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The surface mean electrostatic potential and capacitive compactness of the electrical double layer sur-
rounding an infinite rigid cylindrical polyelectrolyte are analysed for equally-sized �1 : zþ aqueous elec-
trolytes. Monte Carlo simulations, the non-linear Poisson–Boltzman equation, the modified Poisson–
Boltzmann theory, and the hypernetted chain/mean spherical approximation integral equation are used
to examine the role of multivalent cations (coions) when the properties of monovalent anions (counte-
rions) are fixed. A non-zero mean electrostatic potential in the neighbourhood of an uncharged polyelec-
trolyte is predicted by the simulations and the modified Poisson–Boltzmann theory in the presence of
multivalent cations. The concept of capacitive compactness is generalised to overcome the divergence
found in the classical definition, when a non-zero potential at the point of zero charge is present. With
a highly electrified colloidal surface an inversion is observed, as a function of colloidal charge, in the
precedence of the mean electrostatic potential near the polyelectrolyte’s surface and of the capacitive
compactness between �1 : þ1 and �1 : zþ electrolytes.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

We are honoured to dedicate this paper to Dr. Douglas J. Hen-
derson. Doug was a professional colleague, a teacher, and a friend.
His enthusiasm for science was exemplary, his life-long dedication
to it inspiring. He will always be a shining star in our collective
memory.

The capacitive compactness was proposed by González-Tovar in
2004 [1] to explain an anomalous curvature inversion of the mean
electrostatic potential at the Helmholtz plane, WH , around a spher-
ical macroion. The anomaly was observed when WH was plotted as
a function of the colloidal surface charge density, with the macro-
ion being bathed by a 1 : 1 or a 2 : 2 size-symmetric aqueous elec-
trolyte. Since then, the capacitive compactness has proven to be a
versatile concept that allows us to characterize the electrical dou-
ble layer thickness in charged soft condensed matter systems [2–
7]. The main idea behind the capacitive compactness is to define
an effective electrical double layer capacitor associated with a sin-
gle charged colloidal particle neutralized by a Coulombic fluid. In
such a scenario, the separation distance between the real electrode
(associated with the charged colloidal particle) and the effective
electrical double layer electrode (associated with the centroid of
the diffuse ionic charge) is the so-called capacitive compactness
(measured from the colloidal surface) [2,4]. In the limit of zero col-
loidal charge, the capacitive compactness reduces to the Debye
length in the framework of the non-linear Poisson–Boltzmann
(NLPB) theory of point-ions, in planar and spherical geometries
[4]. The well-known dependence of the Debye length on the ionic
strength of the supporting Coulombic fluid has been widely used
by experimentalists to characterize the thickness of the electrical
double layer surrounding a charged colloidal particle in solution
[8–10]. One major limitation of this wonted prescription to charac-
terize the spatial extension of the electrical double layer is that the
Debye length does not take into account several features typical of
charged fluids, viz., the colloidal charge, ion correlations, ionic
excluded volume, image charge or polarization effects, and/or ionic
specific adsorption. The capacitive compactness, in contrast,
encompasses these features, and it is thus a natural generalization
of the Debye length. The capacitive compactness has been used to
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characterize the shrinking and expansion of the electrical double
layer in valence-asymmetric molten salts and aqueous electrolytes
as a function of the colloidal charge, in planar and spherical geome-
tries [4,7]. Alternative definitions of the capacitive compactness in
planar, spherical and cylindrical geometries have been recently
proposed [6]. These involve the expected value of the electrostatic
potential produced by a single electrode in a dielectric medium in
the three dimensional space, averaged by a weighting function that
depends on the local net charge density of a charged fluid neutral-
izing an identical electrode under similar conditions of dielectric
permittivity.

In planar and spherical geometries, the capacitive compactness
depends on the ratio of the mean electrostatic potential at the col-
loidal surfaceW0 divided by the colloidal surface charge density r0

[4]. In the limit of zero colloidal charge, W0 ! 0 in the presence of
equisized charge-symmetric z : z electrolytes due to the expected
symmetry of the ionic profiles. This limit is reproduced by the clas-
sical NLPB theory. In such a situation, the ratio W0=r0 converges to
a finite value despite both W0 and r0 tend to zero at the point of
zero charge. When the ionic symmetry is broken, at the level of
the ionic charge and/or at the level of the ionic size, it is possible
to observe a non-zeroW0 at the point of zero charge [11–13], often
called the potential of zero charge (pzc) in the literature. This pzc is
analogous to that observed in experimental systems in the pres-
ence of ionic specific adsorption [8,9]. At these asymmetric condi-
tions, the original definition of the capacitive compactness requires
revision. In this work, we propose a generalization of the capacitive
compactness, which converges in this situation.

On the other hand, in this work we will also study the non-
dominance of counterions at the level of the W0 and of the capac-
itive compactness sc , when ion correlations and ionic excluded vol-
ume effects are taken into account consistently. According to
Valleau and Torrie [14], for the NLPB theory in the limit of very
strong electric fields, the ionic size-asymmetry between coions
and counterions becomes irrelevant and the only important ion-
size parameter is the effective radius of the counterions. In a very
recent work [7], it has been explicitly shown, via analytical and
numerical calculations, that the electrochemical properties associ-
ated with the surface of a planar electrode next to a 1 : z elec-
trolyte, such as the W0 or the sc W0;r0ð Þ, exactly fulfill the
Valleau and Torrie’s prescription of the dominance of counterions
seen in the NLPB theory. However, in the same article it has also
been shown that, in general, the counterions do not necessarily
dominate in the planar electrical double layer at the level of elec-
trostatic properties such as the local mean electrostatic potential
W xð Þ and the electric field E xð Þ over the entire extension of the dou-
ble layer. Specifically, in the limit of an infinite surface charge den-
sity it has been demonstrated, via analytical and accurate
numerical calculations, that, according to the NLPB picture, the
W xð Þ and E xð Þ do not converge uniformly in the whole space to
the same value in the presence of 1 : z electrolytes, even if the
properties of monovalent counterions are the same. These results
are consistent with primitive model Monte Carlo (MC) simulation
data at large bare surface charge densities [4,7]. The qualitative
agreement displayed by the NLPB theory regarding the primitive
model MC simulations is probably due to the fact that the bulk
1 : z electrolyte with monovalent counterions is still in the weak
electrostatic coupling regime, despite the increase of the corre-
sponding ionic strength as a function of the valence z of the multi-
valent coions, when the properties of counterions are fixed.

