t(δ2 + DMt)−1

(
DM + D0

(
1 +

DMt
δ2

)(
D0t
δ2

)α−1

× exp

{
−
(

D0t
δ2

)α}(
1 − exp

{
−
(

D0t
δ2

)α})−1
)
.

(5)
On the other side, the ratio of the long- and short-time dif-

fusion coefficients can be calculated in terms of an effective

one-dimensional periodic potential as:

DM

D0
=

1
〈exp{U(x)/(kBT)}〉〈exp{−U(x)/(kBT)}〉 , (6)

where the brackets 〈. . .〉 indicate the average over the unit
cell [21]. At large values of U0, equation (6) reduces to the
following analytical formula:

DM

D0
=

2πU0

kBT
exp

{
−2U0

kBT

}
. (7)

Some error bounds of equation (7) as a function of U0 have
been discussed recently in reference [30].

The maximum height U0 of the cosine potential given by
equation (1) can be calculated from equation (6) if DExp

0 and
DExp

M are known (e.g., from the Bellour fitting of equation (4)).
At high values of U0, the parameter α is approximately
equal to 1 for the cosine potential given in equation (1)
[30]. Our proposal is to use D0 = DExp

0 and U0 in economic
Brownian dynamics simulations in order to adjust the width L
(of the effective periodic potential) until the MSD is approxi-
mately equal to the experimental one at the time t∗, at which a
change of curvature is observed:

MSDBD(t∗, L, D0, U0) ≈ MSDExp(t∗, DExp
0 , DExp

M ,αExp, δExp).
(8)

Note that, in general, the value of t∗ is different for the
experimental and the BD MSD. However, this one-fitting
parameter prescription is able to reproduce the experimental
long-time MSD via economic BD simulations if the condition
given by equation (8) is approximately fulfilled, as it is shown
below.

3. Results and discussion

The activation energy in a WM solution is the height of the
energy barrier that a tracer has to overcome in order to dif-
fuse at long-times. In table 1, the experimental activation ener-
gies of a tracer in a WM solution at different temperatures
and concentrations of surfactant and brine [34] are shown.
By using the corresponding experimental diffusion coeffi-
cients and the equation (6), the amplitude U0 of the one-
dimensional periodic effective potential can be calculated. The
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Table 3. Bellour parameters DExp
0 , DExp

M , δExp, and αExp associated to experimental MSD curves of a spherical tracer of 800 nm of diameter
immersed in WM solutions with zwitterionic surfactant TDPS, anionic surfactant SDS and brine (Cz = 46 mM, R = 0.55, and T = 25 C)
reported in reference [11] U0 was obtained in this work from equation (6). By using D0 and U0 as fixed parameters in Brownian dynamics
simulations, the width L of the periodic effective potential was adjusted until the simulation and experimental MSD were approximately the
same at the critical time t∗, where a change of curvature in the MSD is observed.

[NaCl] (M) DExp
0 (m2 s−1) DExp

M (m2 s−1) 2δ2Exp (m2) αExp U0[kBT]
This
work L (m)

This
work

0.2 4.41 × 10−13 2.78 × 10−18 1.28 × 10−16 0.310 7.92 1.35 × 10−7

0.225 5.20 × 10−13 1.45 × 10−18 1.45 × 10−16 0.310 8.36 1.48 × 10−7

0.3 4.83 × 10−13 1.82 × 10−18 1.24 × 10−16 0.310 8.20 1.35 × 10−7

0.4 3.81 × 10−13 5.83 × 10−18 1.37 × 10−16 0.310 7.45 1.35 × 10−7

0.5 3.68 × 10−13 7.99 × 10−18 8.14 × 10−17 0.310 7.26 1.02 × 10−7

Table 4. Bellour parameters DExp
0 , DExp

M , δExp, and αExp associated to experimental MSD curves of a spherical tracer of 800 nm of
diameter immersed in WM solutions with zwitterionic surfactant TDPS, anionic surfactant SDS and brine (Cz = 46 mM, [NaCl] = 0.5 M,
and T = 25 C) reported in reference [11] U0 was obtained in this work from equation (6). By using D0 = DExp

0 and U0 as fixed parameters
in Brownian dynamics simulations, the width L of the periodic effective potential was adjusted until the simulation and experimental MSD
were approximately the same at the critical time t∗, where a change of curvature in the MSD is observed.

