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The dominance of small ions in the electric double layer of size- and charge-asymmetric
electrolytes: a mean-field study on the charge reversal and surface charge amplification
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The dominance of counterions in the electric double layer of size-asymmetric semi-punctual ions was proposed more than
30 years ago by Valleau and Torrie. According to their theoretical prescription, at large colloidal surface charges, the double
layer properties of a fully asymmetric binary electrolyte become similar to those of a completely symmetric electrolyte if the
properties of counterions are the same in both instances. In the same theoretical framework, we propose here that, for a fixed
concentration of the smallest ionic species and weakly/moderate colloidal surface charges, the valence of small ions rules
or mainly determines the structural and thermodynamic properties of the electric double layer regardless of the colloidal
polarity. In other words, we show that the characteristics of the small ions dominate the double layer structure of non-highly
charged colloids, independently if the small ions are coions or counterions. This is illustrated by a comprehensive analysis of
the ionic and integrated charge profiles around a spherical macroion immersed in a fully size- and charge-asymmetric semi-
punctual electrolyte. Charge reversal and surface charge amplification are observed in the regime of low/medium colloidal
surface charge densities. The origin of these counterintuitive phenomena, and their corresponding localisation properties in
the Helmholtz zone, are explained in terms of the electric double layer structure.

Keywords: charged colloids; charge reversal; surface charge amplification

1. Introduction

The electric double layer term denotes the arrangement
of free ions around a usually charged colloid or surface
immersed in an electrolyte. As it is well known, such a
charge distribution plays a fundamental role in the physi-
cal chemistry of macromolecules since it determines most
of the static and dynamic properties of colloidal disper-
sions [1,2]. A notable example of that is the recently found
connection between the self-assembly process of a viral
capside (e.g., for the cowpea chlorotic mottle virus) and
the neutralisation of its internal protein sub-units due to the
charges of the enclosed RNA [3]. In the past decades, sig-
nificant scientific efforts have been dedicated to develop
an adequate picture of the electric double layer. Theo-
retical models have evolved from simple representations
based on dimensionless, or punctual, electrolytic ions to
more sophisticated ones including, for example, ion corre-
lations, ionic excluded volume effects, image charges and
solvation energies [4–13]. In particular, a decisive effect
that has been successfully incorporated in the latest anal-
ysis of the electric double layer is that coming from the
finite size of the ions. As a consequence of the gradual
refinement of different models, a more faithful description
has been achieved and a new phenomenology has been

∗
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uncovered. Notably, two peculiarities have been described
in recent times: charge reversal and surface charge am-
plification [13–20]. The phenomenon of charge reversal is
related to the local overcompensation of the bare colloidal
charge by opposite-charged ions (or counterions) when the
colloid is immersed in an electrolytic bath [19,21]. The ad-
sorption of like-charged ions (or coions) on the surface of
weakly charged macroions is the so-called surface charge
amplification. In this last instance, the first layer of adsorbed
coions amplifies the bare colloidal charge of macroions
without the additional inclusion of specific interactions
[19,21]. At present, there is an increasing and broad-based
interest in the literature about the sequels and possible appli-
cations of these anomalies in a wide spectrum of situations
in physics, chemistry, biology and technology (for represen-
tative examples of charge reversal and surface charge ampli-
fication in coagulation, biomolecular folding, ion channels,
peptide titration and microfluidics, see Refs. [22–27]).

During the emergence of modern models and ap-
proaches to improve the description of the electric double
layer, it was widely believed that these charge peculiarities,
i.e., charge reversal and surface charge amplification, were
totally absent from pioneeering point-ions treatments based
on the Poisson–Boltzmann equation. In other words, in the

C© 2015 Taylor & Francis
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past, it was thought that charge reversal and surface charge
amplification were exclusive of schemes including sized
ions. However, this belief has been proved to be incorrect
in recent years. Specifically, in 2006, Yu et al. [28] em-
ployed the unequal-radius modified Gouy–Chapman (UR-
MGC) theory to investigate the electric double layer of semi-
punctual ions for an electrified slit. These semi-punctual
ions have a dual behaviour: they interact as charged points
among them, whereas they interact as hard size-asymmetric
spheres with the infinite plates. Note that this idealised elec-
trolyte is different from the ‘de-ionised primitive model’
used in the past by several authors [29–31] to represent, for
instance, a mixture of ‘unhydrated’ point ions interacting
consistently with ‘hydrated’ hard-core ions in the primi-
tive model. To our best knowledge, Yu et al.’s study was
the first work that showed the above irregularities of the
charge in a description founded on the classical Poisson–
Boltzmann equation. In a subsequent study, some of the
present authors [18] reported the appearance of surface
charge amplification for an isolated spherical macroparti-
cle in the presence of size-asymmetric semi-punctual ions.
These semi-punctual results were in qualitative agreement
regarding primitive model Monte Carlo simulations and in-
tegral equations calculations for very weakly charged col-
loidal particles in dilute supporting electrolytes. In partic-
ular, the phenomena of charge reversal and charge ampli-
fication in the Helmholtz zone, which are in the focus of
this work, exhibited a similar qualitative behaviour in the
semi-punctual and primitive models of the electric double
layer in the very low-charge regime. Despite these find-
ings, a comprehensive explanation of the origin of charge
reversal and surface charge amplification in a mean-field
description was not provided in any of these studies.

Apart from Refs [18,28], up to now, no other semi-
punctual mean-field treatment of ions has examined the
phenomena of charge reversal and surface charge amplifi-
cation in colloidal systems. Thus, currently, there is a lack
of a detailed survey of these phenomena for electric dou-
ble layers of fully asymmetric semi-punctual ions in simple
and/or relevant geometries, such as the spherical one. This
issue is very appealing because the URMGC approach of
fully asymmetric semi-punctual ions is a simple and rel-
atively easy-to-solve theory, capable of displaying charge
reversal and surface charge amplification. Moreover, it can
be used to explain, at least in part, the origins of this col-
loidal phenomenology and/or serve as a basis for improved
analysis. Precisely, the aim of this work is to provide a care-
ful investigation of charge reversal and surface charge am-
plification, at the level of a fully asymmetric semi-punctual
ions approach, for the very significant case of a spherical
colloid. In this paper, a fresh reformulation of the URMGC
theory in terms of an integral equation is exposed. Remark-
ably, we have addressed the scantly studied case of size-
and charge-asymmetric electrolytes. The resulting data are
used to characterise the phenomena of charge reversal and

surface charge amplification. We explore their zones of oc-
currence and assess the impact of several parameters of the
system.