When ion correlations and excluded volume effects are
included, it has been proved that the counterions do not entirely
dominate or determine the properties of the primitive model elec-
trical double layer over the full diffuse layer [11,12]. In these
papers it was found that, at large colloidal charges, the behaviour
of the primitive model electrical double layer associated with a
2

z : z size-asymmetric electrolyte does not correspond to that of a
z : z size-symmetric electrolyte even when the physical attributes
of counterions (such as the ionic size, valence, and concentration)
are the same in both electrolytes. In other words, the characteris-
tics of the coions in z : z electrolytes, symmetric in valence but
asymmetric in size, are relevant and do matter for highly electrified
colloids at high salt concentrations. Furthermore, it has been also
proved that in the case of equisized 1 : z primitive model elec-
trolytes with multivalent coions [15], the ionic structure and elec-
trostatic properties of the electrical double layer do not converge,
in the limit of very large colloidal surface charge densities, as it
would be according to the Valleau and Torrie’s dominance of coun-
terions in the classical NLPB approach, in which ion correlations
and ionic excluded effects are neglected.

In the present investigation, we will revisit the non-dominance
of counterions in cylindrical geometry at the level of the W0 and of
the sc , when ion correlations and ionic excluded volume effects are
considered. These effects are taken into account consistently via
MC simulations and theoretical calculations using the MPB theory
[16–20] and integral equations under the HNC/MSA closure [11–
13,15,21].
2. Model, theories and simulations

2.1. Model system

In this study, we consider an infinite hard cylinder with radius
R ¼ 8Å[22] bathed by a binary size-symmetric electrolyte of diam-
eter dþ ¼ d� ¼ d ¼ 4:25Å and valence �1 : zþ. An homogeneous
surface charge density r0 P 0 is considered in all cases. As a result,
counterions are always monovalent and coions can be monovalent
or multivalent. The whole system is immersed in a continuum sol-
vent with dielectric constant � ¼ 78:5 and temperature T ¼ 298K.
In the presence of ion correlations, that is, for MC simulations,
the MPB equation and HNC/MSA integral equation, all ionic species
are treated as hard spheres with point charges in their centers,
which constitute the so-called primitive model (PM). In such an
approach, the interaction potential between an ion i and an ion j
can be written as
uij rij
� � ¼ 1; if rij < d;

zizje
2

4pe0�rij
; if rij P d;

(
ð1Þ
where rij ¼ jri � rjj; e is the proton charge, e0 is the vacuum permit-
tivity, and � is the dielectric constant of the solvent. When the
diameter of all the ionic species is the same (i.e., dþ ¼ d� ¼ d), this
representation of the electrolyte is known as the restricted primitive
model (RPM). For the NLPB the Stern correction is incorporated.

The interaction between an ion i and the charged cylinder in the
RPM, and also for the NLPB equation with Stern correction, is given
by:
ui r0i
� � ¼ 1; if r0i < Rþ d

2 ;

� ziek
2pe0�

ln r0i
� �þ C; if r0i P Rþ d

2 ;

(
ð2Þ
where C is an arbitrary constant that can be used to define the zero
of the electrostatic potential and to reduce the argument of the log-
arithm, k is the linear charge density per unit length of the infinite
rigid charged cylinder, with an associated surface charge density r0,
and r0i is the perpendicular distance of an ion i to the line of charge
placed at the center of the hard cylinder.
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2.2. The Poisson–Boltzmann and the modified Poisson–Boltzmann
equations

The Poisson equation for the mean electrostatic potential W rð Þ
at a perpendicular distance r from the cylinder axis reads

r2W rð Þ ¼ � e
e0�

X
s

zsqsgs rð Þ; ð3Þ

where gs rð Þ ¼ qs rð Þ=qs is the cylinder-ion singlet distribution func-
tion for the ion species s, with qs being the bulk density of the same
ions species. In the Boltzmann approximation
gs rð Þ ¼ exp �ezsbW rð Þð Þ, where b ¼ 1= kBTð Þ; kB is the Boltzmann con-
stant and T the temperature. Substituting this gs in the above equa-
tion leads to the NLPB equation, which in the present cylindrical
symmetry can be written as

1
r

d
dr

r
dW rð Þ
dr

� �
¼ � e

e0�
X
s

zsqs exp �ezsbW rð Þð Þ: ð4Þ

The mean field nature of the classical PB theory is apparent from the
fact that the inter-ionic correlations are neglected. The other impor-
tant drawback is that the ions are treated as point ions so that all
ionic exclusion volume effects are ignored. Within the potential
approach these deficiencies are taken into account in the MPB the-
ory described below.

The MPB equation appropriate for a cylindrical double layer
was derived by Outhwaite [16]. Further work was done by
Bhuiyan and Outhwaite [17–19] in the early 1990s and later.
We sketch here the principal equations of the theory.

The MPB cylinder-ion singlet profile qs rð Þ ¼ qsgs rð Þ can be writ-
ten as

qs rð Þ ¼ qsns rð Þ exp � bq2s
2e0�d

F � F0ð Þ � bqsF
2
ffiffi
r

p u r þ dð Þ þ u r � dð Þf g
h

þ bqs F�1ð Þ
2d

ffiffi
r

p
R rþd
r�d u Rð ÞdR

i
;

ð5Þ

where u rð Þ ¼ ffiffiffi
r

p
W rð Þ.

F ¼ 1= 1þ jdð Þ � jd=pð ÞSf g Rþ d=2 6 r 6 Rþ 3d=2;
1= 1þ jdð Þ r P Rþ 3d=2;

�
ð6Þ

F0 ¼ lim
r!1

F ¼ 1= 1þ jDdð Þ; ð7Þ

with

S ¼
Z p=2

h0

sin h cos�1 c � cos2 h
2r=dð Þ sin h

� �
dh ; ð8Þ

h0 ¼ sin�1 r � Rþ d=2ð Þ
d

	 

; ð9Þ

c ¼1� R
d
þ 1
2

� �2

þ r
d

� �2
; ð10Þ

with j and jD being the local and bulk Debye-Hückel parameters

j2 ¼ e2b
e0�

X
s

z2sqs rð Þ; ð11Þ

jD ¼lim
r!1

j : ð12Þ

The exclusion volume term ns rð Þ is the same as for the planar double
layer [23]. This approximation has proved reasonable in earlier
works. [17–19]
3

ns rð Þ ¼ qs rjqs ¼ 0ð Þ=qs

¼ H r � Rþ d=2ð Þð Þ exp 2p
R1
r

X
c

"
R yþd
max Rþd=2;y�dð Þ x� yð Þqc xð Þ exp �bqc/ y; xð Þ

n o
dxdy

i
;

ð13Þ

/ y; xð Þ ¼ F
4pd

Z
V
r2WdV ð14Þ

H xð Þ is the Heaviside function, while / y; xð Þ is the fluctuation
potential evaluated on the exclusion surface of the discharged ion.
The MPB theory is seen to reduce to the nonlinear PB theory upon
taking ns rð Þ ¼ 1; F ¼ F0 and d ! 0. The MPB theory was solved
numerically using a quasi-linearization iterative procedure [24,25].

As indicated before, this planar double layer formulation of the
n xð Þwas found to be a good approximation in cylindrical symmetry
(Refs. [17–19]) at the model parameters used, which were very
similar to those employed here. Dorvilien et al. [19] noted very
good agreement between the MPB W rð Þ and gs rð Þ with the corre-
sponding MC simulations. We further emphasize the fact that the
shape of the ions, however, is independent of the geometry of
the double layer, and remains spherical. In all applications of the
MPB in planar, cylindrical, and spherical symmetries [39], the for-
mulation of the exclusion volume term treats the ions as charged
hard spheres.

