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The trapping potential induced by the interaction of a highly focused laser light with a spherical

dielectric particle can be accurately approximated by a parabolic potential. In this work, we revisit

experimental and numerical methodologies used to characterize the Brownian motion of a colloidal

particle under the influence of a simple harmonic potential produced by optical tweezers. A classic

Brownian dynamics simulation is used to model the experimental results, focusing on statistical

properties that can be measured by direct visualization of the system using videomicroscopy. This

work represents a useful insight into the underlying physics behind the optical tweezers technique,

also giving guidelines regarding programming protocols and experimental analysis methodologies,

that may be of help for students working with such techniques, as well as for professors teaching

undergraduate advanced optics courses. # 2024 Published under an exclusive license by American Association of
Physics Teachers.

https://doi.org/10.1119/5.0077571

I. INTRODUCTION

A colloidal suspension is formed by a dispersed phase,
usually of nanometric or micrometric solid particles, in con-
tinuous liquid media. Dispersed particles, also referred to as
colloids, should be larger than the ions and small molecules
present in the liquid solution, but small enough to be influ-
enced by their interaction with the solvent, thus presenting
thermal motion, also called Brownian motion.1 Brownian
motion was first observed by Robert Brown and meticulously
characterized by Jean-Baptise Perrin, finding a null mean
displacement as well as the prediction of a mean squared dis-
placement (MSD) that grows linearly in time.2,3 Numerical
computer simulations are a powerful tool to describe and
model Brownian motion. One of the most widely used tech-
niques is Brownian dynamics (BD) simulations.4

Experimentally, videomicroscopy is one of the most popu-
larly used tools to observe and study Brownian motion.5 In
this technique, an optical microscope is used to visualize col-
loidal particles in a bright field configuration, and tracking
routines are used to extract dynamic and static information.

A dielectric, i.e., non-absorbing, colloidal particle interact-
ing with a highly focused laser beam can be modeled as a
Brownian particle interacting with a parabolic potential, at
least within a short range from the focus of the laser. The
colloidal particle is then submitted to the thermal noise due
to its interaction with the solvent molecules and to an equiv-
alent force produced by the parabolic potential, the so-called
Brownian harmonic oscillator.6 This constitutes the working
principle of the optical tweezers technique, which has
enabled single-molecule experiments in biological systems
with great spatial accuracy. The relevance of optical twee-
zers was recently recognized when Arthur Ashkin was
awarded the 2018 Physics Nobel Prize in Physics for the
invention of this technique. Understanding the principles

behind optical tweezers is required in a wide variety of
undergraduate and graduate programs, particularly in bio-
physics and related fields. However, the literature discussing
both the typical experimental and numerical simulation
methods that are used in the field at the undergraduate level
is somewhat limited.7–9 Moreover, experimental implemen-
tations of optical tweezers are nowadays available as modu-
lar systems (see, for example, Ref. 10). They are easy to
assemble and use and are typically designed as add-on
instruments for commercial microscopes.

In this work, we revisit some of the main statistical prop-
erties of the Brownian motion of a colloidal particle interact-
ing with a parabolic potential. We also describe an
experiment to monitor the motion of a dielectric particle
trapped by optical tweezers via videomicroscopy. The pre-
sent work is divided as follows: in Sec. II, a brief introduc-
tion to the main properties of the Brownian motion is
presented, along with a general discussion of several relevant
observable properties. In Sec. III, experimental and simula-
tion methods are outlined, including sample preparation,
tracking, and trajectory analysis. The basic equations and
pseudo-codes of the BD simulations we have performed are
discussed, and the main components of a typical optical
tweezers set-up are presented. Section IV shows the results
and the comparison between experiments and numerical sim-
ulations. Our main aim is to provide a concise and helpful
guide for undergraduate and graduate students interested in
understanding and using optical tweezers.