2. Model system and theory

The original Poisson–Boltzmann theory of the electric dou-
ble layer was founded on the assumption of electrolytic
point ions. This approach was used in the Gouy–Chapman
(GC) theory to describe the ionic cloud surrounding an in-
finite planar electrode. Afterward, a distance of closest ap-
proach (unique for all the electrolytic species present) was
incorporated to the treatment, giving rise to the modified
Gouy–Chapman (MGC) formalism. This means that a the-
ory of semi-punctual ions has been used since the advent of
the MGC theory. However, it is a renowned fact that any of
the structural functions associated to the GC and MGC the-
ories (viz., the radial distribution functions, gi(r), the mean
electrostatic potential, ψ(r), or the integrated charge, Q(r))
exhibits always a monotonic behaviour. For the precise def-
inition of ψ(r) and Q(r) in terms of the gi(r), see Equations
(12) and (13). In particular, the integrated charge quanti-
fies the accumulated charge coming from the macroparticle
plus the ions contained in a spherical volume of radius r
centred on the spherical colloid. This integrated charge is
a very useful function that characterises the screening in
the electric double layer and, for our purposes, represents a
central quantity since the condition Q(r)Q0 < 0, where Q0

is the bare colloidal charge, indicates the phenomenon of
charge reversal, whereas the pair of conditions Q(r)Q0 > 0
and |Q(r)| > |Q0| implies surface charge amplification. In
the case of the GC and the MGC theories, the integrated
charge goes invariably to zero, i.e., without changes of sign
or maxima/minima, showing that the double layer of ei-
ther punctual ions or semi-punctual ions with equal ‘radii’
neutralises monotonically the colloidal charge, that is, the
phenomena of charge reversal and surface charge amplifi-
cation do not occur in the GC and the MGC formalisms.

Years later, the use of different closest approach dis-
tances between ions and colloids was proposed to improve
the accuracy of the MGC approach. This theory was termed
as the URMGC theory and was introduced by Torrie and
Valleau in the early 1980s to describe the ion distribu-
tion around an infinite charged plate [32]. The solution of
the corresponding differential equation displayed a non-
monotonical comportment of the ionic profiles and the as-
sociated mean electrostatic potential (see, e.g., Figure 5 in
Ref. [32]). As mentioned in the Introduction, such oscil-
lating radial distribution functions and mean electrostatic
potential profiles were unexpected in the URMGC the-
ory since, previously, such behaviour had been observed
exclusively in ion-sized treatments [14,33]. On the other
side, it is remarkable that the inaugural URMGC arti-
cle by Torrie and Valleau did not explored the integrated
charge profiles. Thus, the phenomena of charge reversal and
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surface charge amplification passed unnoticed. Instead of
examining the integrated charge, in Ref. [32] another no-
ticeable event was exposed, the so-called dominance of the
counterions. Citing the authors: ‘. . . Consider in particular
the case of a strong electrical field (of either sign) at the
surface. In this limit, only counterions will be found near
the surface, and the only important ion-size parameter will
be the effective radius of the counterion . . . , which sug-
gested compellingly that there was no real importance in
considering different distances of closest approach between
the ions and the colloid for high surface charges. Unfortu-
nately, such asseveration, rigourously valid for the Poisson–
Boltzmann equation at large fields, diminished the interest
in the URMGC theory and discouraged its use for many
years. The latency of this size-asymmetric semi-punctual
ions theory was broken by the aforementioned paper by
Yu et al. [28], who solved semi-analytically the Poisson–
Boltzmann differential equation for a binary electrolyte in
and out a planar slit. These authors also calculated explicitly
the integrated charge, uncovering the phenomena of charge
reversal and surface charge amplification in semi-punctual-
ions models in planar geometry. In this context, we are here
interested in the theoretical description of the ionic struc-
ture around a spherical macroion, with special emphasis
on the integrated colloidal charge, in the framework of a
semi-punctual-ions mean-field approach. Our main goal is
to analyse and explore detailedly the phenomena of charge
reversal and surface charge amplification in this relevant
geometry.

The system under study consists of a binary electrolyte
bathing a unique spherical colloid. Particularly, in our
model the colloid is taken as a hard sphere of radius R,
with a uniform surface charge density σ0. The ionic species
in the electrolyte are considered as semi-punctual charges

with ‘radius’ ri dissolved in a continuous solvent. As usual,
all the system is supposed to be an electroneutral assembly
of charges. For simplicity, and to avoid image charge effects,
the same value of the dielectric constant, ε, is assumed in
the whole space. Specifically, the ion–ion spherically sym-
metric interactions for the two electrolytic species are then
given by

Uij (r) = zizj e
2

εr
, r > 0, (1)

where i, j = 1, 2, zi are the ionic valences and e is the
protonic charge, whilst the colloid-ion potentials are

UMj (r) =
⎧⎨
⎩

∞, r < R + rj ,

zMzj e
2

εr
, r ≥ R + rj ,

(2)

where the index M denotes the macroparticle or colloid,
j = 1, 2, and Q0 = zMe = 4πR2σ 0 is the native or bare col-
loidal charge. Note that the main premise in our URMGC
approach establishes that the ionic distances of closest ap-
proach to the colloidal surface, r1 and r2, can be different.

For convenience, and instead of using the typical iden-
tification of the two ionic species (i, j = 1, 2) as cations (+)
and anions (−), without loss of generality, herein we will
just discern between one species of small ions with index
s, and another one formed by big ions with index b. Both
species fulfil the condition zszb < 0. In terms of the closest
approach distances, we then have that rs ≤ rb. Accordingly,
in the rest of the paper, the notation with indexes s and b for
the ionic species will be adopted. A diagram of the model
system can be seen in Figure 1.

s

Figure 1 Schematic representation of the size-asymmetric semi-punctual electric double layer. The Helmholtz zone comprises the region
II, limited by the inner and outer Helmholtz planes. Note the conventional use of the term ‘plane’.
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4 E.A. Barrios-Contreras et al.

The usual manner to determine the structure of our
electric double layer should be starting from the Poisson–
Boltzmann differential equation for the mean electrostatic
potential, ψ(r), and solve it for the appropriate boundary
conditions, i.e., considering different distances of closest
approach for cations and anions. This has been the path
employed previously in Refs [28,32,34–36]. Rather, a dif-
ferent venue is followed here, in which we will recast the
URMGC theory for spherical symmetry in terms of an
integral equation. In such an integral approach, the prin-
cipal quantities are now the radial distribution functions,
gMs(r) and gMb(r), of the small and big species around the
macroparticle (identified by M).

In turn, the corresponding URMGC integral equation
for the spherical electric double layer can be derived in two
equivalent ways. In specific, the first one (or Version I) is
based on the characteristic Poisson–Boltzmann relation:

gMj (r) = exp[−zj eψ(r)/kBT ], for r ≥ R + rj , and

j = s, b, (3)

with kB being the Boltzmann’s constant and T the abso-
lute temperature, whereas the second option (or Version II)
depends on the Ornstein–Zernike equation. Version I is per-
haps the most direct route and basically consists in (1) writ-
ing the fundamental expression of the mean electrostatic
potential in terms of an integral of the ionic radial distribu-
tion functions (see Equation (12)) and (2) substituting such
expression in the right-hand side of Equation (3). Alterna-
tively, the derivation of Version II is more illustrative and
insightful, as it will be commented below, and proceeds as
follows. We depart from the Ornstein–Zernike equation for
the total correlation functions, hkl(�r), namely:

hkl(�r) = ckl(�r) +
∑
m

ρm

∫
hkm(�t)cml(�s)dt3, (4)

where the indices k, l and m run for all the species of par-
ticles in the system, ρm is the bulk number density of each
species, �r , hkl(�r) and ckl(�r) are the distance, total correla-
tion function and direct correlation function, respectively,
for two particles of types k and l, and something analogous
for �t , �s = �r − �t , hkm(�t), and cml(�s).