2.3. Integral equations theory in the HNC/MSA approximation

The HNC/MSA integral equation is based on the multicompo-
nent Ornstein–Zernike equation for 3 species, with one species M
corresponding to the single, infinite and uniformly charged cylin-
drical colloid and the remainder being the two RPM ion species.
Since the quantity of interest is the distribution of ions around
the cylinder, the Ornstein–Zernike equation is expressed in terms
of total and the pair correlation functions, which are related by
hMj rð Þ ¼ gMj rð Þ � 1. To obtain a closed system, from the fundamen-
tal Ornstein–Zernike equation, the HNC approximate closure is
used for the colloid-ion direct correlation function cMj rð Þ and the
bulk MSA closure for the analytic ion-ion direct correlation func-
tion ckj rð Þ [26], where M; j; k represent the colloid and ions, respec-
tively. This leads to the following result, dropping the subscript M,

gj rð Þ ¼ exp �buj rð Þ þ
X
k¼þ;�

qk

Z
gk tð Þ � 1½ � cMSA

kj sð Þd3t

( )
: ð15Þ

In a previous paper by one of the present authors [21], the integral
in the RHS of the previous equation has been performed in cylindri-
cal coordinates and, consequently, the following detailed expres-
sion for the pair of HNC/MSA integral equations of the cylindrical
electrical double layer, for a constant surface electrostatic potential
W0, has been given, namely

gj rð Þ ¼ exp �zjebW0 þ zj
R1
Rþ d=2ð Þ f

W0½ � r; tð Þ �qd tð Þdt
n

þzj

Z 1

Rþ d=2ð Þ
Kd r; tð Þ �qd tð Þdt þ

Z 1

Rþ d=2ð Þ
Ks r; tð Þ �qs tð Þdt þ qA rð Þ

)
;

ð16Þ
with j ¼ þ;- and r P Rþ d=2ð Þ,
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f W0½ � r; tð Þ ¼ be2

2e0�
t ln

R2 r2 þ t2 þ jr2 � t2j� �
2r2t2

" #
; ð17Þ

q ¼
X
k¼þ;�

qk; ð18Þ

�qs tð Þ ¼
X
k¼þ;�

qk gk tð Þ � 1½ �; ð19Þ

�qd tð Þ ¼
X
k¼þ;�

zkqk gk tð Þ � 1½ �; ð20Þ

Ks r; tð Þ ¼ �4t
Z /0

0
c1 J0 /ð Þ þ 6gc2 J1 /ð Þ þ 1

2
gc3 J3 /ð Þ

	 

d/; ð21Þ

for jr � tj 6 d and Ks r; tð Þ ¼ 0 for jr � tj > d,

A rð Þ ¼ �
Z Rþ d=2ð Þ

0
Ks r; tð Þdt; ð22Þ

for r 6 Rþ 3d=2ð Þ, and

Kd r; tð Þ ¼ e2b
pe0�

t
Z /0

0
J2 /ð Þ � 2CJ0 /ð Þ

1þ Cdð Þ þ
C2J1 /ð Þ
1þ Cdð Þ2

" #
d/; ð23Þ

for jr � tj 6 d and Kd r; tð Þ ¼ 0 for jr � tj > d. In the previous
equations

g ¼ 1
6
pqd3

; ð24Þ

c1 ¼ 1þ 2gð Þ2
1� gð Þ4

; ð25Þ

c2 ¼ � 1þ g=2ð Þð Þ2
d 1� gð Þ4

; ð26Þ

c3 ¼ 1

d3 c1; ð27Þ

Cd ¼ �1
2
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jDd

p
; ð28Þ

/0 ¼ arccos
r2 þ t2 � d2

2rt

" #
; ð29Þ

Z0 /ð Þ ¼ d2 � r2 � t2 þ 2rt cos/
� �1=2

; ð30Þ

S0 /ð Þ ¼ r2 þ t2 � 2rt cos/
� �1=2

; ð31Þ

J0 /ð Þ ¼ Z0 /ð Þ; ð32Þ

J1 /ð Þ ¼ 1
2
dZ0 /ð Þ þ 1

2
S0 /ð Þ½ �2 J2 /ð Þ; ð33Þ

J2 /ð Þ ¼ ln
dþ Z0 /ð Þ
S0 /ð Þ

� �
ð34Þ

and

J3 /ð Þ ¼ 1
4
dZ0 /ð Þ d2 þ 3

2
S0 /ð Þ½ �2

	 

þ 3
8

S0 /ð Þ½ �4 J2 /ð Þ: ð35Þ

It must be noted that, if the interionic correlations due to the finite
size of the ions are neglected in Eq. (16), Ks r; tð Þ ¼ Kd r; tð Þ ¼ 0 every-
where and, thus, such equation becomes
4

gj rð Þ ¼ exp �zjebW0 þ zj

Z 1

Rþ d=2ð Þ
f W0½ � r; tð Þ �qd tð Þdt

( )
; ð36Þ

for r P Rþ d=2ð Þ. The prior expression represents, in fact, the inte-
gral equation version of the celebrated Poisson–Boltzmann differen-
tial equation (see Eq. (4)), for cylindrical geometry and constant W0,
supplemented with the so-called Stern layer correction.

Noticeably, in this paper we will investigate systems of cylindri-
cal double layers with a constant surface charge density, r0. Thus,
it is convenient, for numerical calculation purposes, to recast Eq.
(16) in terms of r0. The resulting HNC/MSA system of integral
equations is

gj rð Þ ¼ exp �zj beR
e0�

� �
ln R

Rþ d=2ð Þ

h i
r0 þ zj

R1
Rþ d=2ð Þ f

r0½ � r; tð Þ �qd tð Þdt
n

þzj

Z 1

Rþ d=2ð Þ
Kd r; tð Þ �qd tð Þdt þ

Z 1

Rþ d=2ð Þ
Ks r; tð Þ �qs tð Þdt þ qA rð Þ

)
;

ð37Þ
where r P Rþ d=2ð Þ; j = +,�, and

f r0½ � r; tð Þ ¼ be2

2e0�
t ln

Rþ d=2ð Þð Þ2 r2 þ t2 þ jr2 � t2j� �
2r2R2

" #
: ð38Þ

Correspondingly, if the interionic correlations due to the finite size
of the ions are not taken into account in Eq. (37), this equation turns
into

gj rð Þ¼ exp �zj
beR
e0�

� �
ln

R
Rþ d=2ð Þ

	 

r0þ zj

Z 1

Rþ d=2ð Þ
f r0½ � r;tð Þ �qd tð Þdt

( )
;

ð39Þ
which is the integral equation form of the Poisson–Boltzmann dif-
ferential equation, for cylindrical geometry and constant r0, with
the Stern layer correction.

