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The extent of the electrical double layer surrounding a charged
colloid is a measure of the neutralization of the bare or native col-
loidal charge and determines the colloidal stability properties of
these macroparticles in solution. The effects of characteristic prop-
erties of Coulombic fluids in the electrical double layer have been
widely studied in numerous experimental, theoretical, and simula-
tion studies.1 In particular, some of the present authors have shown
that the electrical double layer can experience a peculiar shrinking
and expansion in the presence of molten salts and simple charge-
asymmetric electrolytes if coions are multivalent.2,3 This observation
was performed via simulation and theory by calculating the capaci-
tive compactness of the electrical double layer.2–4 By considering the
global electroneutrality of an electrode–electrolyte system, it is pos-
sible to replace the real system by an effective capacitor in which the
diffuse electrical double layer charge is placed in an electrode with a
charge equal in magnitude to that of the real solid electrode but with
opposite sign. The distance from the coordinate origin at which this
electrode is located is, precisely, the capacitive compactness.2–5 Note
that if the location of the electrical double layer electrode is measured
from the surface of the real solid electrode, then the capacitive com-
pactness can be also interpreted as the separation distance between
both electrodes. In the literature, it is very well known that the Debye
length, and the associated electrical double layer, shrinks as a func-
tion of the ionic strength of the supporting electrolyte. However, the
Debye length cannot take into account the influence of the surface

charge density of the electrode as well as other relevant properties of
Coulombic fluids such as ion correlations, ionic excluded volume
effects, polarization effects, and ionic specific adsorption. In this
sense, the capacitive compactness is a generalization of the Debye
length that has proven to be very useful to quantify the thickness
or spatial extent of the ionic cloud neutralizing a charged surface.
On the other hand, average potential theorems in electrostatics are
very helpful to determine general properties of charge distributions
typically found in electrified soft matter systems. By using general
electrostatics and a normalized net charge density weight function,
we show here that the expected value of the bare electrostatic poten-
tialV (⃗t) produced by an electrode immersed in a continuum solvent
in the absence of small charged particles—in planar, spherical, and
cylindrical geometries—is equal to (i) the negative of the mean elec-
trostatic potential ψ0 at the surface of an electrode immersed in a
charged fluid with net charge density ρc(⃗t) and the same surface
charge density σ0, and also to (ii) the bare electrostatic potential
evaluated at the centroid of charge of the supporting Coulombic
fluid (which is the so-called capacitive compactness of the electri-
cal double layer). As a direct application of these results, we provide
alternative explicit expressions of the capacitive compactness as the
expected value of functions that depend on the specific geometry of
the electrode.

Let us start by considering three types of charged electrodes: an
infinite charged hard wall, an infinite solid cylinder of radius Rcyl,
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and a solid sphere of radius R. We will consider that these electrodes
have a homogeneous surface charge density per unit area σ0 and are
immersed in a medium with an average macroscopic dielectric con-
stant ε = ε0ϵr . The bare electric field associated with each electrode
in Cartesian, cylindrical, and spherical coordinates can be written as
E⃗(x) = σ0

ε î, E⃗(ρ) =
σ0Rcyl

ερ ρ̂, and E⃗(r) = σ0R2

εr r̂, respectively. The bare
electrostatic potential associated with each electrode in Cartesian,
cylindrical, and spherical geometries can be written as

Vwall(x) = −
σ0x
ε

+ Cwall, (1)

Vcylinder(ρ) = −
σ0Rcyl

ε
ln( ρ

Rcyl
) + Ccylinder , (2)

Vsphere(r) =
σ0R2

ε
(1
r
− 1
R
) + Csphere. (3)

Note that the first term on the right-hand side of Eq. (3) has
been written in such a way that it becomes zero when r = R. If
we choose that the bare electrostatic potential at the surface of
each electrode vanishes, that is, Vwall(x = 0) = Vcylinder(ρ = Rcyl)
= V sphere(r = R) = 0, then Cwall = Ccylinder = Csphere = 0.

Let us consider now the case in which each electrode is
immersed in a charged fluid constituted by n species of charged hard
particles with radius ri and point charge qi in their centers, in the
so-called primitive model. Solvent particles are modeled as a con-
tinuous medium characterized by a macroscopic dielectric constant.
All ionic species have a numerical concentration ci, and there are no
restrictions regarding their valences or radii, except that they must
satisfy the electroneutrality condition in bulk,∑n

i=1 qici = 0, very far
away from the electrode’s surface. As a result, the proposed method
can be also applied to systems including charged colloids at finite
concentration as well.