In our case, we have an isolated colloid (ρM → 0) at
the origin and then, from Equation (4), we can decouple the
following pair of spherically symmetric integral equations:

hMj (r) = cMj (r) +
∑

m=s,b

ρm

∫
hMm(t)cmj (|�r − �t |)dt3,

for j = s, b. (5)

Given that the total correlation functions and radial distribu-
tion functions are related by hMi(r) = gMi(r) − 1, Equation
(5) must be supplemented with two closures to end up with

a solvable set of equations. Concretely, for the colloid ion,
we use the hypernetted chain (HNC) relation:

cMj (r) = −βUMj (r) + hMj (r) − ln(hMj (r) + 1),

for j = s, b, (6)

which is a well-established approximation in Coulombic
fluids, and for the ion–ion we choose the Debye–Huckel
(DH) one:

cij (r) = −βUij (r), for i, j = s, b. (7)

In the above equations, β = 1/kBT. Substitution of Equa-
tions (6) and (7) in Equation (5) then leads to the HNC/DH
integral equations for the spherical electric double layer
of semi-punctual ions with different distances of closest
approach:

gMj (r) = exp

[
− βzj e

(
4πR2σ0

εr

+
∑

m=s,b

ρmzme

∫
gMm(t)

ε|�r − �t |d
3t

)]
, for j = s, b.

(8)

The integration of variables θ and φ in the right-hand side
of Equation (8) can be accomplished analytically and, after
some algebra, we arrive to the following non-dimensional
expressions, which are particularised for the different spa-
tial regions (see Figure 1):

Region I:

gs(r
′) = gb(r ′) = 0, for 1 ≤ r ′ < 1 + γs. (9)

Region II:

gs(r
′) = exp

[
1

r ′ [A + B(X(r ′) + r ′N )]

]
,

for 1 + γs ≤ r ′ < 1 + γb, (10)

with gb(r ′) = 0, X(r ′) =
∫ r ′

1+γs

gs(t
′)t ′2dt ′ +

∫ 1+γb

r ′

gs(t
′)t ′r ′dt ′, and

N =
∫ ∞

1+γb

{
gs(t

′) − [gs(t
′)]λ

}
t ′dt ′.

Region III:

gs(r
′) = exp

[
1

r ′ [A + B(Y + Z(r ′))]
]

, for 1 + γb ≤ r ′ < ∞,

(11)
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Molecular Physics 5

with gb(r ′) = [
gs(r

′)
]λ

, Y =
∫ 1+γb

1+γs

gs(t
′)t ′2dt ′, and

Z(r ′) =
∫ r ′

1+γb

{
gs(t

′) − [gs(t
′)]λ

}
t ′2dt ′

+ r ′
∫ ∞

r ′

{
gs(t

′) − [gs(t
′)]λ

}
t ′dt ′.

Note that in the previous equations a normalised form
has been adopted, where we have introduced the reduced
distances r′ = r/R and t′ = t/R and the parameters γ s =
rs/R, γ b = rb/R, λ = zb/zs, A = −(4πβRzseσ 0)/ε and
B = −(4πβR2ρsz

2
s e

2)/ε. To simplify the notation, we have
suppressed the subindex M in the gs(r) and gb(r) functions.
Even though Equations (9)–(11) were implicitly used in
Ref. [18], we present here their detailed forms. After resolv-
ing this set of equations for gs(r) and gb(r), other physical
properties can be obtained. For example, the mean elec-
trostatic potential and integrated charge can be calculated
from the radial distributions via the integrals:

ψ(r) = 4πR2σ0

εr
+

∑
m=s,b

ρmzme

∫
gMm(t)

ε|�r − �t |d
3t (12)

and

Q(r) = 4πR2σ0 +
∑

m=s,b

4πρmzme

∫ r

R

gMm(t)t2dt. (13)

The integrated charge, Q(r), will be used in the next section
as the chief indicator of charge reversal and surface charge
amplification in the spherical electric double layer of semi-
punctual ions.

The complete equivalence between the two routes, Ver-
sions I and II, to obtain the integral equations representation
can be easily demonstrated using Equations (3), (8) and
(12). In other words, the HNC/DH expressions of Equa-
tions (9)–(11) are the explicit integral form of the URMGC
theory for the spherical electric double layer of fully size-
and charge-asymmetric semi-punctual ions. This scheme
complements the ordinary differential equations formalism
of the URMGC theory, originally proposed for the planar
geometry, which is usually solved in terms of the mean
electrostatic potential [28,32,34–36].

Before ending this section, we would like to point out
that our preference for the deduction of Version II was sup-
ported by three reasons, namely (1) the integral equations
route represents a novel way to pose the URMGC theory
starting from fundamental principles of the statistical me-
chanics of liquids, (2) the resulting system of equations for
the radial distribution functions is solvable accurately by
means of robust numerical methods and, more importantly,
(3) this derivation is fruitful since it enlightens the con-
nection between the URMGC theory and surpassing ways

to improve such formalism by embodying ionic finite size
effects and ion–ion correlations. Specifically, if the point-
ions supposition of Equation (7) is substituted by a non-
punctual closure (e.g., the mean spherical approximation
(MSA) or the HNC relation), an enhanced treatment of the
asymmetric spherical electric double layer can be obtained
[17,18].

The actual determination of the URMGC radial distri-
bution functions, gs(r) and gb(r), was performed by means
of an iterative numerical solution of the system of Equations
(9)–(11). An efficient Picard method was used to calculate
the corresponding ionic profiles. A Simpson’s rule integra-
tion of the radial distribution functions, gi(r), in Equation
(13) rendered the integrated charge, Q(r). The numerical
solution of the system of coupled integral equations de-
fined by Equations (9)–(11) used typically a grid of 10
points per radius of the smallest ionic species. In order to
avoid additional numerical errors, the mean electrostatic
potential, ψ(r), was obtained directly from the logarithm of
Equation (3). Computational details can be found elsewhere
[13,37,38].

3. Results and discussion

We have solved the URMGC integral equation in spherical
geometry for a wide range of size-asymmetric binary elec-
trolytes, with symmetry and asymmetry in charge, around
a colloid of varying radius, R, and surface charge density,
σ 0. For definitiveness, we have considered σ 0 ≥ 0, since the
situation of a negatively charged macroparticle is covered
by the corresponding interchange of signs of the valences
zs and zb. The temperature and dielectric constant in all the
systems studied were T = 298 K and ε = 78.5, respectively.
The following convention was adopted in order to facili-
tate the identification of the size and charge of the ionic
species involved in each case of study: when the valences
of a binary electrolyte be specified by the notation n:m,
the symbols n and m will be associated to the smallest and
largest species, respectively.