To obtain the results reported below, the system of integral
equations for the electrical double layer in cylindrical geometry,
given by Eq. (37), was solved numerically via a robust and efficient
Finite Element method. The details of the application of such a
technique can be consulted elsewhere [27,28].

2.4. Monte Carlo simulations

The electric field produced by the infinite rigid charged cylinder
of radius R beyond its surface is equivalent to that generated by an
infinite line of charge of density k, which is placed in the center of
the cylinder along its symmetry axis. In order to compare simula-
tion data and theoretical results, we have placed Ncyl equally
spaced point-charges qs ¼ e=10 along the cylinder’s symmetry axis
of length L [22], where e is the proton charge. As a result, the linear
charge of density per unit length and the corresponding surface
charge density are defined, respectively, as

k ¼ Ncylqs

L
ð40Þ

and

r0 ¼ Ncylqs

2pRL
: ð41Þ

The interaction between an ion i of diameter d and a point-charge qs

located along the line of charge located at the symmetry axis of the
cylinder is given by

u�
ij r

0
i; ris

� � ¼ 1; for r0i < Rþ d
2 ;

eziqs
4pe0�ris

; for r0i P Rþ d
2 ;

8><>: ð42Þ
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where r0i is the perpendicular distance of an ion i to the line of
charge placed at the center of the hard cylinder, ris ¼ jri � rsj is
the distance between an ion i (of charge ezi) and a point-charge qs

located along the line of charge.
A cubic simulation box of length L with periodic boundary con-

ditions has been used to perform NVT Monte Carlo simulations via
the Metropolis algorithm [29,30]. In order to avoid border effects,
the length L is several times the Debye length of the supporting
electrolyte. In typical runs, from 4,000 to 7,000 particles have been
placed in the simulation box. The total number of ions is also
adjusted to obtain the desired bulk concentration far away from
the cylinder surface, but always fulfilling the electroneutrality con-
dition, i.e.,

XNcyl

s¼1

qs þ Ncz�eþ Nþzþeþ N�z�e ¼ 0 ð43Þ

where Ncyl is the number of discrete charges placed on the line of
charge, Nc and z� are the number and valence of free counterions
of the line of charge, and Nk and zk, for k = +,�, are the number of
ions and the valence corresponding to the ionic species k constitut-
ing the supporting electrolyte, respectively.

The integrated linear charge per unit length can be defined as

Q rð Þ ¼ kþ 2p
X
i¼þ;�

Z r

R
eziqi tð Þtdt; ð44Þ

and the mean electrostatic potential as a function of r is given by

W rð Þ ¼
Z 1

r

1
2pe0�

Q tð Þ
t

dt ð45Þ

for r P R. In particular, the mean electrostatic potential at the sur-
face and at the Helmholtz plane are given by W0 ¼ W r ¼ Rð Þ and
WH ¼ W r ¼ Rþ d=2ð Þ, respectively. The above definitions of the
integrated linear charge per unit length and mean electrostatic
potential as a function of the perpendicular distance to the cylin-
der’s surface are valid for Monte Carlo simulations and for the the-
oretical calculations using the NLPB equation, the MPB theory, and
integral equations with the HNC/MSA closure.

Several computational schemes alternative to Ewald sums have
been proposed to properly handle long-ranged Coulombic interac-
tions [31–36]. In this work, we have used the classical Ewald sums
approach [29,30] with a damping constant a ¼ 5=L (where L is the
length of the cubic simulation box) and 725 vectors in the k-space
to compute the reciprocal space contribution to the total electro-
static energy (details of the implementation are discussed else-
where [12,13,37]). In all MC simulations, at least 2� 105 MC
cycles were executed for thermalization, and from 1� 106 to
2� 106 MC cycles have been performed to calculate the canonical
average.

2.5. Generalization of the capacitive compactness in the presence of a
non-zero surface electrostatic potential at the point of zero charge

From the physical definition of a conventional capacitor, the dif-
ference of the electrostatic potential between the electrodes is pro-
duced by the surface charge on the electrodes. By the
electroneutrality condition, the charge on an effective electrode
associated to the diffuse electrical double layer is of the same mag-
nitude and opposite sign regarding the charge present at the elec-
trode associated to the colloidal surface. In the absence of charge at
the colloidal surface, a zero charge is expected at the effective elec-
trode associated to the diffuse electrical double layer. However,
notice that a mean electrostatic potential different from zero could
be observed at the surface of a neutral colloid, due to a spatial dis-
tribution of charge associated to the diffuse electrical double layer,
5

which might result from ionic size and/or charge asymmetry, ion
correlations, polarization effects, ionic specific adsorption, etc.

On the other hand, in previous works [2–7], the capacitive com-
pactness in cylindrical, planar, and spherical geometries have been
defined, in general, as:

sc;cylinder ¼ R exp
e0�W0

Rr0

� �
ð46Þ

sc;wall ¼ e0�W0

r0
ð47Þ

sc;sphere ¼ Rsphere 1� e0�W0

Rspherer0

� �	 
�1

: ð48Þ

In these definitions, it has been assumed that the mean electrostatic
potential at the colloidal surface tends to zero when the colloidal
surface charge density goes also to zero, although the ratio of both
quantities has a finite value. These conditions are fulfilled, for
instance, by the non-linear Poisson–Boltzmann theory of point ions,
with symmetric valences z : z and equal closest ionic approach dis-
tances to the colloidal surface. Thus, Eqs. (46)–(48) can be used to
calculate the capacitive compactness for any surface charge density
r0. In the presence of a spherical or a planar neutral electrode the
NLPB theory reduces to the Debye-Hückel formalism, and the
capacitive compactness is equal to

sDHc;wall ¼
1
jD

¼ kD ð49Þ

sDHc;sphere ¼
1
jD

¼ kD ð50Þ

where kD is the well-known Debye length,

k�1
D ¼ jD ¼

X
i

qbulk
i z2i e

2

e0�kBT

0B@
1CA

1
2

; ð51Þ

which only depends on the bulk properties of the electrolyte. For
the case of a cylindrical electrode with radius R, the respective
capacitive compactness is equal to the Debye length but now mul-
tiplied by a factor that depends on dimensionless parameter jDR,
i.e.,

sDHc;cylinder ¼ kD jDRð Þ � exp
J0 jDRð Þ

jDRJ1 jDRð Þ
� �	 


; ð52Þ

with J0 and J1 being the zero and first order modified Bessel func-
tions of the second kind, respectively [9]. Notice that in the case
of the NLPB theory with symmetric valences z:z and equal closest
ionic approach distances to the colloidal surface (mentioned above),
for these three geometries of neutral electrodes, the mean electro-
static potential at the colloidal surface is zero by symmetry. Inter-
estingly, the corresponding ratio of these last two quantities is
finite and well defined in the limit of a zero colloidal surface charge.
This behaviour is also physically expected in more sophisticated
statistical mechanics approaches and/or molecular simulations for
systems with fully-symmetric electrolytes.