R DExp
0 (m2 s−1) DExp

M (m2 s−1) 2δ2Exp (m2) αExp U0[kBT]
This
work L (m)

This
work

0.50 2.99 × 10−13 9.19 × 10−18 1.29 × 10−16 0.310 7.07 1.28 × 10−7

0.55 3.68 × 10−13 7.99 × 10−18 8.14 × 10−17 0.310 7.26 1.02 × 10−7

0.60 4.43 × 10−13 3.16 × 10−17 1.34 × 10−16 0.310 6.62 1.25 × 10−7

required energy to move a tracer to an adjacent cell in three
dimensions can be approximated by 3U0 if the system is
isotropic. This energy collates very well regarding the experi-
mental activation energy under different conditions of temper-
ature and concentrations of surfactant and brine, as it is shown
in table 1.

Once U0 has been determined, the width L of the effec-
tive periodic potential is fitted via economic Brownian dynam-
ics simulations in which D0 = DExp

0 , in order to fulfill the
equation (8) for a given Bellour parametrization of the exper-
imental MSD (defined by the parameters DExp

0 , DExp
M , δExp,

and αExp). In particular, a couple of typical Brownian dynam-
ics and experimental time dependent mean square displace-

ments MSDBD(t, L, D0, U0) and MSDExp
(

t, DExp
0 , DExp

M , δExp,

and αExp
)
, respectively, are shown in figure 3. In the

experimental system, the WM solution contains a zwit-
terionic surfactant (tetradecyl dimethylammonium propane
sulfonate (TDPS)), an anionic surfactant (sodium dodecyl
sulfate (SDS)), and brine at the following concentrations
Cz = 46 mM, [NaCl] = 0.5 M, and R = 0.45, where Cz is the
zwitterionic surfactant concentration and R = [SDS]/[TDPS]
is the surfactant ratio. The associated Bellour parameters in
this instance are displayed in the second line of table 2 for
T = 25 C. In this figure, it is observed that both MSD tend
to the same limit at very short- and long-times. Both MSDs
display approximately the same height of the plateau around
the critical time t∗. The logarithmic derivatives associated to
the MSDs shown in figure 3 are displayed in figure 4. Here, it
is observed that both logarithmic derivatives tend to the same
limit at very short- and long-times, displaying a minimum at
t∗ at intermediate times.

In tables 2–4, the one-dimensional effective periodic poten-
tial parameters U0 and L associated to different experimental

parametrizations of MSD are reported, for different temper-
atures and several concentrations of surfactant and brine.
When these U0 and L parameters are used in Brownian
dynamics simulations with D0 = DExp

0 , the Bellour
parametrization of the resulting MSD curves (via a non-
linear Marquardt–Levenberg least-squares minimization)
produces the coefficients DBD

0 , DBD
M , δBD,αBD, coefficients.

The first three parameters are consistent with the correspond-
ing experimental coefficients DExp

0 , DExp
M , δExp, as it is shown

in figure 5. In addition, αBD ≈ 1 as expected, considering the
large values of U0.

Two characteristic lengths of a WM solution are the mesh
size ξ and the distance between entanglement points le. The
elastic modulus G0 of the WM solution is related to the net-
work mesh size ξ through the formula [34] G0 ≈ kBT/ξ3. The
entanglement length can be estimated as le ≈

√
3ξ if the sys-

tem is isotropic. In figure 6, L is compared to the experimental
mesh size ξ and the entanglement length le for several tem-
peratures and different concentrations of surfactant and brine.
Here, it is observed that the width L of the periodic effective
potential is an upper bound of the mesh size ξ, and it is of the
same order of magnitude regarding the entanglement length le
as a function of the temperature.