In the following paragraphs, we discuss data for (1)
charge-symmetric and (2) charge-asymmetric electrolytes.
We must point out that the latter case has been scarcely
examined in the literature.

3.1. Size-asymmetric z: z charge-symmetric
electrolytes

In Figure 2, we display data for the integrated charge, Q(r′),
in −1: + 1 systems. Therein, the electrolyte bulk concentra-
tions are ρs = ρb = 1M. The three graphs in the upper row
(Figure 2(a)–(c)) display results for three different combi-
nations of rs and rb, and for a macroparticle of radius R =
10 Å with a varying surface charge density σ 0. Meanwhile,
in the lower row (Figure 2(d)–(f)), we have the same combi-
nations of ionic closest approach distances but for a larger
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6 E.A. Barrios-Contreras et al.

Figure 2 Integrated charge, Q(r′), around a macroion as a function of the distance to its surface. The charged colloid is immersed in a
size-asymmetric −1: + 1, 1 M electrolyte. The dashed, solid, solid-crosses, solid-squares, solid-triangles and solid-circles lines correspond
to the surface charge densities σ 0 = 0, 0.01, 0.02, 0.03, 0.05 and 0.1 C/m2, respectively. The ionic ‘radii’ are denoted as rs and rb for the
smallest and the biggest ionic species, respectively. The corresponding values used in each panel are: (1) rs = 1.0625 Å and rb = 2.125 Å
in (a) and (d); (2) rs = 1.0625 Å and rb = 3.1875 Å in (b) and (e); and (3) rs = 2.125 Å and rb = 4.25 Å in (c) and (f). The radius of the
macroion in the top row and in the bottom row are 10 and 30 Å, respectively.

colloid of radius R = 30 Å with the same surface charge
densities of the smallest colloid. A global examination of
Figure 2(a)–(f) leads to the following three main findings.
(1) As soon as an initially neutral colloid acquires a charge,
the phenomenon of charge reversal arises.(2) In each panel
of Figure 2, the curves of the integrated charge Q(r′) for
different values of the colloidal surface charge density, σ 0,
never cross each other. For that reason, when the magnitude
of the colloidal charge is gradually increased, there will be
always a critical value, σ critical

0 , for which the charge rever-
sal disappears. (3) The integrated charge Q(r′) experiences
a change of its sign at a distance that is invariably situated
in the Helmholtz region, i.e., the onset of the charge rever-
sal (Q0Q(r′) < 0) occurs unfailingly in the spatial interval
(1 + γ s, 1 + γ b]. Summarising (1)–(3), for a −1: + 1
electrolyte with small counterions, charge reversal is always
present, albeit it is limited to happen in a finite interval of
macroparticle charges (0, σ critical

0 ], whereas its onset is spa-
tially localised inside the Helmholtz zone. Beyond the outer
Helmholtz surface (r′ > 1 + γ b), the event of a reversion in
the sign of the integrated charge Q(r′) is totally absent. Be-
sides, no surface charge amplification was detected under
any circumstance.

A collateral phenomenon also noticeable in Figure 2
is that, for systems where charge reversal exists, the in-
tegrated charge beyond the Helmholtz region (r′ > 1 +

γ b) behaves as one corresponding to an ‘inversely charged’
macroparticle. In other words, the net total charge of the
complex formed by the colloid plus the adjacent counteri-
ons is reversed, a condition that surely implies a change in
the roles of the anions and cations in the external double
layer (see the discussion about ionic density profiles be-
low). This phenomenon has been extensely discussed in the
literature [16,23,39] and could have remarkable sequels in
the electrokinetic behaviour of charged colloidal particles.

Charge reversal for univalent electrolytes exhibits di-
verse particularities when specific parameters are changed.
For instance, in Figure 2(a) and 2(b), we observe that, for a
fixed ‘size’ of the small counterions, a larger ratio between
the ionic closest approach distances, rb/rs, that also implies
the augmentation of the difference rb − rs, enhances the
charge reversal (e.g., the minimum values of the integrated
charge for σ 0 = 0.01 C/m2, at r′ = 1 + γ b, are −0.267e
and −1.258e in Figure 2(a) and 2(b), respectively). On the
other hand, Figure 2(a) and 2(c) shows that, for a constant
ratio rb/rs, an increment in the ionic closest approach dis-
tance for counterions, with the consequent enlargement of
rb − rs, induces a stronger charge reversal (note that in
Figure 2(c) the minimum of Q(r′) for σ 0 = 0.01 C/m2, at
the outer Helmholtz surface or at r′ = 1 + γ b, is −1.589e).
Concomitantly, for a given difference rb − rs between the
ionic ‘sizes’ (Figure 2(b) and 2(c)), an augmentation in
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Molecular Physics 7

Figure 3 Integrated charge, Q(r′), around a macroion as a function of the distance to its surface. The charged colloid is immersed in a
size-asymmetric −2: + 2, 1 M electrolyte. The parameters of the different systems portrayed and the convention of symbols are the same
as those used in Figure 2.

the magnitude of the ionic closest approach distance of the
smallest ions results in a major charge reversal.

With respect to the influence of the macroparticle ra-
dius, we notice that, in the lower panel of Figure 2(d)–(f),
the magnitude of Q(r′) is larger due to the fact that its
value at the surface depends quadratically on R (i.e., Q0 =
4πR2σ 0). As a result, the intensity of the charge reversal is
strengthened for the biggest colloid (R = 30 Å). To com-
pare with the upper row, in Figure 2(d)–(f), for σ 0 = 0.01
C/m2, at r′ = 1 + γ b, the minimum values of the integrated
charge are −0.888e, −7.284e and −8.112e, respectively.

The consequences of varying the ionic valence can be
seen in Figure 3, where we portray results for −2: +2
electrolytes, keeping constant the rest of the parameters
employed in Figure 2. A consideration of Figure 3 vis-à-
vis Figure 2 confirms the chief conclusions derived from
data for univalent electrolytes, namely (1) the persistence of
charge reversal for systems with small counterions and its
existence in a finite interval of colloidal charge (0, σ critical

0 ]
and (2) the starting of the charge reversal is also constrained
to the Helmholtz zone (1 + γ s, 1 + γ b]. However, due
to the enhanced charge reversal for divalent ions, two ad-
ditional characteristics can be noticed in these −2: + 2
cases: first, the span of macroparticle surface charges for
which charge reversal appears is increased, i.e., we have
larger values of σ critical

0 , and, second, the extent of the dou-
ble layer is visibly shortened. Again, appropriate changes
in the ionic closest approach distances (see Figure 3(a)–(c)

or, else, Figure 3(d)–(f)) or in the colloidal radius (compare
upper and lower rows in Figure 3) have analogous effects
on charge reversal as those seen in univalent electrolytes. In
specific, for σ 0 = 0.01 C/m2, Q(r′ = 1 + γ b) has the values
−1.060e, −2.455e and −2.968e, for Figure 3(a)–(c) in the
upper row, respectively, whilst it has the values −6.762e,
−15.427e and −16.711e, for Figure 3(d)–(f) in the lower
row, respectively.