Contrastingly, if the mean electrostatic potential at the colloidal
surface is finite when the colloid is uncharged, the capacitive com-
pactness given by Eqs. (46)–(48) presents a singularity. Thus, we
propose here that the mean electrostatic potential at the colloidal
surface W0 r0ð Þ be replaced by this quantity minus the surface
mean electrostatic potential when the colloid is uncharged (this
last quantity being the pzc):

fW0 r0ð Þ ¼ W0 r0ð Þ �W0 r0 ¼ 0ð Þ: ð53Þ
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Then, the capacitive compactness in cylindrical, planar, and spheri-
cal geometries can be still calculated by using Eqs. (46)–(48), after

replacing W0 r0ð Þ by fW0 r0ð Þ. From a physical point of view, Eq.

(53) is justified by considering that two solutions (W rð Þ and gW rð Þ)
of the Poisson equation of electrostatics

r2W rð Þ ¼ q rð Þ
e0�

ð54Þ

can differ at most by a constant. By convention, the mean electro-
static potential W rð Þ is usually defined as zero very far away from
the charged colloidal surface, for an arbitrary surface charge density

r0. In Eq. (53), the mean electrostatic potential eWðrÞ is defined as
zero when r ¼ R and r0 ¼ 0.

On the other hand, notice that a pzc can be observed experi-
mentally in the presence of specific ionic adsorption [8,9]. In the
absence of specific ionic adsorption, a finite pzc has also been
observed for systems with size-asymmetric ions [11–13]. In this
work, we show that a finite pzc can be observed in the presence
of equally sized ions with asymmetric valences. Other interesting
consequences of breaking the ionic asymmetry in size and/or
valence in the absence of specific ionic adsorption have been dis-
cussed in a recent review [38].

From the physical arguments discussed above, it is expected
that the Eq. (53) be valid at least in cylindrical, planar, and spher-
ical geometries if the pzc is finite. In the absence of a pzc, the
capacitive compactness is well defined if the ratio W0 r0ð Þ=r0 is
finite, as occurs in the NLPB theory and in integral equations theory
in the HNC/MSA approximation in size-symmetric and valence
asymmetric electrolytes as it is exhibited below.
Fig. 1. (Color online): Mean electrostatic potential at the Helmholtz plane, WH , as a
function of the surface charge density, r0, in the presence of the following �1 : zþ
electrolytes: (a) �1 : þ1; (b) �1 : þ2; and (c) �1 : þ3. Solid circles, dot-dashed
lines, solid lines and dashed lines correspond to MC simulations, NLPB equation,
integral equations in the HNC/MSA, and the MPB theory, respectively. The
monovalent anions have the same concentration qbulk

� ¼ 1M in all instances, and
the concentration of cations is adjusted, accordingly, in order to fulfill the
electroneutrality condition as a function of their valence zþ .
3. Results and discussion

Given that the mean electrostatic potential at the colloidal sur-
face and that at the Helmholtz plane are related by the equation

W0 r0ð Þ ¼ k
2pe0�

ln 1þ d=2
R

� �
þWH r0ð Þ, we will discuss the behaviour

of WH r0ð Þ, instead of W0 r0ð Þ, in order to emphasize the curvature
variation of the WH , as a function of the valence asymmetry. We
begin by displaying in Fig. 1 the function WH r0ð Þ for several
�1 : zþ electrolytes. This property has been obtained via MC simu-
lations, the NLPB equation, the MPB theory, and the integral equa-
tions theory in the HNC/MSA approximation. In Fig. 1(a) it is seen
that, in the presence of a size- and charge-symmetric �1 : þ1 elec-
trolyte, WH ¼ 0 at r0 ¼ 0 according to both the simulations and
theories as can be observed in the corresponding inset. Physically,
if the colloid is neutral, this behaviour is expected because in an
all-symmetric (in ionic size and valence) binary electrolyte the
ionic profiles of cations and anions are identical near the colloidal
surface. When r0 increases, WH increases monotonically for MC
and the theories. The MPB results correspond very well to the
MC simulations data. Contrastingly, at large r0 values, the NLPB
equation results overestimate WH , whereas the HNC/MSA integral
equations data underestimate WH .

Fig. 1(b) illustrates the case for a size-symmetric but charge-
asymmetric �1 : þ2 electrolyte. The WH displays a non-zero value
at r0 ¼ 0 according to MC simulations and the MPB theory,
whereas the NLPB and HNC/MSA results predict a zero WH at
r0 ¼ 0 (see the corresponding inset). The breaking of the valence
symmetry promotes an asymmetric ionic adsorption at the col-
loidal surface, as shown in the Figs. 2 (a) and 3(a) for �1 : þ2
and �1 : þ3 electrolytes, respectively. The MPB distribution func-
tions have a discontinuity in the gradient at r ¼ Rþ 3d=2. Increas-
ing the surface charge ameliorates this failure, see the radial
distribution plots in references [17–19]. The gradient discontinuity
arises because it is not possible to satisfy accurately the fluctuation
6

potential boundary conditions at the intersection of the cylinder/
ion exclusion volumes with an approximate fluctuaton potential.
This discontinuity also occurs for the planar and spherical double
layers, but it does not arise for the bulk situation where the fluctu-
ation potential boundary conditions are satisfied.

The asymmetric ionic adsorption means that the corresponding
net ionic charge density per unit volume is also different from zero
near the surface of an uncharged colloid. This produces a non-zero
mean electrostatic potential in the region located between the col-
loidal surface and the Helmholtz plane, as shown in Figs. 2(b) and 3
(b). The MC and MPB values ofW0 at r0 ¼ 0 for the �1 : þ2 and the
�1 : þ3 electrolytes are shown in Table 1. In the case of the NLPB
and HNC/MSA theories, both theoretical approaches predict a zero
mean electrostatic potential over the entire extension of the elec-
trical double layer when r0 ¼ 0. On the other hand, WH increases
monotonically when r0 increases as it is observed in Fig. 1(b).
However, a change of curvature is predicted by simulations and
all the theories as a function of r0 in the presence of a �1 : þ2 elec-
trolyte. As before for the �1 : þ1 electrolyte displayed in Fig. 1(a),



Fig. 2. (Color online): (a) Radial distribution function (RDF), gi rð Þ, and (b) mean
electrostatic potential,W rð Þ, as a function of the distance to the surface of an infinite
uncharged cylinder immersed in a �1:+2 electrolyte. Symbols and lines correspond
to MC simulations and the MPB theory, respectively. The blue circles and the blue
solid line correspond to the RDF of monovalent anions; the black squares and the
black dashed line correspond to the RDF of divalent cations; the green triangles and
the green dot-dashed line are associated to the mean electrostatic potential. The
monovalent anions have a concentration qbulk

� ¼ 1M, and the concentration of
cations is adjusted, accordingly, in order to fulfill the electroneutrality condition as
a function of their valence zþ.

