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Let us define ψ0 and σ0 as the mean electrostatic potential and the charge density per

unit area, respectively, at the surface of a planar, a cylindrical, or a spherical electrode,

next to a charged fluid with net charge local density per unit volume ρc(~t) =
∑n

i=1 ci(~t)qi,

where qi is the electric charge of the ionic species i and all ionic species have a numerical

concentration ci satisfying the electroneutrality condition in bulk,
∑n

i=1 qici = 0, very far

away from the surface of a single electrode. In planar, cylindrical, and spherical geometries,

the capacitive compactness τc, in the absence of a surface mean electrostatic potential of

zero charge (i.e., provided that ψ0 goes to zero in the limit when σ0 goes to zero), can be

written as1–3
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τc =
εψ0

σ0
, (1)

τc = Rcyl exp

(
εψ0

Rcylσ0

)
, (2)

or

τc = R

[
1−

(
εψ0

Rσ0

)]−1
, (3)

respectively, where Rcyl and R are the radius of the cylindrical and spherical electrode,

respectively, and the average macroscopic dielectric constant of the solvent is given by ε =

ε0εr. Macroscopically, these expressions can be obtained from the definition of an effective

electrical double layer capacitor by replacing the difference of the electrostatic potential

between the corresponding electrodes by the mean electrostatic potential ψ0 at the surface

of a single electrode with surface charge density σ0, immersed in a Coulombic fluid.

On the other hand, let us consider a planar, a cylindrical, or a spherical electrode bathed

by a continuum solvent with dielectric constant ε = ε0εr in the absence of small charged

particles. The bare electric field associated to each electrode in cartesian, cylindrical, and

spherical coordinates, can be written as ~E(x) = σ0
ε
î, ~E(ρ) =

σ0Rcyl

ερ
ρ̂, and ~E(r) = σ0R2

εr
r̂,

respectively. The corresponding bare electrostatic potentials V (~t) (in each geometry) are

given by:

Vwall(x) = −σ0x
ε

+ Cwall, (4)

Vcylinder(ρ) = −σ0Rcyl

ε
ln

(
ρ

Rcyl

)
+ Ccylinder, (5)

Vsphere(r) =
σ0R

2

ε

(
1

r
− 1

R

)
+ Csphere. (6)
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Note that the first term on the right hand side of Eq. 6 has been written in such a way

that it becomes zero when r = R. In the above equations, we have choosen that the bare

electrostatic potential at the surface of each electrode vanishes, that is, Vwall(x = 0) =

Vcylinder(ρ = Rcyl) = Vsphere(r = R) = 0, which implies that Cwall = Ccylinder = Csphere = 0.

Let us define a normalized charge density weight function

w(~t) =
ρc(~t)∫

all space
ρc(~t)d~t

, (7)

associated to a charged fluid with net charge local density per unit volume ρc(~t) =
∑n

i=1 ci(~t)qi

in the presence of an electrode with homogeneous charge density per unit σ0 and mean elec-

trostatic potential ψ0 at the surface, in planar, cylindrical and spherical geometries. The

expected value of a function f(~t) averaged over the whole three-dimensional space is then

defined as

< f(~t) >=

∫
all space

f(~t)w(~t)d~t, (8)

where d~t is a differential volume element in the corresponding geometry.

The expected value given by Eq. 8 is calculated explicitly in the next sections for the

bare electrostatic potentials 4, 5, 6. Moreover, it is shown that

< V (~t) >=

∫
all space

V (~t)w(~t)d~t = −ψ0, (9)

in all geometries.

If the mean electrostatic potential ψ0 is written in terms of the capacitive compactness τc

and the surface charge density σ0 (see Eqs. 1,2,3), it is shown here that the expected value

< V (~t) > is equivalent to evaluate bare electrostatic potential V (~t) at the centroid of charge

of a Coulombic fluid, which is the so-called capacitive compactness of the electrical double

layer, in the presence of an electrode with surface charge density and mean electrostatic

potential σ0 and ψ0, respectively, next to a fluid with net charge local density per unit
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volume ρc(~t) =
∑n

i=1 ci(~t)qi in the corresponding geometry.

Alternative explicit forms of the capacitive compactness as expected values of functions

that depend on the geometry of the electrode are also provided in the following.