On the other hand, if L and DM are known, it is possible
to calculate the escape or hopping rate kescape of the Brownian
particle under the influence of the one-dimensional periodic
potential defined by equation (1) via the equation [32]

DM = Deff =
1
2

kescapeL2, (9)

where kescape = 1/τescape as shown in figure 2. In addition,
let us define the MFPT τMFPT as the average time a Brow-
nian particle needs to reach the separatrix manifold for the
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Figure 5. Bellour parameters D0, DM, δ, and α associated to experimental [11] and Brownian dynamics (this work) MSD curves of a
spherical tracer of 800 nm of diameter immersed in WM solutions with zwitterionic surfactant TDPS, anionic surfactant SDS and brine.
Cz = 46 mM in all panels. Column (a): the brine concentration is [NaCl] = 0.5 M and R = 0.45; column (b): the brine concentration is
[NaCl] = 0.225 M and R = 0.55; column (c): the temperature is 25 C and R = 0.55; column (d): the temperature is 25 C and the brine
concentration is [NaCl] = 0.5 M. Empty symbols correspond to experimental Bellour parameters DExp

0 , DExp
M , δExp, and αExp reported in

reference [11] Solid symbols are the Bellour parameters DBD
0 , DBD

M , δBD, and αBD obtained via a non-linear Marquardt–Levenberg
least-squares minimization of equation (4) from the Brownian dynamics MSD curves. Brownian dynamics used as input parameters
D0 = DExp

0 , U0 and L, which are listed in tables 2–4.

first time when was located initially at a position x0 inside
the initial domain of attraction as shown in figure 2 for the
cosine-like potential. Notice that at large height barriers, the
MFPT τMFPT(x0) becomes essentially independent of the start-
ing point, that is, τMFPT(x0) is approximately the same for
all starting configurations away from the immediate neighbor-
hood of the separatrix. If the probability of crossing the sep-
aratrix to the right or the left equals one half, the total escape
time equals two times the MFPT, and the escape or hopping
rate of the Brownian particle can be written as [30]:

kescape =
1

2τMFPT
. (10)

Thus, equation (9) can be written in terms of the MFPT as:

DM =
1

4τMFPT
L2. (11)

In terms of the effective periodic potential given by the
equation (1), τescape can be written as [30]:

τescape = τ0〈exp{U(x)/(kBT)}〉〈exp{−U(x)/(kBT)}〉, (12)

where the brackets 〈. . .〉 indicate the average over the unit cell,
and

τ0 =
L2

2D0
(13)

is the time that a particle needs to move a distance L in pure
Brownian motion, that is, in the absence of any external poten-
tial, when the diffusion constant of the particle is D0. At large
values of U0, equation (12) tends to the following analytical
formula:

τescape ≈
1

2π
τ0

kBT
U0

exp

{
2U0

kBT

}
, (14)

which corresponds to the Kramers approximation [30, 33].
Note that in the absence of an external potential (that is,
in pure Brownian motion) τescape reduces to τ 0 according to
equation (12) as expected, whereas τescape diverges to an infi-
nite time according to the Kramers approximation given by
equation (14) [30].

In figure 7, the experimental relaxation time of WM solu-
tions, obtained from the crossover frequency between the elas-
tic and viscous modulus in an oscillatory experiment and thus
describing the onset of the transition from an purely elastic to a

7
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Figure 6. Experimental mesh size ξ (black continuous lines) and
entanglement length le (red dashed lines) obtained from
experimental WM solutions in reference [34], and numerical L
values (solid circles, this work) associated to Brownian dynamics
simulations, as a function of the temperature. In the experimental
system, a spherical tracer of 800 nm of diameter is immersed in a
WM solution with zwitterionic surfactant TDPS, anionic surfactant
SDS and brine at different concentrations of surfactant and brine
(Cz = 46 mM). (a) The brine concentration [NaCl] is 0.5 M and
R = 0.45. (b) The brine concentration [NaCl] is 0.225 M and
R = 0.55.