The capacitive compactness can be calculated if the surface
charge density σ0 and the mean electrostatic potential at the surface
of the electrode ψ0 are known. In planar, cylindrical, and spherical
geometries, the capacitive compactness τc in the absence of a sur-
face mean electrostatic potential of zero charge (i.e., provided that
ψ0 goes to zero in the limit when σ0 goes to zero) can be written
as2,3,5

τc =
εψ0

σ0
, (4)

τc = Rcyl exp( εψ0

Rcylσ0
), (5)

τc = R[1 − (
εψ0

Rσ0
)]
−1

. (6)

Macroscopically, these expressions can be obtained from the defi-
nition of an effective electrical double layer capacitor by replacing
the difference of the electrostatic potential between the correspond-
ing electrodes by the mean electrostatic potential ψ0 at the surface

of a single electrode with surface charge density σ0, immersed in a
Coulombic fluid. It must be noted that relationships between the
integer and the differential capacity, and the capacitive compactness
and its first derivative have been derived elsewhere.2

In order to calculate the capacitive compactness in any of these
geometries, it is necessary to know the ionic structure of the elec-
trical double layer either via theory or simulations. If the surface
charge density is chosen as the independent variable, the knowl-
edge of the electrical double layer allows us to calculate the mean
electrostatic potential at the colloidal surface and, as a result, the
capacitive compactness via Eqs. (4)–(6). Let us suppose that we
know the microscopic ionic concentration as a function of the dis-
tance in the planar, spherical, or cylindrical geometry. This allows
us to write the net charge local density per unit volume of the
Coulombic fluid as ρc(⃗t) = ∑n

i=1 ci(⃗t)qi. Depending on the geometry,
the three-dimensional spatial dependency of ρc(⃗t) can be simpli-
fied from three independent variables to only one if the electrode
is an infinite planar wall, an infinite cylinder, or a sphere. Let us
define now a normalized net charge density per unit volume weight
function in the whole space as w(⃗t) = ρc (⃗t)

∫all space ρc (⃗t)d⃗t
, where dt⃗ is a

differential of volume and the integral is performed in the whole
space. Let us also define the expected value of a function f (⃗t) in
the three-dimensional space as ⟨f (⃗t)⟩ = ∫all space f (⃗t)w(⃗t)dt⃗. We
have the conjecture that in the particular case of the non-linear
Poisson–Boltzmann theory, the normalized net charge density
weight function w(⃗t) is one signed if the closest approach distance
between all charged particles and the electrode’s surface is the same.
Nevertheless, in general, the characteristic properties of charged flu-
ids beyond the Poisson–Boltzmann viewpoint, such as the ionic size
asymmetry, the ionic excluded volume effects, polarization effects,
and ionic specific adsorption, may promote the appearance of oscil-
lations of the net charge local density per unit volume, and, as a
result, the weight function w(⃗t)may display both negative and pos-
itive signs as a function of the distance to the surface of the charged
electrode, which, in turn, can lead to a non-monotonic behavior of
the averaged quantity.

The expected value of the bare electrostatic potential V (⃗t) pro-
duced by a planar, a cylindrical, or a spherical charged electrode
immersed in continuum dielectric solvent [see Eqs. (1)–(3)] can be
calculated in the whole space regarding the normalized net charge
density weight function w(⃗t) in the corresponding geometry yield-
ing ⟨V (⃗t)⟩ = ∫all space V (⃗t)w(⃗t)dt⃗ = −ψ0. Specifically, in planar
geometry, let us consider an infinite solid charged hard wall with
homogeneous surface charge density σ0. The surface charge den-
sity and mean electrostatic potential at the electrode’s surface can be
written as3 σ0 = − ∫ ∞0 ρc(x)dx and ψ0 = − 1

ε ∫
∞

0 xρc(x)dx, respec-
tively. The expected value of Vwall(x) can be written as ⟨Vwall(x)⟩
= ∫ ∞0 −

σ0x
ε w(x)Adx, where w(x) = ρc(x)

∫ ∞0 ρc(x)Adx is the normalized

net charge density weight function in planar geometry, dt⃗ = Adx,
and A is the area of a section of the infinite planar electrode. From
these equations, it is possible to write ⟨Vwall(x)⟩ = − σ0

ε ⟨x⟩ = −ψ0.
If in this last equation the mean electrostatic potential at the sur-
face ϕ0 is written in terms of the surface charge density σ0 and
the capacitive compactness τc via Eq. (4), we obtain ⟨Vwall(x)⟩
= − σ0

ε τc, which corresponds to Vwall(x = τc). As a result, we observe
that τc = ⟨x⟩, which is an alternative definition of the capacitive
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compactness in planar geometry. Analogously, it is possible to
show that ⟨Vcylinder(ρ)⟩ = Vcylinder(ρ = τc) and ⟨Vsphere(r)⟩ =
Vsphere(r = τc), wherefrom we can write the following alternative
definitions of the capacitive compactness: τc = Rcyl exp⟨ln( ρ

Rcyl
)⟩

and τc = ⟨ 1
r ⟩
−1 in cylindrical and spherical geometries,

respectively. The above alternative definitions of the capaci-
tive compactness are based on general electrostatics, and they
are suitable to be used with modern liquid theories and
accurate molecular simulations beyond the classical non-linear
Poisson–Boltzmann theory in order to include the effects of the
colloidal surface, ion correlations, ionic excluded volume effects,
polarization effects, and ionic specific adsorption.

The explicit and detailed derivations in cylindrical and
spherical geometries have been included in the supplementary
material.
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