Fig. 3. (Color online): (a) Radial distribution function (RDF), gi rð Þ, and (b) mean
electrostatic potential,W rð Þ, as a function of the distance to the surface of an infinite
uncharged cylinder immersed in a �1:+3 electrolyte. Symbols and lines correspond
to MC simulations and the MPB theory, respectively. The blue circles and the blue
solid line correspond to the RDF of monovalent anions; the black squares and the
black dashed line correspond to the RDF of trivalent cations; the green triangles and
the green dot-dashed line are associated to the mean electrostatic potential. The
monovalent anions have a concentration qbulk

� ¼ 1M, and the concentration of
cations is adjusted, accordingly, in order to fulfill the electroneutrality condition as
a function of their valence zþ .

Guillermo Iván Guerrero-García, L.B. Bhuiyan, C.W. Outhwaite et al. Journal of Molecular Liquids 367 (2022) 120538
the MPB results agree very well with MC simulations data, whereas
the NLPB equation results overestimateWH , and the HNC/MSA data
underestimate WH at large r0 values.

The �1 : þ3 electrolyte results for WH r0ð Þ are given in Fig. 1(c).
This plot shows that the deviation from the �1 : þ1 system paral-
lels that for the 1 : 2 electrolyte, whereas the increase of the coion
valency from 2 to 3 augments the magnitude of WH at r0 ¼ 0.
Again, when r0 increases, the WH displays a behaviour similar to
that observed in the presence of a �1 : þ2 electrolyte in Fig. 1
(b): WH shows a change of curvature as a function of r0 and the
MPB results again agree very well with MC simulations data,
whereas the NLPB and HNC/MSA results overestimate and under-
estimate the WH at large r0 values, respectively.

In Fig. 4, the capacitive compactness sc plots corresponding to
the WH curves of Fig. 1 are displayed. In particular, notice that
the capacitive compactness sc is well defined for the �1 : þ1 elec-
trolyte in the limit of r0 ! 0, beingW0 r0 ¼ 0ð Þ ¼ 0 due to the sym-
metry in the size and valence of the binary electrolyte (see Fig. 4
(a)). In the present instance, sc decreases monotonically as a func-
tion of r0 according to MC simulations, the NLPB equation, the
MPB theory, and the HNC/MSA integral equations. As it has been
shown in a previous work in planar and spherical geometry [4],
7

the monotonic decreasing of sc indicates a shrinking of the electri-
cal double layer as a function of r0. This behaviour is also consis-
tent with the monotonic curvature of WH observed in Fig. 1(a)

according to Eq. (46) by noting that d2W0
dr2

0
does not change its sign.

On the other hand, the sc for the linearized Poisson–Boltzmann
(or Debye-Hückel) theory displays a constant value, which is also
attained by the NLPB equation at r0 ¼ 0 as expected. This conver-
gence of the numerical NLPB results to the analytical Debye-Hückel
values is observed in all 1 : z electrolytes, as it can be seen in Figs. 4
(b) and 4(c). The MPB results agree well with the MC results spe-
cially at high values of r0, whereas the HNC/MSA integral equa-
tions results coincide very well with the MC results at low and
intermediate values of r0.

In Fig. 4(b) for a -1: þ2 system, the sc displays a non-monotonic
behaviour as a function of r0 according to MC simulations and all
the theories. Near r0 ¼ 0; sc increases as a function of r0 until a
maximum is reached at a critical surface charge density given by
the equation

W0

r0
¼ dW0

dr0

� �
: ð55Þ



Table 1
Mean electrostatic potential at the surface of an uncharged cylinder, W0 r0 ¼ 0ð Þ, immersed in a �1 : zþ electrolyte. The monovalent anions have the same concentration qbulk

� =
1 M in all instances, and the concentration of cations is adjusted, accordingly, in order to fulfill the electroneutrality condition as a function of its valence zþ .

z� zþ NLPB [mV] HNC/MSA [mV] MPB [mV] MC [mV]

-1 +2 0 0 �1.76 �1.7
-1 +3 0 0 �4.50 �4.0

Fig. 4. (Color online): Capacitive compactness, sc , as a function of the surface
charge density, r0, in the presence of the following �1 : zþ electrolytes: (a) �1 : þ1,
(b) �1 : þ2, and (c) �1 : þ3. Solid circles, dot-dashed lines, solid lines, dashed lines,
and dotted lines correspond to MC simulations, NLPB equation, integral equations
in the HNC/MSA approximation, the MPB theory, and the analytic Debye-Hückel
approximation (see Eq. (52)), respectively. The monovalent anions have the same
concentration qbulk

� ¼ 1M in all instances, and the concentration of cations is
adjusted, accordingly, in order to fulfill the electroneutrality condition as a function
of their valence zþ .
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In addition, at the critical surface charge density r�
0

dsc
dr0

¼ d2W0

dr2
0

¼ d2sc
dr2

0

¼ 0: ð56Þ
8

For r0 > r�
0 it is seen that sc decreases monotonically as a function

of r0. As discussed previously [4], the increasing of sc near r0 ¼ 0 is
associated with an expansion of the electrical double layer, whereas
the monotonic decreasing of sc for r0 > r�

0 indicates a shrinking of
the electrical double layer. The maximum of sc corresponds to the
point at which a change of curvature of WH occurs in Fig. 1 accord-

ing to Eq. (56) by recalling that W0 r0ð Þ ¼ k
2pe0�

ln 1þ d=2
R

� �
þWH r0ð Þ.

Interestingly, the NLPB results predict qualitatively the same beha-
viour displayed by MC simulations. The MPB results reproduce the
MC results well specially at intermediate and high values of r0,
whereas the HNC/MSA integral equations data agree well with the
simulations specially near r0 ¼ 0.

For a 1:3 system in Fig. 4(c), sc shows a similar non-monotonic
behaviour to that observed in Fig. 4(b) as a function of r0. Near
r0 ¼ 0 we have sc increasing until a maximum is reached at a crit-
ical r�

0, whereas for r0 > r�
0 it is seen that sc decreases monotoni-

cally. The maximum of sc at r�
0 corresponds to the point at which a

change of curvature of WH occurs in Fig. 1(c). Here, however, the
increase of the anion’s valence from zþ ¼ þ2 to zþ ¼ þ3 decreases
the value of sc at r0 ¼ 0, and increases the difference between the
maximum value of sc and the value of sc at r0 ¼ 0. In all the three
cases in Fig. 4, the MPB values for sc in the neighbourhood of
r0 ¼ 0 are slightly larger than the MC results. This is due to the
approximations in calculating the fluctuation potential and the
choice of the planar exclusion volume term, see Eq. (13).