purely viscous response, corresponding to the data displayed in
figure 6, as function of the temperature, is plotted. The escape
time of a particle under the influence of an effective poten-
tial with the periodicity L displayed in figure 6 and the time t∗

associated to the experimental and effective potential Bellour
parameters (D0, DM, δ, and α) are also included in this figure.
Here, it is seen that the t∗ associated to the Bellour parame-
ters (solid triangles) and the escape time of a Brownian par-
ticle under the influence of the effective cosine-like potential
(empty circles), obtained via Brownian dynamics simulations,
are lower and upper limits, respectively, for the experimen-
tal relaxation time of the WM solutions as a function of the
temperature. On the other hand, in a recent study it has been
shown that, for a Brownian particle under the influence of a
periodic potential given by equation (1), t∗ is located very close
to the more likely MFPT at non-low height barriers U0 [30].
Given that the values of t∗ obtained from experiments and from
the effective periodic potential approach are approximately
of the same order of magnitude, we foresee that the experi-
mental time t∗ might be physically interpreted as an effective
most likely hopping time of the tracer in the WM solution.

Figure 7. Experimental relaxation time τ 1 of WM solutions (black
lines) corresponding to the data displayed in figure 6 as function of
the temperature: in a) the brine concentration [NaCl] is 0.5 M and
R = 0.45; and in (b) the brine concentration [NaCl] is 0.225 M and
R = 0.55. The escape time τ 2 of a particle under the influence of an
effective potential with length L (displayed as solid blue circles in
figure 6 as a function of the temperature) is shown here as empty
blue circles. Solid orange squares and purple triangles correspond to
t∗ calculated from the experimental, τ3, and the effective potential,
τ 4, Bellour parameters D0, DM, δ, and α (see, e.g., figures 4 and 5,
and tables 2–4).

As the relaxation time is related to the partial stress relaxation
and the former quantity lies somewhere between the effective
most likely hopping time of the tracer and the MFPT, the the-
oretical upper and lower bounds could be of help to extract
an estimate of the experimental stress relaxation time. A more
accurate estimation of this parameter would need a compre-
hensive study at different physical and chemical parameters
and it is outside the scope of the present work.

4. Conclusions

In this work, we have proposed the use of Brownian dynam-
ics of a single particle in the presence of a one-dimensional
cosine-like potential to estimate the activation energy, the
spatial confinement, and the mean first passage and escape
times of a spherical tracer immersed in WM network, in
which caging effects are observed experimentally. If the exper-
imental 3D mean squared displacement of the tracer can be
parametrized in terms of the short- and long-time diffusion
coefficients, D0 and DM, respectively, as well as the param-
eters δ and α according to Bellour’s prescription [31], U0 can
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be estimated from D0 and DM by following the Lifson and
Jackson equation [21]. In order to estimate the effective con-
finement length L, we have proposed a one-fitting parameter
method in which economic overdamped Brownian dynamics
simulations are used. If D0 and U0 are fixed parameters in
the Brownian dynamics simulations, the value of L is var-
ied until the Brownian dynamics, and the experimental mean
squared displacements match at the time t∗, where t∗ denotes
the inflexion point of the corresponding mean squared dis-
placement. The proposed method has been used to character-
ize the long-time dynamics of WM solutions in the presence
of a mixture of anionic and zwitterionic surfactants at several
temperatures and at different concentrations of surfactant and
brine. In particular, the amplitude U0 has displayed a good
agreement regarding the corresponding experimental activa-
tion energy at different temperatures. The periodicity L has
shown to be an upper bound of ξ and to be of the same order of
magnitude regarding le, where ξ and le are the mesh size and
the distance between two entanglement points, respectively,
obtained from rheology and microrheology experiments. The
MFPT and the escape or hopping time of the tracer can be
obtained straightforwardly from DM and L. The escape time
of the tracer and t∗ are upper and lower limits, respectively,
of the experimental relaxation time. In addition, the experi-
mental time t∗ might be interpreted as an effective most likely
hopping time of the tracer in the polymeric solution. In sum-
mary, the proposed method to characterize the experimental
long-time behaviour of a WM solution is simple and fast,
and can be used to extract useful information of the com-
plex network. We foresee that a similar methodology should
be applicable to model the long-time behaviour of tracers in a
wide variety of scenarios, where an energy barrier close to the
thermal energy is present and a periodic structure is found
at the macro scale, such as other polymer networks or col-
loidal systems. The colloidal glass transition is an example of
this application and further studies could enlighten the possi-
ble impact on the understanding of such processes using this
simple method.
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Erick Sarmiento Gómez https://orcid.org/0000-0001-6130-
4161