II. BROWNIAN MOTION

Numerous theoretical descriptions of Brownian motion
have been proposed since the last century,6,11,12 many of
them showing a good agreement with experimental observa-
tions. Despite all these theoretical advances on the topic,
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there are still several significant problems that are far from
being fully solved, such as the full description of the hydro-
dynamic interactions among colloidal particles,1 the effect of
external potentials on the colloidal suspension,13,14 or non-
equilibrium conditions.15–17

The first theoretical framework we revisit is an equation
of motion known as the Langevin equation.18 The underlying
basis of this framework is the separation of the net force
exerted by the solvent on a particle as the sum of a random
stochastic force (memoryless force) and a friction force
(shape-and liquid viscosity-dependent). Although the ran-
dom force cannot be fully described, some statistical proper-
ties can be derived, and thus, the Langevin equation
becomes a stochastic equation of motion, i.e., an equation
for which only noise-averaged quantities can be computed.
In the following, we will restrict ourselves to the one-
dimensional Langevin equation

m
dv

dt
¼ �cvþ fRðtÞ þ fext; (1)

where m is the mass of the particle, �cv represents the
velocity-dependent friction force with friction coefficient c,
fRðtÞ is the random force due to solvent collisions, and fext

corresponds to the sum of all other external forces. The
external force can be associated, for instance, with the exter-
nal field produced by optical tweezers or with the net force
that the particle experiences due to the presence of other par-
ticles in non-dilute systems. The formalism for solving the
Lanvegin equation is usually limited to times larger than the
inertial time, m=c, for which diffusive motion is always
found. The inertial time for micrometer particles in an aque-
ous solution is typically about 100 ns.19 The friction and the
random forces actually come from the same origin, namely,
the random impacts of surrounding solvent molecules on the
tracer particle, but they, respectively, represent the force that
depends on the particle’s velocity and the force that is inde-
pendent of it. Note that the fluctuation–dissipation theorem
is a direct consequence of the relationship between the fric-
tion and random forces.20

Given that it is impractical to calculate the forces due to
collisions between the colloidal particle and N � 1023 sol-
vent particles, fRðtÞ is usually only defined by its statistical
features. For spherical colloidal particles of radius r with no-
slip boundary conditions for the flow field, one gets

hfRðtÞi ¼ 0; (2)

hfRðtÞfRðt0Þi ¼
6pgrkBT

m
dðt� t0Þ; (3)

where hi denotes an ensemble average. Notice that Eq. (3)
indicates that there is no correlation between the random
forces at two different times t and t0. The main property we
are interested in is the one-dimensional mean squared dis-
placement, MSD, defined as hDx2ðtÞi � hðxðtÞ � xð0ÞÞ2i. In
the absence of external forces, the MSD predicted by the
solution of the Langevin equation exhibits, at short times, a
so-called ballistic regime, i.e., a regime where the MSD
/ t2. More importantly, at longer times which correspond to
the regime usually accessible experimentally, the MSD
grows linearly with time,

hDx2ðtÞi ¼ 2Dt; (4)

where D is the diffusion coefficient that depends on tempera-
ture and on the friction coefficient c as D ¼ kBT=c. (This
relation is also known as the Stokes–Einstein equation.)1 For
a spherical particle of radius r in a solvent at temperature T
and viscosity g, the diffusion coefficient can be expressed as
D ¼ kBT=6pgr.

Optical tweezers create an external parabolic potential due
to the interaction of a Gaussian laser beam with the spherical
particle, so that the effective trapping force is usually mod-
elled as fext � �kx,8 where k is the spring constant or optical
stiffness and depends on the laser’s incident power and
wavelength, as well as on the size and on refractive index of
the particle and the refractive index of the surrounding
medium. With such a trapping force, the MSD takes the fol-
lowing form:6,21

hDx2ðtÞi ¼ 2kBT

k
1� exp � kt

c

� �� �
: (5)

Equation (5) presents two time regimes: at short times,
t� c=k, the MSD grows linearly and the particle is free to
randomly move around x¼ 0, and one recovers Eq. (4). At
long times, t� c=k, the MSD is time-independent and equal
to the constant value 2kBT=k: the optical tweezers create a
confinement region from which the particle is unable to
escape. The second regime is also used to calibrate the opti-
cal tweezers: the spring constant k can be inferred by experi-
mentally determining the MSD and fitting it to Eq. (5).