In order to analyze the non-dominance of counterions, in Fig. 5
we have plotted the difference of the surface mean electrostatic
potential D�1:þ1

�1:zþ W0 ¼ W�1:þ1
0 �W�1:zþ

0 , where W�1:þ1
0 and W�1:zþ

0 cor-
respond to the mean electrostatic potential on the electrode’s sur-
face W0 in the presence of a �1 : þ1 and a �1 : zþ electrolyte,
respectively, when the properties of counterions in both elec-
trolytes are the same. In this figure, it is observed that D�1:þ1

�1:zþ W0

tends to the same finite value at r0 ¼ 0 according to MC simula-
tions and the MPB theory, whereas the NLPB equation and the
HNC/MSA integral equations predict a zero value for D�1:þ1

�1:zþ W0 if

the colloidal surface is uncharged. The NLPB D�1:þ1
�1:zþ W0 remains pos-

itive and tends to zero in the limit of an infinite surface charge den-
sity r0. An analogous behaviour has been observed in planar
geometry [7]. Contrastingly, MC simulations, the HNC/MSA and
the MPB results show that the D�1:þ1

�1:zþ W0 does not converge to zero
at large r0 values. Moreover, the MC data show a change of sign of
D�1:þ1

�1:zþ W0 around the particular surface charge density r00 � 0:15

C=m2 for D�1:þ1
�1:þ2W0 and around r00 � 0:125 C=m2 for D�1:þ1

�1:þ3W0,
according Monte Carlo simulations. Notice that also the MPB and
HNC/MSA theories display a similar change of sign. This means that
there is change of precedence in the surface mean electrostatic
potential as a function of r0 : W�1:þ1

0 > W�1:zþ
0 if r0 < r00 whereas

W�1:þ1
0 < W�1:zþ

0 if r0 > r00. A similar change of precedence of the
surface mean electrostatic potential as a function of r0 at the
Helmholtz plane has been reported in Ref. [15] in planar and spher-
ical geometry.

The difference of the capacitive compactness
D�1:þ1

�1:zþ sc ¼ s�1:þ1
0 � s�1:zþ

0 is plotted in Fig. 6. As can be observed,

the D�1:þ1
�1:zþ sc tends approximately to the same finite value at



Fig. 5. (Color online): Difference of the surface mean electrostatic potential,
D�1:þ1

�1:zþ W0 ¼ W�1:þ1
0 �W�1:zþ

0 , where W�1:þ1
0 and W�1:zþ

0 correspond to the mean
electrostatic potential on the electrode’s surface in the presence of a �1 : þ1 and
a �1 : zþ electrolyte, respectively. The monovalent anions have the same concen-
tration qbulk

� ¼ 1M in all instances, and the concentration of cations is adjusted,
accordingly, in order to fulfill the electroneutrality condition as a function of their
valence zþ .

Fig. 6. (Color online): Difference of the capacitive compactness,
D�1:þ1

�1:zþ sc ¼ s�1:þ1
c � s�1:zþ

c , where s�1:þ1
c and s�1:zþ

c correspond to the capacitive
compactness in the presence of a �1 : þ1 and a �1 : zþ electrolyte, respectively. The
monovalent anions have the same concentration qbulk

� ¼ 1M in all instances, and the
concentration of cations is adjusted accordingly in order to fulfill the electroneu-
trality condition as a function of its valence zþ.
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r0 ¼ 0 according to MC simulations and the theories for zþ ¼ þ2.
For zþ ¼ þ3 the MPB theory underestimates the corresponding
MC values at r0 ¼ 0. This is again due to the use of an approximate
fluctuation potential and the planar exclusion volume as noted in
the overestimate of sc in Fig. 4 at small r0. The NLPB D�1:þ1

�1:zþ sc is
always positive decreasing monotonically to zero in the limit of
an infinite surface charge density r0. An analogous behavior has
been reported in planar geometry [7] according to the NLPB theory.
In contrast, MC simulations, the HNC/MSA and the MPB results
show a change of sign of D�1:þ1

�1:zþ sc . In particular, the MC data show

a change of sign of D�1:þ1
�1:zþ sc around the particular surface charge

density r000 � 0:09C=m2 for D�1:þ1
�1:þ2W0 and around r000 �

0:075C=m2 for D�1:þ1
�1:þ3W0. This indicates that there is change of

precedence of the capacitive compactness as a function of
r0 : s�1:þ1

c > s�1:zþ
c if r0 < r000 whereas s�1:þ1

c < s�1:zþ
c if r0 > r000,

with r000 being the crossover surface charge density.
4. Conclusions

In this work, we have proposed a generalization of the capaci-
tive compactness of the electrical double layer when there is a
9

non-zero surface mean electrostatic potential (or pzc) around an
uncharged colloid. These non-zero pzc’s for divalent and trivalent
coions have been predicted by the MPB theory and supported by
the MC simulations. Increasing the coion charge from 2 to 3
increases the pzc. Non-zero pzc’s for 1:2 salts have been observed
in the MPB theory for planar and spherical double layers [39,40].
The predictions of the MPB theory for the mean electrostatic
potential, in general, are also closer to the simulations than that
due to the other theories. Admittedly, the MPB singlet distribution
functions display a discontinuity in the gradient at a distance 3d=2
from the surface of the cylinder, which arises from the approxi-
mate calculation of the fluctuation potential. This discontinuity is
clearly an artifact of the theory. Neither the HNC/MSA nor NLPB
theory predicts a pzc. The failure of the HNC/MSA integral equation
is probably due to the neglect of the interplay between the ion cor-
relations and excluded volume effects in the MSA bulk direct cor-
relation function cij rð Þ, when the ions are in the neighbourhood of
the cylinder.

The pzc results from the breaking of the valence symmetry of
size-symmetric electrolytes with multivalent coions. In such a sce-
nario, the capacitive compactness displays a maximum as a
function of the surface charge density, suggesting an expansion
and shrinking of the electrical double layer in the presence of ion
correlations and ionic excluded volume effects, and also, notably,
in the NLPB theory. A change of precedence of the surface (and
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Helmhotz) mean electrostatic potential and the capacitive com-
pactness for �1 : zþ electrolytes regarding �1 : þ1 salts has been
clearly shown by MC simulations and the non-mean field MPB
and HNC/MSA approaches. The NLPB theory is unable to predict
these phenomena, illustrating the limitations of this mean field
theory. On the other hand, both the HNC/MSA and MPB theories
give the correct qualitative and semi-quantitative behaviour for
the capacitative compactness, with the MPB being closer overall
to the simulation results.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

G. I. G.-G. acknowledges the SEP-CONACYT CB-2016 grant
286105, the 2019 Marcos Moshinsky Fellowship, the National
Supercomputing Center-IPICYT for the computational resources
provided via the grant TKII-IVGU001, and the computing time
granted by LANCAD and CONACYT in the Supercomputer Hybrid
Cluster ‘‘Xiuhcoatl” at GENERAL COORDINATION OF INFORMATION
AND COMMUNICATIONS TECHNOLOGIES (CGSTIC) of CINVESTAV
with the project 13–2022. G.I. G.-G. and E. G.-T. acknowledge the
SEP-CONACYT grant FOP16-2021–01-320091, and express their
gratitude for the assistance from the computer technicians at the
IF-UASLP.

References

[1] E. González-Tovar, F. Jiménez-Ángeles, René Messina, M. Lozada-Cassou, J.
Chem. Phys. 120 (2004) 9782.