Planar geometry

First, let us consider an infinite solid charged hard wall with homogeneous surface charge

density σ0. The surface charge density and mean electrostatic potential at the electrode’s

surface can be written as:3

σ0 = −
∫ ∞
0

ρc(x)dx, (10)

and

ψ0 = −1

ε

∫ ∞
0

xρc(x)dx. (11)

The expected value of Vwall(x) can be written as:

< Vwall(x) >=

∫ ∞
0

−σ0x
ε
w(x)Adx, (12)

where

w(x) =
ρc(x)∫∞

0
ρc(x)Adx

, (13)

is the normalized net charge density weight function in planar geometry, d~t = Adx, and A

is the area of a section of the infinite planar electrode.

By using Eqs. 10 and 11 in Eq. 12, it is possible to write:

< Vwall(x) >= −σ0
ε
< x >= −ψ0. (14)

If we substitute Eq. 1 in Eq. 14 we obtain:
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< Vwall(x) >= −σ0
ε
τc, (15)

that corresponds to Vwall(x = τc). If we compare Eqs. 14 and 15, we observe that:

τc =< x >, (16)

which is an alternative definition of the capacitive compactness in planar geometry.

Cylindrical geometry

Now, let us consider an infinite solid charged hard cylinder with homogeneous surface charge

density σ0. The surface charge density and mean electrostatic potential at the electrode’s

surface can be written as:4

σ0 = − 1

Rcyl

∫ ∞
Rcyl

ρc(ρ)ρdρ, (17)

and

ψ0 = −1

ε

∫ ∞
Rcyl

ln

(
ρ

Rcyl

)
ρc(ρ)ρdρ. (18)

The expected value of Vcylinder(ρ) can be written as:

< Vcylinder(ρ) >=

∫ ∞
Rcyl

−σ0Rcyl

ε
ln

(
ρ

Rcyl

)
w(ρ)2πρLdρ, (19)

where

w(ρ) =
ρc(ρ)∫∞

Rcyl
ρc(ρ)2πρLdρ

, (20)

is the normalized net charge density weight function in cylindrical geometry, d~t = 2πρLdρ,

and L is the length of a section of the infinite cylindrical rod.

5



By using Eqs. 17 and 18 in Eq. 19, it is possible to write:

< Vcylinder(ρ) >= −σ0Rcyl

ε
< ln

(
ρ

Rcyl

)
>= −ψ0, (21)

If we substitute Eq. 2 in Eq. 21 we obtain:

< Vcylinder(ρ) >= −σ0Rcyl

ε
ln

(
τc
Rcyl

)
, (22)

that is equal to Vcylinder(ρ = τc). If we compare Eqs. 21 and 22, we notice that:

τc = Rcyl exp < ln

(
ρ

Rcyl

)
> . (23)

which is an alternative definition of the capacitive compactness in cylindrical geometry.

Spherical geometry

Finally, let us consider an infinite solid charged hard sphere with homogeneous surface charge

density σ0. The surface charge density and mean electrostatic potential at the electrode’s

surface can be written as:3

σ0 = − 1

R2

∫ ∞
R

ρc(r)r
2dr, (24)

and

ψ0 =
1

ε

∫ ∞
R

(
1

r
− 1

R

)
ρc(r)r

2dr. (25)

The expected value of Vsphere(r) can be written as:

< Vsphere(r) >=

∫ ∞
R

σ0R
2

ε

(
1

r
− 1

R

)
w(r)4πr2dr, (26)

where
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w(r) =
ρc(r)∫∞

0
ρc(r)4πr2dr

, (27)

is the normalized net charge density weight function in spherical geometry and d~t = 4πr2dr.

By using Eqs. 24 and 25 in Eq. 26, it is possible to write:

< Vsphere(r) >=
σ0R

2

ε

(〈
1

r

〉
− 1

R

)
= −ψ0, (28)

If we substitute Eq. 3 in Eq. 28 we obtain:

< Vsphere(r) >=
σ0R

2

ε

(
1

τc
− 1

R

)
, (29)

that corresponds to Vsphere(r = τc). If we compare Eqs. 28 and 29, we observe that:

τc =

〈
1

r

〉−1
. (30)

which is an alternative definition of the capacitive compactness in spherical geometry.
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