An alternative formalism to describe the Brownian motion
is related to the Fokker–Planck equation first developed by
Einstein.8,12 This equation describes the evolution of the
probability density qðx; tÞ of finding a particle at a position x
at time t if the particle was found at x¼ 0 at t¼ 0. In the sim-
plest case where the diffusion coefficient is independent of
time and space and in the absence of external forces, the
Fokker–Planck equation takes the form

@qðx; tÞ
@t

¼ D
@2qðx; tÞ
@x2

: (6)

As in this formalism the particle’s inertia is neglected, and
the associated velocity does not display a ballistic regime.22

By using the initial condition qðx; t ¼ 0Þ ¼ dðxÞ, the solu-
tion to Eq. (6) is expressed as

qðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt
p exp � x2

4Dt

� �
; (7)

and thus, the particle probability density evolves as a time-
dependent Gaussian function. As it is shown below, the prob-
ability density can be estimated experimentally from dis-
placement histograms.23 In this case, the MSD is calculated
as the second moment of the probability density, giving the
same result as the Langevin description for t� c=k.
However, both the Fokker–Planck and the Langevin equa-
tions are complex to solve for an arbitrary external force,
and thus, a new methodology is required.

To circumvent this difficulty, Ermak proposed in 197524

an important algorithm for solving ordinary differential
equations, including the classical diffusion equation that
describes the one-dimensional stochastic motion of a particle
in a molecular solvent, which is the so-called Smoluchowski
equation,
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@PX x; tjx0; t0ð Þ
@t

¼ � 1

c
@

@x
fext xð ÞPX x; tjx0; t0ð Þ
� �

þ D
@2PXðx; tjx0; t0Þ

@x2
; (8)

where fextðxÞ represents the net external force acting on the
particle and PXðx; tjx0; t0Þ represents the probability density
function of finding a particle at the position x at time t if the
particle was initially located at x0 at time t0. The
Smoluchowski equation (8) is equivalent to the Langevin
equation (1) if the magnitude of the frictional force cv is
much larger than the inertia mðdv=dtÞ.25

Similar to the Fokker–Planck equation, Eq. (8) needs an
explicit functional form of the external force to be solved.
However, the methodology proposed by Ermak is fundamen-
tally different from analytically solving such equation, being
an iterative method. In a Brownian dynamics simulation, the
position of the particle at the time t þ dt is calculated from
the previous position at time t,24

x tþ dtð Þ ¼ x tð Þ þ D
fext x tð Þð Þ

kBT
dtþ

ffiffiffiffiffiffiffiffiffiffi
2Ddt
p

GðtÞ; (9)

where the first term corresponds to the position of the parti-
cle at time t, the second one corresponds to the displacement
due to the external force, and the last one represents a ran-
dom displacement, which is normally distributed with a zero
mean and has a variance 2Ddt, where G(t) corresponds to a
Gaussian random variable.

Another statistical property of interest is the time-
independent probability density

qðxÞ ¼
ð

qðx; tÞdt; (10)

which gives the probability of finding a particle at a certain
position x regardless of the specific time t. At thermody-
namic equilibrium, and considering sufficient long and inde-
pendent sampling of the positions, the time-independent
probability density follows the Boltzmann distribution,

qðxÞ / exp �UextðxÞ
kBT

� �
; (11)

where Uext is the external potential, defined as
fext ¼ �dUext=dx. Thus, the time-independent probability
density can be written as a Gaussian function dependent on
the spring constant k,

qðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

k

2pkBT

r
exp � kx2

2kBT

� �
: (12)

The Boltzmann distribution reflects the fact that a thermal
system in equilibrium is more likely to be found in the mini-
mum of the potential. Again, such a distribution can be cal-
culated from the position histogram.

III. METHODS

A. Videomicroscopy and mean squared displacement
calculation

The Brownian particles used in this work have been cho-
sen to be of the order of a micrometer in size so that they can

be visualized using classic optical elements. The drag force
exerted by the solvent can also be calculated using the
Stokes relation. Moreover, these particles are commercially
available in water solution and display minimal variation in
size.