The distinct comportments of charge reversal revealed
in Figures 2 and 3 can be nicely rationalised in terms of
several structural arguments. Starting from the definitions
of the mean electrostatic potential and the integrated charge
(Equations (12) and (13), respectively), rather straightfor-
ward differentiations lead to the next general relationships
for the spherical electric double layer:

Q(r ′) = −εRr ′2 dψ(r ′)
dr ′ (14)

and

dQ(r ′)
dr ′ = 4πR3r ′2ρc(r ′), (15)

where ρc(r′) = ρszse(gs(r′) − gb(r′)) is the local charge
density. In the equation for dQ(r′)/dr′ above, notice the dis-
continuity of ρc(r′) at r′ = 1 + γ b. Equation (14) and
similar relations for other geometries have been given else-
where [15,38,40].
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8 E.A. Barrios-Contreras et al.

Figure 4 Radial distribution functions of monovalent and diva-
lent size-asymmetric z: z ions around a macroion for different
surface charge densities. In panel (a), the macroion has a radius
R = 30 Å and it is immersed in a −1: + 1, 1 M electrolyte with
ionic ‘radii’ rs = 1.0625 Å and rb = 3.1875 Å. In panel (b), the
macroion has a radius R = 10 Å and it is immersed in a −2: + 2,
1 M electrolyte with ionic ‘radii’ rs = 2.125 Å and rb = 4.25 Å.
The correspondence between lines and surface charge densities is
the same as that used in Figure 2.

For the URMGC theory, and making use of the Boltz-
mann form of gs(r′), Equation (14) can be recasted as

Q(r ′) = εR

zseβ
r ′2 1

gs(r ′)
dgs(r ′)

dr ′ . (16)

Alternatively, based on the electroneutrality condition,
we can rewrite Equation (14) as follows:

Q(r ′) = −4πR3
∫ ∞

r ′
ρc(t ′)t ′2dt ′. (17)

Thus, Equations (14) and (16) indicate that any change
of sign of Q(r′) must occur at positions where the gs(r′) and
ψ(r′) functions have their maxima/minima. In Figures 2
and 3, we observe that, for systems undergoing charge re-
versal, the integrated charge passes by zero only once. Also
notice that the initial reversion of sign always happens be-
tween the inner and outer Helmholtz surfaces, that is, in
the region 1 + γ s < r′ ≤ 1 + γ b. This indicates that
the origin of this phenomena can then be attributed to the
oscillatory behaviour, and the associated extremum, of the
gs(r′) and ψ(r′) functions in the Helmholtz zone. To illus-
trate that, in Figure 4 the ionic profiles for representative
−1: + 1 and −2: + 2 instances are displayed. Therein, we
corroborate the occurrence of an oscillatory comportment
and the existence of a minimum in the gs(r′) inside the
Helmholtz region, as well as its posterior monotonic ap-
proach to zero in the external double layer (i.e., for r′ ≥
1 + γ b). This spatial variation of the curves in Figure 4 is
reflected in the integrated charge graphs of Figures 2 and
3, and then explains the whole development of the charge
reversal phenomenon. Additionally, Equation (17) allows
us to connect the integrated charge and the local charge
density. On these grounds, we realise that the smooth ten-
dency of the integrated charge Q(r′) to zero outside the
Helmholtz zone is just a consequence of the monotonic
and one-signed behaviour of ρc(r′) there. To explain it
better, we note that, since, for r′ > 1 + γ b, gs(r′) and
gb(r′) go monotonically to 1 without any intersection be-
tween these two ionic profiles, the charge density ρc(r′)
must then be a non-fluctuating and one-signed function in
the diffuse double layer. Hence, a simple application of the
additivity-with-respect-to-intervals and monotonicity prop-
erties of an integral [41] to the right-hand side of Equation
(17) proves that the integrated charge must tend steadily
to zero or, equally, that the punctual ionic atmosphere be-
yond the Helmholtz zone neutralises in a gradual form the
net charge enclosed by the outer Helmholtz plane. Then
again, according to Equation (15) the rate of change of
Q(r′) depends directly from the value of ρc(r′). In Figure 4
we observe that, for 1 + γ s ≤ r′ < 1 + γ b, gs(r′) is al-
ways positive, whereas, for distances beyond the Helmholtz
zone, gs(r′) and gb(r′) never cross each other, from which
the derivative of Q(r′) must be a non-zero function with
a constant sign in each one of the two intervals [1 + γ s,
1 + γ b) and (1 + γ b, ∞), but with opposite sign be-
cause of the electroneutrality condition. Equivalently, the
integrated charge does not oscillate, nor has extrema, either
in the interior of the Helmholtz zone or in the exterior part
of the double layer.

In recent literature, there is a handful of theories for
the electric double layer [17,18,38,40,42–45], e.g., the
HNC/MSA integral equation for the spherical double layer,
that recurrently predict integrated charges with a non-
monotonic behaviour and with multiple occasions of charge
reversal. Those more sophisticated formalisms include
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Molecular Physics 9

Figure 5 Integrated charge, Q(r′), around a macroion as a function of the distance to its surface. The charged colloid is immersed in a
size-asymmetric + 1: −1, 1 M electrolyte. The parameters of the different systems portrayed and the convention of symbols are the same
as those used in Figure 2.

effects, like ion correlations and ionic excluded volume
effects, that are not present in our mean-field approach.
In physical terms, these improvements in the treatment of
the electric double layer are performed by using the so-
called primitive model of an electrolyte, in which it is sup-
posed that ions are genuine spheres of finite size. Under
such circumstances, those theories have proven that charge
reversal can occur everywhere in the double layer. Con-
trastingly, the foregoing discussion established that the in-
tegrated charge in the semi-punctual URMGC formalism
will be inevitably a non-oscillatory function before and af-
ter the outer Helmholtz plane, with a unique discontinuous
derivative at r′ = 1 + γ b (where the outer Helmholtz plane
is defined). Thus, we conclude that, for small counterions,
the maximum charge reversal observed in the regime of
non-high colloidal surface charge is unique and is situated
precisely at the outer Helmholtz plane. Note that this ex-
tremum and the concomitant onset of the charge reversal
(when the condition Q(r′)Q0 < 0 sets in) are restricted
to lie between the inner and outer Helmholtz planes. All
these facts illustrate the localisation of these effects in the
Helmholtz zone. Interestingly, note that such charge rever-
sal present inside the Helmholtz zone for σ 0 > 0 can be also
associated to a ‘negative’ macroion if one is only able to
detect the ions that are outside the Helmhotz zone. In such
a scenario, cations act as counterions and anions as coions.

In a nutshell, in the URMGC approach, the occurrence
and comportment of the charge reversal and the locali-
sation of its onset and its maximum magnitude between
the Helmholtz planes are completely dictated by the possi-

ble non-monotonic conduct of gs(r′) in the interior of the
Helmholtz zone, on the one hand, and by the monotonicity
of the two radial distribution functions in the diffuse electric
double layer, on the other.