[2] G.I. Guerrero-García, E. González-Tovar, M. Chávez-Páez, J. Kłos, S. Lamperski,
Phys. Chem. Chem. Phys. 20 (2018) 262–275.

[3] C.L. Moraila-Martínez, G.I. Guerrero-García, M. Chávez-Páez, E. González-
Tovar, J. Chem. Phys. 148 (2018) 154703.

[4] G.I. Guerrero-García, E. González-Tovar, M. Chávez-Páez, Tao Wei, J. Mol. Liq.
277 (2019) 104–114.

[5] C.N. Patra, RSC Advances 10 (2020) 39017–39025.
[6] E. González-Tovar, J.A. Martínez-González, C.G. Galván Peña, G.I. Guerrero-

García, J. Chem. Phys. 154 (2021) 096101.
[7] J.J. Elisea-Espinoza, E. González-Tovar, J.A. Martínez-González, C.G. Galván

Peña, G.I. Guerrero-García, Mol. Phys. 119 (2021) e1916633.
10
[8] R.J. Hunter, Zeta Potential in Colloid Science, Academic Press, New York, 1981.
[9] R.J. Hunter, Foundations of Colloid Science, Clarendon, Oxford, 1987.
[10] W.B. Russell, D.A. Saville, W.R. Schowalter, Colloidal Dispersions, Cambridge

University Press, Cambridge, UK, 1989.
[11] G.I. Guerrero-García, E. González-Tovar, M. Lozada-Cassou, F.J. Guevara-

Rodríguez, J. Chem. Phys. 123 (2005) 034703.
[12] G.I. Guerrero-García, E. González-Tovar, M. Chávez-Páez, Phys. Rev. E 80

(2009) 021501.
[13] G.I. Guerrero-García, E. González-Tovar, M. Olvera de la Cruz, Soft Matter 6

(2010) 2056–2065.
[14] J.P. Valleau, G.M. Torrie, J. Chem. Phys. 76 (1982) 4623.
[15] G.I. Guerrero-García, E. González-Tovar, M. Quesada-Pérez, A. Martín-Molina,

Phys. Chem. Chem. Phys. 18 (2016) 21852–21864.
[16] C.W. Outhwaite, J. Chem. Soc. Faraday Trans. II 82 (1986) 789.
[17] L.B. Bhuiyan, C.W. Outhwaite, in: L. Blum, F.B. Malik (Eds.), Condens. Matter

Theor., Vol. 8, Plenum, New York, 1993, p. 551.
[18] L.B. Bhuiyan, C.W. Outhwaite, Philos. Mag. B 69 (1994) 1051.
[19] V. Dorvilien, C.N. Patra, L.B. Bhuiyan, C.W. Outhwaite, Condens. Matter Phys.

16 (43801) (2013) 1–12.
[20] E. González-Tovar, M. Lozada-Cassou, L. Bari Bhuiyan, C.W. Outhwaite, J. Mol.

Liq. 270 (2018) 157–167.
[21] E. Gonzales-Tovar, M. Lozada-Cassou, D. Henderson, J. Chem. Phys. 83 (1985)

361.
[22] Z. Ovanesyan, B. Medasani, M.O. Fenley, G.I. Guerrero-García, M. Olvera de la

Cruz, M. Marucho, J. Chem. Phys. 141 (2014) 225103.
[23] C.W. Outhwaite, L.B. Bhuiyan, J. Chem. Soc. Faraday Trans. II 78 (1982) 775.
[24] R.E. Bellman, R.E. Kalaba, Quasilinearization and Nonlinear Boundary-Value

Problems, American Elsevier Publishing Company, New York, 1965.
[25] C.W. Outhwaite, in: K. Singer (Ed.), A Specialist Periodical Reports – Statistical

Mechanics, Vol. 2, The Chemical Society, London, 1975, pp. 188–255.
[26] K. Hiroike, Mol. Phys. 33 (1977) 1195–1198.
[27] L. Mier-y-Terán, E. Díaz-Herrera, M. Lozada-Cassou, R. Saavedra-Barrera, J.

Comput. Phys. 84 (1989) 326–342.
[28] E. González-Tovar, M. Lozada-Cassou, J. Phys. Chem. 93 (1989) 3761–3768.
[29] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University

Press, New York, USA, 1989.
[30] D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic, London,

2002.
[31] I. Fukuda, Y. Yonezawa, H. Nakamura, J. Chem. Phys. 134 (2011) 164107.
[32] G. Vernizzi, G.I. Guerrero-García, M.O. de la Cruz, Phys. Rev. E 84 (2011)

016707.
[33] I. Fukuda, H. Nakamura, Biophys. Rev. 4 (2012) 161.
[34] P.X. Viveros-Mendez, A. Gil-Villegas, J. Chem. Phys. 136 (2012) 154507.
[35] N. Kamiya, I. Fukuda, H. Nakamura, Chem. Phys. Lett. 568 (2013) 26.
[36] J.M. Falcón-González, C. Contreras-Aburto, M. Lara-Peña, M. Heinen, C.

Avendaño, A. Gil-Villegas, R. Castañeda-Priego, J. Chem. Phys. 153 (2020)
234901.

[37] G.I. Guerrero-García, E. González-Tovar, M.O. de la Cruz, J. Chem. Phys. 135
(2011) 054701.

[38] G.I. Guerrero-García, Biophys. Chem. 282 (2022) 106747.
[39] C.W. Outhwaite, L.B. Bhuiyan, Mol. Phys. 74 (1991) 367.
[40] L.B. Bhuiyan, C.W. Outhwaite, Phys. Chem. Chem. Phys. 6 (2004) 3467.

http://refhub.elsevier.com/S0167-7322(22)02077-3/h0005
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0005
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0010
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0010
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0015
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0015
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0020
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0020
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0025
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0030
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0030
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0035
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0035
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0040
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0040
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0045
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0045
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0050
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0050
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0050
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0055
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0055
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0060
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0060
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0065
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0065
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0070
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0075
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0075
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0080
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0085
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0085
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0085
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0085
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0085
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0090
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0095
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0095
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0100
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0100
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0105
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0105
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0110
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0110
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0115
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0120
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0120
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0120
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0125
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0125
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0125
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0125
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0130
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0135
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0135
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0140
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0145
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0145
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0145
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0150
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0150
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0150
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0155
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0160
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0160
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0165
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0170
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0175
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0180
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0180
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0180
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0185
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0185
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0190
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0195
http://refhub.elsevier.com/S0167-7322(22)02077-3/h0200

	Charge asymmetric electrolytes around a rigid cylindrical polyelectrolyte: A generalization of the capacitive compactness
	1 Introduction
	2 Model, theories and simulations
	2.1 Model system
	2.2 The Poisson–Boltzmann and the modified Poisson–Boltzmann equations
	2.3 Integral equations theory in the HNC/MSA approximation
	2.4 Monte Carlo simulations
	2.5 Generalization of the capacitive compactness in the presence of a non-zero surface electrostatic potential at the point of zero charge

	3 Results and discussion
	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