For the determination of the diffusion coefficient, a sample
is prepared from the original stock solution (Fluka spherical
polystyrene particles of 2.8 lm in diameter in a water solu-
tion at 0.1 weight/weight concentration) to reach an area
fraction (the ratio of the transverse area of all particles over
the total area) of 0.01 to avoid particle interaction. Particles
smaller than 1 lm can be used but would probably be diffi-
cult to resolve optically, whereas larger particles may have a
reduced Brownian motion, making the calibration protocol
complex. The sample is then mixed with a dilute (about
0.001 in area fraction) solution of larger particles (Fluka
spherical polystyrene particles of 4.0 lm in diameter). The
solution is agitated to avoid sedimentation, and a volume of
about 10 ll of the mixture is placed on top of a glass plate,
covered with a No. 1 cover glass, gently pressed down and
sealed with fast curing epoxy adhesive liquid to avoid drift
caused by air flow. Prior to assembly, the glass place and
cover glass are cleaned using Hellmanex III cleaning solu-
tion in ultrasonic bath, washed against ultra-pure water (18
XM/cm) several times and dried in a vacuum oven at 100 �C.
These steps are important to ensure that the larger particles
serve as spacers to set the thickness between the glass plate
and the cover glass, while the small particles are confined to
a quasi-2D space, remaining in focus for the total duration of
the experiment and facilitating the tracking of the particles.
This procedure also helps us to determine the best tracking
parameters for further experiments. The sample can be
placed on the experimental setup used for optical tweezers,
which is detailed below, but it can also be observed in a
commercial inverted bright field microscope (Nikon Eclipse
Ti-U) using a 20	 microscope objective, with the advantage
of being able to track the �100 particles that are in the field
of view to have a better statistics, as shown in Fig. 1.
Recording at 10 frames per second in these conditions gives
a reliable mean squared displacement after 2000 s, as is
shown below.

Samples for optical trapping are prepared similarly but
with a lower concentration of particles to reduce the proba-
bility of another particle interacting with the trapped particle
and using a high aperture microscope objective.

Tracking algorithms23,26 can be used to calculate a wide
variety of statistical properties. Tracking methodologies usu-
ally start from a series of images obtained from a camera
software, and, using the well-known method proposed by
Crocker and Grier, the centroid of a particle (usually brighter
than its surroundings) is tracked.23 Trackpy, an open toolkit
in Python that implements the Crocker and Grier algorithm,
was used here to track the position of colloidal particles
experimentally, achieving sub-pixel accuracy.40 The accu-
racy depends on the microscope, but, in our case, gives a typ-
ical resolution of 100 nm. Trackpy is also able to compute
the drift of the particles (caused, for example, by a tilt of the
sample) and to subtract such a drift from the trajectories. In
most cases, drift affects the long-term dynamics, and thus, a
reliable analysis at such times requires removing the drift
even if it is found to be small. The outcome of the Trackpy
algorithm is the trajectory of the particles, i.e., a time series
of the position of the particle at each frame xj separated by a
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time dt ¼ 1=fps, where fps is the number of frames per sec-
ond acquired by the camera.

The MSD is calculated by computing the squared dis-
placement at different times and performing an ensemble
average, i.e., averaging over all particles on the field of view
for the free diffusion experiment. In addition, a time average
can be performed to improve precision on the MSD if the
system is stationary, i.e., if the statistical properties do not
change in time, then the MSD for a single particle for a par-
ticular time interval can be calculated starting at any of the
observed times ti. Denoting the time between frames as dt
and the time interval t ¼ j	 dt, where j must be an integer,
the MSD of a trajectory of size n for the time interval t can
be calculated as

hDx2ðt¼ j	 dtÞi ¼ 1

n� j

Xn�j

i¼1

xðtiþ jdtÞ � xðtiÞð Þ2: (13)

This average would correspond to the ensemble average if
n is large enough for the particle to sample the whole phase
space. This quantity can then be averaged over the entire
ensemble of particles. Note that it is possible for time-
averaging and ensemble averaging to give different
results,27,28 but we did not observe this effect. In Eq. (13),
the number of averaged points decreases as t increases, rang-
ing from n� 1 for the first lag time to 1 for t ¼ n	 dt. The
number of averaged data points is a measure of the statistical
reliability at a particular time, and thus the uncertainty
increases as the lag time increases. Particle averaging con-
tributes to improving the statistics, especially at long times.
For the calculations made in this contribution, the MSD is
found to be statistically reliable for lag times smaller by a
factor of 10 than n 	 dt for a single trapped particle.