We now turn our attention to the case of spherical elec-
tric double layers with small coions. For systems with non-
negatively charged colloids, as those considered here, we
should be dealing with little cations. Given their minor
closest approach distance, the coions are the only species
present in the Helmholtz region, which induces the ap-
pearance of surface charge amplification. Figures 5 and 6
depict the corresponding integrated charge for + 1:−1 and
+ 2:−2 systems with similar macroparticle radii and com-
binations of closest approach distances to those used in
Figures 2 and 3. On the whole, the integrated charge Q(r′)
graphs for univalent and divalent electrolytes in Figures 5
and 6 evidence the following main features. (1) Any col-
loidal charge different from zero produces the phenomenon
of charge amplification. However, this time, and differently
from the instance of small counterions, as the magnitude of
σ 0 grows there is not a σ critical

0 for which surface charge am-
plifications ceases. Consequently, we will able to detect the
amplification of the effective charge for every non-neutral
macroparticle surrounded by coions that are smaller than
counterions. (2) The intensity of the surface charge am-
plification effect diminishes uniformly with σ 0. Using the
difference �Q = |Q(r′ = 1 + γ b) − Q0| as a measure
of the surface charge amplification, we can see that �Q
decreases gradually when the colloidal charge is enlarged
[19]. (3) In each panel of Figures 5 and 6, we note that the
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10 E.A. Barrios-Contreras et al.

Figure 6 Integrated charge, Q(r′), around a macroion as a function of the distance to its surface. The charged colloid is immersed in a
size-asymmetric + 2: −2, 1 M electrolyte. The parameters of the different systems portrayed and the convention of symbols are the same
as those used in Figure 2.

Q(r′) curves for distinct σ 0 never intersect each other and
that, as a function of the distance, apart from the peak at
r′ = 1 + γ b, the integrated charge does not present spa-
tial oscillations or local maxima/minima (points where its
derivative dQ(r′)/dr′ is zero). (4) The rise of the magnitude
of Q(r′) and the maximum value of the surface charge am-
plification are always localised in the interval [1 + γ s, 1 +
γ b]. (5) When coions are the species with the minor closest
approach distance, charge reversal is never observed.

The distinct univalent systems portrayed in Figure 5
exemplify the typical behaviour of the surface charge am-
plification for variations in the ionic closest approach dis-
tances, colloidal radius and colloidal surface charge, similar
to those used in Figures 2 and 3. Considering first the up-
per row (R = 10 Å), a comparison between Figure 5(a)
and 5(b) shows that the surface charge amplification phe-
nomenon can be enhanced if, for a given value of rs, the
ratio rb/rs augments, enlarging also the difference rb − rs

(e.g., in Figure 5(a) and 5(b), the integrated charge Q(r′ =
1 + γ b) has the values 1.647e and 2.485e, respectively, for
σ 0 = 0.01 C/m2). If the ratio rb/rs is fixed but rs and rb − rs

are allowed to increase, the surface charge amplification is
also magnified (e.g., in Figure 5(a) and 5(c), the integrated
charge Q(r′ = 1 + γ b) has the values 1.647e and 2.812e,
respectively, for σ 0 = 0.01 C/m2). Complementarily, when
the difference between the ionic closest approach distances,
rb − rs, is now kept constant (as in Figure 5(b) and 5(c)),
a larger rs leads to an intensification of the surface charge
amplification.

On the other hand, if the radius of the macroparticle
is changed to R = 30 Å (see lower row of Figure 5),
for a given σ 0, the integrated charge has values that can
be around 10 times larger than those of R = 10 Å (by
the same reasons argued in the discussion associated to
Figure 2). Consequently, all the traits of the surface charge
amplification observed in Figure 5(a)–(c) are emphasised
in the lower row (for instance, Q(r′ = 1 + γ b), for
σ 0 = 0.01 C/m2, is 13.077e, 17.991e and 18.813e, in
Figure 5(d)–(f), respectively).

In Figure 6, we have considered the same combina-
tion of values for the radius of the macroion, electrolyte
concentration and ionic closest approach distances used in
Figure 5. However, in this case, we will assess the develop-
ment of the surface charge amplification phenomenon for
+ 2:−2 electrolytes. The corresponding integrated charge
plots for divalent salts corroborate two main features of
the surface charge amplification previously detected in
Figure 5, namely that, for charged colloids in the pres-
ence of small coions (1) the surface charge amplification
always exists, and (2) that the maximum value of the sur-
face charge amplification is limited to occur at the outer
Helmholtz plane. In all the systems displayed in Figure 6,
the magnitude of the cumulative charge is notably accentu-
ated. As a result, significant surface charge amplification is
observed in comparison with the + 1:−1 cases. As an ex-
ample, note that, for σ 0 = 0.01 C/m2, Q(r′ = 1 + γ b) has
the values 2.260e, 3.422e and 3.932e for Figure 6(a)–(c)
in the upper row, respectively, whereas the values 17.355e,
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Molecular Physics 11

23.892e and 25.171e are observed for Q(r′ = 1 + γ b) in
Figure 6(d)–(f) in the lower row, respectively.

The various above-mentioned features of the surface
charge amplification can be also explained in terms of the
behaviour of the ionic profiles, gs(r′) and gb(b′). In particu-
lar, Equation (15) is specially relevant for the surface charge
amplification since it relates the first derivative of the inte-
grated charge with the total local charge, ρc(r′), which in
our case is proportional to the difference between the ionic
profiles, i.e., ρc(r′) = ρszse(gs(r′) − gb(r′)). As an exam-
ple of the generic comportment of the radial distribution
functions for all the cases presented in Figures 5 and 6,
wherein coions are smaller than counterions, in Figure 7,
graphs of two representative systems are included. There,
we can appreciate that the functions gs(r′) and gb(r′) ap-
proach monotonically to their bulk value and, accordingly,
we realise that ρc(r′) is a piecewise one-signed function,
whose magnitude is never zero, namely, for 1 + γ s ≤ r′ <
1 + γ b, since gb(r′) = 0, we have Q0ρc(r′) ≥ 0 and, thus,
Q0(dQ(r′)/dr′) ≥ 0, whereas, for 1 + γ b ≤ r′ < ∞, and due
to the electroneutrality condition, Q0ρc(r′) ≤ 0 and, thus,
Q0(dQ(r′)/dr′) ≤ 0. Therefore, from Figure 7, we conclude
that, in the URMGC theory, for a system with coions smaller
than counterions, the first derivative of Q(r′) is discontin-
uous at r′ = 1 + γ b, and that, at the same spatial point,
Q(r′) has its unique extremum (a cusp). In other words,
we have found that, in a mean-field description of size-
asymmetric semi-punctual-ions systems with small coions,
the growth of the magnitude of Q(r′) and the maximum in-
tensity of the associated charge amplification phenomenon
are always localised inside the Helmholtz region (1 + γ s

≤ r′ ≤ 1 + γ b], analogously to the localisation observed
for the sign change of Q(r′) (or the onset of charge rever-
sal) and its associated extremum in electric double layers
with small counterions. In addition, it is noticeable that,
this time differently from charge reversal with small coun-
terions, the effect of the surface charge amplification in the
URMGC theory does not require the oscillation of the radial
distribution functions and the mean electrostatic potential
to occur.