References

[1] Israelachvili J N 2008 Intermolecular and Surface Forces 3rd
edn (New York: Academic)

[2] Israelachvili J N, Mitchell D J and Ninham B W 1976 J. Chem.
Soc. Faraday Trans. II 72 1525–68

[3] Marques E F and Silva B F B 2013 Encyclopedia of Colloid and
Interface Science (Berlin: Springer)

[4] Dreiss C A 2007 Soft Matter 3 956–70
[5] Graessley W and McLeish T 2004 The Doi–Edwards theory

Stealing the Gold: A Celebration of the Pioneering Physics
of Sam Edwards (Oxford: Oxford University Press)

[6] Cates M E 2007 Macromolecules 20 2289–96
[7] Cates M E and Candau S J 1990 J. Phys.: Condens. Matter 2

6869–92
[8] Dan N and Safran S A 2006 Adv. Colloid Interface Sci. 123–126

323–31
[9] Oelschlaeger C, Suwita P and Willenbacher N 2010 Langmuir

26 7045–53
[10] Willenbacher N, Oelschlaeger C, Schopferer M, Fischer P,

Cardinaux F and Scheffold F 2007 Phys. Rev. Lett. 99
068302

[11] Sarmiento-Gomez E, Lopez-Diaz D and Castillo R 2010 J. Phys.
Chem. B 114 12193–202

[12] Papagiannopoulos A, Vlassi E, Pispas S, Tsitsilianis C and
Radulescu A 2021 Macromol 1 37–48

[13] Pescosolido L et al 2012 Soft Matter 8 7708–15
[14] Allen M P and Tildesley D J 1987 Computer Simulation of

Liquids (New York: Oxford University Press)
[15] Barhoum S, Palit S and Yethiraj A 2016 Prog. Nucl. Magn.

Reson. Spectrosc. 94–95 1–10
[16] Holder S W, Grant S C and Mohammadigoushki H 2021 Lang-

muir 37 3585–96
[17] Lopez-Gonzalez M R, Holmes W M and Callaghan P T 2006

Soft Matter 2 855–69
[18] Macosko C W 2008 Rheology Principles, Measurements, and

Applications (New York: Weinheim Cambridge VCH)
[19] Furst E M and Todd M S 2017 Microrheology (Oxford: Oxford

University Press)
[20] Mason T G and Weitz D A 1995 Phys. Rev. Lett. 74 1250–3
[21] Lifson S and Jackson J L 1962 J. Chem. Phys. 36 2410–4
[22] Gunther L, Revzen M and Ron A 1979 Physica A 95 367–9
[23] Weaver D L 1997 Physica A 98 359–62
[24] Ermak D L 1975 J. Chem. Phys. 62 4189–96
[25] Wei Q-H, Bechinger C, Rudhardt D and Leiderer P 1998 Phys.