Figure 2 shows representative individual and time-
averaged mean squared displacements for the case of free
particles (grey lines), along with the calculated ensemble-

averaged MSD from the raw trajectories, i.e., without remov-
ing the drift (black circles). As can be seen, slightly different
diffusion coefficients are found for each one of the trajecto-
ries at short times, due to small variations in the position of
the particles but also to statistical deviations. At large lag
times, larger deviations are observed due to statistical uncer-
tainty produced by the truncation of the sampled trajectories
that occurs when particles leave the image volume.
Furthermore, the effect of the drift on the MSD can be
observed on an individual particle’s MSD, as, at long time,
the displacements are larger than expected from diffusion.
More importantly, the ensemble-averaged MSD also presents
this feature, deviating from linearity at times larger than
100 s. Removing the drift using Trackpy routines gives an
ensemble averaged MSD that remains linear up to the maxi-
mum time where the MSD was calculated (red circles), in
this case 3000 s, highlighting the importance of subtracting
the drift from the trajectories. The diffusion coefficient
obtained from a linear fit to the drift-corrected MSD is
D ¼ 0.095 87 6 0.000 01 lm2=s, which deviates from the
Stokes–Einstein value, namely, 0.1227 lm2=s, mostly
because of the hydrodynamic interaction of the particles
with the glass plates that hinders their motion.

B. Optical tweezers setup

In an experimental realization of the Brownian harmonic
oscillator, the trapping force exerted on the particle by a laser
beam comes from the change of momentum of the incident
photons scattered by the particle due to the change in refrac-
tive index at the colloid–solvent interface. As the photon
momentum is proportional to its frequency, the refraction-
induced force is negligible in most cases. However, this
force may be important for high intensity light sources (such
as laser beams) and micro-sized dielectric particles. Such a
trapping phenomenon was successfully implemented experi-
mentally by Arthur Ashkin in the 1970s. He first succeeded
in levitating a particle using a laser beam shining on it from
below,29 before trapping a smaller Brownian particle in 3D
with two counter-propagating beams,30 and finally inducing
the same 3D trapping with a single highly focused laser

Fig. 1. Representative image of a dilute colloidal suspension, as seen by

bright field microscopy using a 20	 microscope objective. A time series of

such images is used to determine the diffusion coefficient of the colloids as

well as the parameters to be used by the Brownian dynamics simulation.

One of the larger particles, used as spacers, can be seen in the right top cor-

ner (inside the red circle).

Fig. 2. Individual non-corrected mean squared displacements of colloidal

particles (diameter 2.8 lm) in water, that are confined between two glass

plates (gray lines). Symbols show the ensemble-averaged two-dimensional

MSD without (black circles) and with (red circles) drift correction.
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beam.31 This method is known as an optical tweezer and has
important applications in several scientific fields.32–34 The
force exerted on a particle trapped by typical optical twee-
zers is of the order of piconewtons for visible light in the
milliwatt power range.8 The magnitude of such a trapping
force is comparable to the drag force of micrometer particles
in microfluidic devices or to the interaction forces among
colloidal particles.35

A schematic of the experimental setup used to trap par-
ticles in a laser-induced parabolic potential is shown in
Fig. 3, along with an image of the actual apparatus. It is com-
posed of image formation elements and optical trapping
parts. In our setup, we trap a single particle at any given
time. The trapping laser provides a beam of power up to 2
W, as measured at the exit of the laser, at a wavelength of
532 nm (Opus532, Laser Quantum). A key element in both
the trapping and the image formation optical components is
the use of a 100	, N.A. 1.35, microscope objective (Nikon E
plan 100	, infinite-corrected), capable of focusing laser light
on a very small region where the trapping occurs. It also pro-
duces a magnified image of the trapped particle. A Halogen
lamp (QTH10, Thorlabs) provides a homogeneous illumina-
tion of the sample, using an iris diaphragm to control light

intensity and two refractive elements (a single lens and a
condenser). An additional lens takes the image formed by
the microscope objective to the camera plane. A dichroic
mirror (DMLP605, Thorlabs) joins both sets of elements, by
reflecting the trapping laser beam to the 100	 microscope
objective and allowing the formation of the image in the
camera (PL-B776F, Pixelink) using the filtered light of the
lamp (in the red part of the visible spectra in this case).
Stable trapping is achieved by increasing the laser beam size
to slightly overfill the back aperture of the microscope objec-
tive. To this end, a telescope is used to increase the laser
beam’s diameter by a factor of 6.7 As the particle is highly
confined in the central part of the image, the region of space
captured by the camera can be reduced so as to be able to
increase the number of frames per second. In this particular
case, 500 fps can be reached using a 256	 256-pixel region.
The camera’s spatial resolution limits the higher laser power
that can be used in the experimental setup as increasing laser
power reduces the amplitude of the particle’s motion. In our
case, the maximum laser power is about 20 mW. At room
temperature, simulations based on the absorption coefficients
of both water and the particle show that this power should not
affect the solution’s temperature in any significant manner.