3.2. Size- and charge-asymmetric electrolytes

In the past, URMGC studies of charge reversal and sur-
face charge amplification have been focused on systems
with symmetrical valences [17–19,28,38]. As a novelty, in
the next paragraphs, we review some URMGC results for
spherical electric double layers with fully size- and charge-
asymmetric semi-punctual cations and anions.

In Figure 8(a)–(d), we portray the integrated charge of
a macroion immersed in −1: + 2, −1: + 3, −2: + 1 and
−3: + 1 electrolytes, respectively. In all those instances, the
radius of the macroion is R = 10 Å, but the colloidal surface
charge density σ 0 is variated. The concentration of the
smallest ionic species and the ionic size-asymmetry of all
electrolytes are fixed to the following values: ρs = 0.5 M, rs

Figure 7 Radial distribution functions of monovalent and diva-
lent size-asymmetric z: z ions around a macroion for different
surface charge densities. In panel (a), the macroion has a radius
R = 10 Å and it is immersed in a + 1: −1, 1 M electrolyte with
ionic ‘radii’ rs = 2.125 Å and rb = 4.25 Å. In panel (b), the
macroion has a radius R = 30 Å and it is immersed in a + 2: −2,
1 M electrolyte with ionic ‘radii’ rs = 1.0625 Å and rb = 2.125 Å.
The correspondence between lines and surface charge densities is
the same as that used in Figure 2.

= 2.125 Å and rb = 4.25 Å. Given that in all these graphs the
counterions are the smallest ionic species, we can observe
charge reversal in the integrated charge curves. Figure 8(a)
and 8(b), in the upper row, shows the effect on charge rever-
sal due to the variation of the characteristics (i.e., valence
and concentration) of the biggest ionic species (coions),
whereas Figure 8(c) and 8(d), in the lower row, illustrates
the sequels of changing the valence of the smallest ion
type (counterions). Clearly, there is a minor enhancement
of the charge reversal when we contrast the −1: + 2 and
−1: + 3 systems of Figure 8(a) and 8(b) than the increment
found after comparing the −2: + 1 and −3: + 1 cases of
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12 E.A. Barrios-Contreras et al.

Figure 8 Integrated charge, Q(r′), around a macroion as a function of the distance to its surface. The charged colloid has a radius R =
10 Å and it is immersed in different size- and charge-asymmetric electrolytes for a fixed ρs = 0.5 M of the small counterions. The ionic
‘radii’ are rs = 2.125 Å and rb = 4.25 Å. The correspondence between lines and surface charge densities is the same as that used in
Figure 2.

Figure 8(c) and 8(d) (e.g., for σ = 0.01 C/m2, the minimum
value of Q(r′), occurred at r′ = 1 + γ b, is −0.543e for a
−1: + 2 salt and −0.550e for a −1: + 3 one, in the upper
row, in contrast with −1.392e for a −2: + 1 electrolyte and
−1.943e for a −3: + 1 one, in the lower row). To under-
stand this fact, let us consider the following arguments.
A quick examination of Equations (9)–(11) evidences that
the ionic radial distribution functions have a functional
dependence on the distance r′ and on the parameters A, B,
γ s, γ b and λ, i.e., gs, b(r′; A, B, γ s, γ b, λ). Additionally,
from Equation (13), Q(r′)/e can be rewritten as

Q(r ′)
e

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

zM [1 +
(

B

A

) ∫ r ′

1+γs
gs(t ′)t ′2dt ′], for 1 + γs ≤

r ′ < 1 + γb,

zM [1 +
(

B

A

) ∫ 1+γb

1+γs
gs(t ′)t ′2dt + ∫ r ′

1+γb
(gs(t ′)

−[gs(t ′)]λ)t ′2dt ′], for 1 + γb ≤ r ′ < ∞,

(18)

with zM = Q0/e = 4πR2σ 0/e. Notice that, in the cases
presented in Figure 8(a) and 8(b), the valence and con-
centration of the smallest species are kept constant (zs

= −1 and ρs = 0.5 M, respectively). Thus, for a given
macroparticle charge and according to Equation (18), the
possible changes in the Q(r′)/e graphs will be originated
solely by the variation of the parameter λ = zb/zs (which
goes from −2 to −3 in the upper row panels, due to change
of zb from + 2 to + 3). Hence, this weak dependence of
the integrated charge on λ allows us to foresee that the
change in the integrated charge curves, when the valence
and concentration of the big coions are modified, will be
slight. Such a prediction can be confirmed by looking,
for example, the Q(r′)/e profiles for σ = 0.01 C/m2 in
Figure 8(a) and 8(b). On the other hand, notice that a
minimum variation in the valence of the smallest ionic
species, at a fixed concentration ρs = 0.5 M, yields a
significant variation in the corresponding A, B and λ

parameters (see, e.g., the −2: + 1 and −3: + 1 systems in
Figure 8(c) and 8(d)). As a consequence, we should expect
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Molecular Physics 13

Figure 9 Integrated charge, Q(r′), around a macroion as a function of the distance to its surface. The charged colloid has a radius R =
10 Å and it is immersed in different size- and charge-asymmetric electrolytes for a fixed ρs = 0.5 M of the small coions. The ionic ‘radii’
are rs = 2.125 Å and rb = 4.25 Å. The correspondence between lines and surface charge densities is the same as that used in Figure 2.

a more significant contrast between the corresponding
Q(r′)/e plots for a given surface charge density σ 0, as
it is displayed in Figure 8(c) and 8(d). Such a rationale
anticipates and explains the discernible enhancement of
the charge reversal effect occurring when the valence of the
small counterions is increased from −2 to −3 at the same
ρs concentration (see, for instance, the σ = 0.01 C/m2

curves). Therefore, a whole consideration of Figure 8(a)–
(d) evinces the fact that altering the valence of the small
counterions, at a fixed ρs concentration, implies larger
effects on charge reversal than changing the properties of
the big coions, i.e., for not very high colloidal charges, the
small counterions dominate the electric double layer.

In Figure 9, integrated charge data for size- and charge-
asymmetric systems display the occurrence of surface
charge amplification due to the presence of coions smaller
than counterions. Figure 9(a)–(d) portrays the integrated
charge for a macroion of radius R = 10 Å at different sur-
face charge densities. This macroion is immersed in elec-
trolytic ambients of valences + 1:−2, + 1:−3, + 2:−1 and
+ 3:−1 corresponding to Figure 9(a)–(d), respectively. In

all these instances, the concentration of small ions and the
ionic closest approach distances to the macroion have the
constant values ρs = 0.5 M, rs = 2.125 Å and rb = 4.25 Å,
respectively.