Rev. Lett. 81 2606–9
[26] Herrera-Velarde S and Castañeda-Priego R 2007 J. Phys.: Con-

dens. Matter 19 226215

9

https://orcid.org/0000-0002-3174-2643
https://orcid.org/0000-0002-3174-2643
https://orcid.org/0000-0002-3174-2643
https://orcid.org/0000-0001-6130-4161
https://orcid.org/0000-0001-6130-4161
https://orcid.org/0000-0001-6130-4161
https://doi.org/10.1039/f29767201525
https://doi.org/10.1039/f29767201525
https://doi.org/10.1039/f29767201525
https://doi.org/10.1039/f29767201525
https://doi.org/10.1039/b705775j
https://doi.org/10.1039/b705775j
https://doi.org/10.1039/b705775j
https://doi.org/10.1039/b705775j
https://doi.org/10.1021/ma00175a038
https://doi.org/10.1021/ma00175a038
https://doi.org/10.1021/ma00175a038
https://doi.org/10.1021/ma00175a038
https://doi.org/10.1088/0953-8984/2/33/001
https://doi.org/10.1088/0953-8984/2/33/001
https://doi.org/10.1088/0953-8984/2/33/001
https://doi.org/10.1088/0953-8984/2/33/001
https://doi.org/10.1016/j.cis.2006.05.027
https://doi.org/10.1016/j.cis.2006.05.027
https://doi.org/10.1016/j.cis.2006.05.027
https://doi.org/10.1016/j.cis.2006.05.027
https://doi.org/10.1021/la9043705
https://doi.org/10.1021/la9043705
https://doi.org/10.1021/la9043705
https://doi.org/10.1021/la9043705
https://doi.org/10.1103/physrevlett.99.068302
https://doi.org/10.1103/physrevlett.99.068302
https://doi.org/10.1021/jp104996h
https://doi.org/10.1021/jp104996h
https://doi.org/10.1021/jp104996h
https://doi.org/10.1021/jp104996h
https://doi.org/10.3390/macromol1010004
https://doi.org/10.3390/macromol1010004
https://doi.org/10.3390/macromol1010004
https://doi.org/10.3390/macromol1010004
https://doi.org/10.1039/c2sm25677k
https://doi.org/10.1039/c2sm25677k
https://doi.org/10.1039/c2sm25677k
https://doi.org/10.1039/c2sm25677k
https://doi.org/10.1016/j.pnmrs.2016.01.004
https://doi.org/10.1016/j.pnmrs.2016.01.004
https://doi.org/10.1016/j.pnmrs.2016.01.004
https://doi.org/10.1016/j.pnmrs.2016.01.004
https://doi.org/10.1021/acs.langmuir.0c03486
https://doi.org/10.1021/acs.langmuir.0c03486
https://doi.org/10.1021/acs.langmuir.0c03486
https://doi.org/10.1021/acs.langmuir.0c03486
https://doi.org/10.1039/B600978F
https://doi.org/10.1039/B600978F
https://doi.org/10.1039/B600978F
https://doi.org/10.1039/B600978F
https://doi.org/10.1103/physrevlett.74.1250
https://doi.org/10.1103/physrevlett.74.1250
https://doi.org/10.1103/physrevlett.74.1250
https://doi.org/10.1103/physrevlett.74.1250
https://doi.org/10.1063/1.1732899
https://doi.org/10.1063/1.1732899
https://doi.org/10.1063/1.1732899
https://doi.org/10.1063/1.1732899
https://doi.org/10.1016/0378-4371(79)90062-1
https://doi.org/10.1016/0378-4371(79)90062-1
https://doi.org/10.1016/0378-4371(79)90062-1
https://doi.org/10.1016/0378-4371(79)90062-1
https://doi.org/10.1016/0378-4371(79)90187-0
https://doi.org/10.1016/0378-4371(79)90187-0
https://doi.org/10.1016/0378-4371(79)90187-0
https://doi.org/10.1016/0378-4371(79)90187-0
https://doi.org/10.1063/1.430300
https://doi.org/10.1063/1.430300
https://doi.org/10.1063/1.430300
https://doi.org/10.1063/1.430300
https://doi.org/10.1103/physrevlett.81.2606
https://doi.org/10.1103/physrevlett.81.2606
https://doi.org/10.1103/physrevlett.81.2606
https://doi.org/10.1103/physrevlett.81.2606
https://doi.org/10.1088/0953-8984/19/22/226215
https://doi.org/10.1088/0953-8984/19/22/226215


J. Phys.: Condens. Matter 34 (2022) 174006 G I Guerrero-García et al
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