C. Brownian dynamics simulation

Brownian dynamics simulations are a powerful numerical
technique that allows us to delve into the study of the
dynamics and statistical properties of a particle system under
the influence of an external field. Once the BD simulations
are calibrated using preliminary diffusion constant experi-
ments and long timescales MSD as explained below, they
can be used to explore values of the parameters (strength of
the laser, particle size, etc.) that it would be either impracti-
cal or too time-consumming to test experimentally. In the
Brownian dynamics (BD) approach, the Langevin equation
is solved by simulating the random motion of particles origi-
nating from the thermal agitation produced by the host sol-
vent. The BD formalism is very well developed and can
include hydrodynamic interactions among particles,4 as well
as forces produced by external fields such as electric36 or
magnetic forces,37 confinement, and gravitational effects,38

among others.
In this study, we have performed Brownian dynamics sim-

ulations of a particle under the influence of a parabolic
potential with the following form:

UðxÞ ¼ 1

2
kx2; (14)

where k is the spring constant associated with the potential
which is experimentally determined using the long time-
scales MSD (Eq. (4)). Once the external potential is set, the
trajectory of a particle can be simulated using the solution
developed by Ermak (9) outlined in Sec. II.

The confining potential of the laser is counter-balanced by
the kinetic energy of the particles. In the BD simulations, we
introduce the thermal energy

U0 ¼ akBT; (15)

where a quantifies the thermal energy in units of kBT. To
determine a, which is an input of the BD simulations, one
can, for instance, postulate that the thermal energy is equal

Fig. 3. (a) Schematic representation of the experimental set-up for optical

trapping. Coherent light from a 532 nm laser is expanded using a telescope

and redirected to a high numerical aperture microscope objective using a

dichroic mirror with a cut-off wavelength of 605 nm. The beam is focused

on the focal plane of the microscope objective, where the sample is located,

and optical trapping is achieved. Light from a white source is directed onto

the sample using a single lens and a condenser. The light coming out of the

microscope objective is taken out to a camera by a single lens. A long pass

filter (LPF) filters laser light that may be reflected back to the camera. (b)

Picture of the experimental set-up.
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to the typical potential energy of the trapped particle when it
has moved one diameter a away from its equilibrium
position,

k ¼ 2akBT

a2
: (16)

Such an assumption allows to have a dimensionless energy
parameter for the simulations. Since it is constrained by the
long timescales MSD (Eq. (4)), the exact model relating k to
kBT does not affect the results of the experiments.

Once the trajectories of the particles are simulated using
the BD algorithm, it is possible to estimate some important
static and dynamic properties, such as the MSD or the proba-
bility density function, as it is done experimentally by using
the recorded trajectories.

IV. RESULTS OF BROWNIAN MOTION

IN A PARABOLIC POTENTIAL

For particles trapped in optical tweezers, in contrast to the
case of free diffusion, we do not need to confine the colloidal
particles between two glass plates to observe a 2D motion.
This is because the trapping force prevents any sedimenta-
tion, thus confining the particle’s motion to a plane. This
also allows to keep the trapped particle in focus during the
whole experiment. Note that the diffusion coefficient
depends on the confinement, so that special care should be
taken if the diffusion and the optical tweezers experiments
are not performed using the same confinement, whether
induced by glass plates or by the optical tweezers.

In order to compare the dynamics of a trapped colloidal
particle with the Brownian dynamics simulation, some
parameters must be determined first, mainly the diffusion
coefficient D, which can be determined as indicated in Sec.
III A, and the spring constant k associated with the optical
stiffness (that can be given in terms of a, as discussed
above). As k mainly depends on the laser power and the par-
ticle’s size, we can be tempted to determine this parameter
once for a given laser power (fitting the experimental MSD
to Eq. (5)) and use this value for further experiments.
However, small variations in either the trap’s position or the
sample preparation influence the effective trapping power.
Thus, in situ calibration is always preferred.