Panels 9(a) and 9(b), in the upper row, show that the
exclusive modification of the big counterions attributes (va-
lence and concentration) provokes a little increment in the
surface charge amplification (e.g., for σ = 0.01 C/m2, the
maximum Q(r′ = 1 + γ b) is 1.890e for a + 1:−2 salt
and 1.913e for a + 1:−3 one). Meanwhile, panels 9(c) and
9(d) in the lower row exhibit cases for which the valence
of the small coions is variated. In these last figures, when
zs passes from + 2 to + 3, Q(r′)/e changes more notably
(for instance, for σ = 0.01 C/m2, the maximum Q(r′ = 1
+ γ b) is 2.466e for a + 2:−1 electrolyte and 2.845e for a
+ 3:−1 one). Once more, the trends observed in Figure 9
can be rationalised recurring to the same ideas based on
Equation (18), and priorly used for Figure 8. In these terms,
notice that, from the fundamental parameters A, B, γ s, γ b

and λ, only the last one variates in Figure 9(a) and 9(b).
This anticipates minor changes in the Q(r′)/e curves and in
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the surface charge amplification effect. Complementarily,
in the case of Figure 9(c) and 9(d), altering the valence of
the small coions affects significantly the parameters A, B
and λ, which accounts for the major differences in the cor-
responding integrated charges and the more pronounced
surface charge amplification when zs increases. Thence,
from the contrast between the Q(r′)/e plots in the upper and
lower rows of Figure 9, we learn that, at a fixed concen-
tration of the smallest ionic species, a modification of the
valence of the small coions impacts largely the augmen-
tation of the net charge enclosed by the outer Helmholtz
plane or, alternatively, that, for low and medium surface
charge densities of the bare macroion σ 0, a major charge
of the small multivalent coions increases significantly the
colloidal surface charge amplification.

Summarising the findings derived from the charge-
asymmetric cases of Figures 8 and 9, we then arrive
to the following conclusion: let us consider a binary
size-asymmetric semi-punctual electrolyte surrounding a
weakly/moderate charged spherical colloid. Hence, if the
concentration of the smallest species is fixed, a change in
the valence of the smallest ions affects in a more impor-
tant manner the phenomena of charge reversal and sur-
face charge amplification in comparison to a change in
the valence of the biggest ions, independently of the col-
loidal polarity. In other words, at low/medium colloidal
surface charges and a fixed concentration of the smallest
ionic species, the phenomena of charge reversal and sur-
face charge amplification are affected more significantly by
a change on the valence of the smallest ionic species, inde-
pendently if they are coions or counterions, i.e., under the
previous conditions, small ions mainly rule or determine the
structural and thermodynamic properties of fully asymmet-
ric semi-punctual electrolytes described by the URMGC
theory.

4. Conclusions

In this work, we have provided a theoretical mean-field
description of a fully size- and charge-asymmetric semi-
punctual binary electrolyte surrounding a charged spherical
colloid. The proposed integral equations formulation, cor-
responding to the URMGC theory, has been used to study
microscopic ionic properties of the electric double layer,
such as the ionic profiles and the integrated charge. The cor-
responding integral equations were recast in a normalised
(or a dimensional) form. Even though there exist diverse
possibilities to define the fundamental non-dimensional
theoretical parameters, the current choice has allowed us
to write other structural electric double layer properties
(e.g., the integrated charge or the mean electrostatic po-
tential) in terms of the same set of non-dimensional pa-
rameters. The investigation of these structural properties
has allowed us to observe the phenomena of charge re-
versal and surface charge amplification in the regime of

low/moderate colloidal charges. We have demonstrated that
(1) the appearance of charge reversal is directly related to
the existence of extrema in the mean electrostatic poten-
tial and ionic profile of the smallest ionic species; (2) the
raise and the extremum of the surface charge amplifica-
tion are due to the fact that the local ionic charge density
is a piecewise one-signed function; (3) in the presence of
charge reversal, there is only one change of sign of the
associated integrated charge (indicating the correspond-
ing onset) that is always localised inside the Helmholtz
zone; and (4) that the possible extrema of the charge re-
versal and surface charge amplification are unique and are
localised precisely at the outer Helmholtz plane. As the
charge reversal and surface charge amplification are not re-
stricted to appear necessarily inside the Helmholtz zone, the
localisation effect advanced in (3) and (4) is enticing be-
cause it offers a prescription to discriminate the origin of
these phenomena in more sophisticated theories that go
beyond our semi-punctual URMGC approach.

On the other hand, as already mentioned in Section
2, in their pioneering URMGC paper of 1982 [32], Val-
leau and Torrie established the well-known dominance of
the counterions, i.e., that, in the limit of very large sur-
face charges, ‘ . . . we expect the double layer properties
of a dilute (fully asymmetric) electrolyte to become sim-
ilar to those of a completely asymmetric electrolyte hav-
ing an effective size equal to that of the counterion . . . ’.
In other words, according to this principle, the counteri-
ons define essentially the comportment of highly charged
electric double layers. The relevance of this counterion pre-
dominance for double layer studies cannot be overlooked
when we note that, even if this remark is strictly valid at the
Poisson–Boltzmann level, its ‘obviousness’ has converted
it in a wonted assumption that has been frequently applied
in an improper manner in many theoretical and simulational
electric double layer analysis that go beyond the classical
Poisson–Boltzmann equation [42,46–53]. Notably, this in-
appropriate usage of the original statement of Valleau and
Torrie for the URMGC theory has been plainly evidenced
and amended in a couple of papers concerning the spher-
ical electric double layer of primitive model electrolytes
by Guerrero-Garcı́a and collaborators [17,38]. In this con-
text, the present semi-punctual mean-field investigation of
charge reversal and surface charge amplification in size-
and charge-asymmetric systems acquires a particular signif-
icance, since it reveals a principle that nicely complements
the standard predominance of counterions at high surface
charges introduced by Valleau and Torrie, this time in the
opposite surface charge regime. Specifically, we have shown
that, according to the URMGC theory, a change in the va-
lence of the smallest ionic species, independently if they are
coions or counterions, has a higher impact in the electric
double layer than a change in the valence of the biggest ionic
species if the concentration of the smallest ions is fixed and
the colloidal surface charge is low/moderate. That is, the
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structural and thermodynamic properties of a fully size-
and charge-asymmetric semi-punctual binary electrolyte
surrounding a weakly/moderately charged colloid are dom-
inated by changes in the valence of small ions regardless of
the colloidal polarity if they are present at a fixed concen-
tration. The dominance of small ions has been illustrated
here by showing the significant impact that the specific
characteristics of the smallest ionic species yield in the
corresponding charge reversal and surface charge ampli-
fication phenomena, even in a simple semi-punctual ions
mean-field approach.

Finally, even if the conclusions obtained in this com-
munication, e.g., the dominance of small ions at very low
colloidal charges, are strictly valid for semi-punctual elec-
tric double layer systems only at the URMGC level, it re-
mains to be determined if such findings are still applicable
in more accurate descriptions of the electric double layer,
for instance, in the primitive model of an electrolyte. Work
in this direction is currently in progress.

Acknowledgements
Fruitful discussions with Dr. Martı́n Chávez-Páez and the com-
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