We measured the time-averaged MSD of a 1.0 lm diame-
ter particle confined by the laser at powers ranging from 4 to
18 mW. The duration of each experiment was 1000 s, giving
10 000 frames recorded at 10 fps, enough to get reliable sta-
tistical information. The experimental MSD is shown in
Fig. 4 (black dots) for a laser power of 6 mW. From the fit to
Eq. (5), the value of the spring constant has been extracted:
k¼ 1.3886 pN/lm for this particular case. The value of D
has been extracted from the analysis of Fig. 2 (for 2.8 lm
particles) as explained above and has been renormalized for
the particle size via the Stokes–Einstien relation. The values
of k and D have been used as inputs for the BD simulations
for all laser powers experimentally studied. The simulations
have been run with a time step dt ¼ 1	 10�6 s, so that the
first observed experimental point is three decades in time
later than the first simulation time. In Fig. 4, for clarity, the
MSDs extracted from the BD simulations are shown only in
the range where experimental data are accessible. This form
of the MSD is observed for all laser powers: at short times,
the MSD grows linearly with time, indicating free diffusion,

while at longer times, the MSD develops a plateau due to the
confinement of the particle by the optical tweezers. Thus, the
long time regime depends on the laser power used for optical
trapping.

Before analyzing time-dependent properties, it is interest-
ing to analyze the behavior of the equilibrium, or time-
independent, probability density function qðxÞ, which gives
the probability per unit length of finding the particle around
the position x, averaged over time. As stated above, at ther-
modynamic equilibrium, the time-independent probability
function should follow a Boltzmann distribution. As the par-
ticle is trapped in a potential of the form UðxÞ ¼ 1

2
kx2, the

expected Boltzmann distribution should be Gaussian as
shown in Eq. (12). A Gaussian profile of the time-
independent probability function qðxÞ is indeed observed in
the experimental results and in the numerical BD simulations
(see Fig. 5) not only for the laser power shown, but for all
laser powers explored experimentally. The extent of the
probability function qðxÞ can also be understood as the size
of the trapping potential induced by the interaction of the
laser beam with the particle and thus reduces in size when
increasing laser power. In the following, we explore the
properties of the probability density function at different
laser powers, where some of the features explained above
are better explored.

When the laser power increases, the spring constant k
associated with the optical tweezers increases and the spatial
confinement of the particle is expected to increase. As a
result, a sharpening of the time-independent probability dis-
tribution is observed, and the width of Gaussian profile
reduces according to Eq. (12). The increase in the optical
stiffness as a function of the laser power P can be character-
ized by two equilibrium parameters: the maximum height
of the time-independent probability density HMaxðPÞ ¼ qðx
¼ 0;PÞ and the width of a Gaussian fit rðPÞ (and variance
r2ðPÞ), which are shown in Figs. 6(a) and 6(b). Similarly as
in the previous case, the optical stiffness k has been esti-
mated from experimental data for different laser powers as a
fit to Eq. (5) and used to feed the BD simulation. From the

Fig. 4. One dimensional mean square displacement of Brownian particles of

diameter ¼ 1:0 lm trapped by optical tweezers at a laser power of 6 mW

(black circles) and comparison with numerical Brownian dynamics simula-

tions (blue line). The diffusion coefficient in the absence of optical tweezers

was estimated using the MSD shown in Fig. 2, whereas the spring constant

was obtained as a fit to Eq. (5) indicated as a red dashed line.
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trajectories tracked experimentally and those obtained by the
simulation, the time-independent probability distribution is
calculated, and the two above-mentioned parameters are esti-
mated. In both instances, simulations and experimental data
display a good agreement. This is expected, since, in both
cases, the dynamics are almost equivalent (see Fig. 5 for
instance), reflecting the correct choice of parameters used in
the effective potential associated with the optical tweezers.
According to Eq. (12), the variance r2ðPÞ should inversely
depend on the optical stiffness. Figure 6(b) shows that the
variance is inversely proportional to the laser power, which
implies a linear relation between the laser power and the
optical stiffness. This relation is expected, as increasing the
laser power is related to an increase in the number of

incident photons, and as each photon contributes similarly to
the optical trapping, an increase in the optical stiffness is
expected. This finding is also well known and has been
reported in the literature.32

As indicated above, the probability density function qðx; tÞ
fully characterizes the dynamical behavior of the Brownian
motion of a particle trapped in optical tweezers. In the
absence of an external field, that is in pure Brownian motion,
the theoretical form of qðx; tÞ is given by Eq. (7), which rep-
resents a Gaussian profile with a width that increases with
time. Even though such a quantity can be computed at any
lag time, we are mainly interested in showing the behavior
of qðx; tÞ in three different regimes: at short-times, when the
dynamics is diffusive and qðx; tÞ is Gaussian; at long-times,
when t is larger than the characteristic trapping time c=k
¼ ðkBTÞ=Dk (see Eq. (5)) and the MSD clearly displays a
plateau; and at the transition time regime between short- and
long-times. In Fig. 7, the probability function for our experi-
ments and simulations is shown at four experimental lag
times: s¼ 1, 4, 50, and 400, with s ¼ t/(100 ms), at a laser
power of 6 mW. At lag time s¼ 1, the experimental and BD
simulations display a high and narrow peak for qðx; tÞ. At
long-times (see, e.g., s¼ 50 and s¼ 400), qðx; tÞ displays a
constant height and a stationary Gaussian shape according to
experimental results. Interestingly, the BD simulation con-
verges to the same values as the experiments in this regime.
At the transition time regime between the short- and long-
times (see, e.g., s¼ 4), the qðx; tÞ also presents a Gaussian
shape.

V. CONCLUSIONS

In this work, we have revisited some of the most impor-
tant features of a colloidal particle undergoing Brownian
motion when interacting with a highly focused laser beam
in the visible range. This interaction produces the so-called
optical trapping phenomenon, i.e., the contactless manipu-
lation of the particle with a force of the order of pico-
Newtons, with huge applications in biology and physics.
The experimental implementation of optical tweezers is

Fig. 5. Time-independent density of probability of finding the trapped parti-

cle at the position x. Blue circles represent the experimental data associated

with Fig. 4. From calibration methods, the experimental k is calculated, giv-

ing 3.68 pN=lm or equivalently a¼ 1158.69, and it is used as an input

parameter in both the numerical BD simulations and the analytical

Boltzmann distribution given by Eq. (12), which are shown as a green line

and black squares, respectively. The observation time step was set to 0.002 s

for the experiment and the BD simulations.

Fig. 6. (a) Maximum time-independent probability density per unit length at x¼ 0. (b) Eidth of the time-independent probability density per unit length for dif-

ferent laser powers. The blue lines and the black circles represent the results obtained from numerical Brownian dynamics simulations and from experiments,

respectively.
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nowadays accessible not only to graduate but also to under-
graduate students, and the data analysis is relatively
straightforward given the recent advances in tracking tech-
niques. We have shown that the theoretical framework used
to describe the phenomena can be quantitatively compared
with experimental results, and that Brownian dynamics sim-
ulations are easy to implement, even for non-specialists.
The authors hope that this contribution provides an useful
insight on optical tweezers, both from a teaching perspec-
tive, but also as a starting point for scientific applications,
and that it could serve as a practical guide to understand the
optical trapping of colloidal particles from an experimental
and simulation point of view.
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APPENDIX: ONE-DIMENSIONAL BROWNIAN

DYNAMICS WITH EXTERNAL FORCE

PSEUDO-CODE

Set the initial position of the particle, e.g., xold¼ 0, and
initialize the values of D, a, k or a (see the text), and dt.

DO i¼ 1 up to maxsteps

Calculate xnew ¼ xold þ D
kBT Fðxold; kÞdtþ

ffiffiffiffiffiffiffiffiffiffi
2Ddt
p

Gi

where Fðxold; kÞ ¼ �kxold ¼ � 2akBT
a2 xold, and

Gi corresponds to a random number obtained from a nor-
mal distribution with mean l¼ 0 and variance r¼ 1. This
random number can be obtained, e.g., via the Box–Mueller
algorithm39 or from an equivalent available implementation
in a chosen programming language.

Record xnew

i¼ iþ 1
xold¼ xnew

END DO
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