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The dynamics of colloidal particles at infinite dilution, under the influence of periodic
external potentials, is studied here via experiments and numerical simulations for two
representative potentials. From the experimental side, we analyzed themotion of a colloidal
tracer in a one-dimensional array of fringes produced by the interference of two coherent
laser beams, providing in this way an harmonic potential. The numerical analysis has been
performed via Brownian dynamics (BD) simulations. The BD simulations correctly
reproduced the experimental position- and time-dependent density of probability of the
colloidal tracer in the short-times regime. The long-time diffusion coefficient has been
obtained from the corresponding numerical mean square displacement (MSD). Similarly, a
simulation of a random walker in a one dimensional array of adjacent cages with a
probability of escaping from one cage to the next cage is one of the most simple models of
a periodic potential, displaying two diffusive regimes separated by a dynamical caging
period. The main result of this study is the observation that, in both potentials, it is seen that
the critical time t*, defined as the specific time at which a change of curvature in the MSD is
observed, remains approximately constant as a function of the height barrier U0 of the
harmonic potential or the associated escape probability of the random walker. In order to
understand this behavior, histograms of the first passage time of the tracer have been
calculated for several height barriers U0 or escape probabilities. These histograms display
a maximum at the most likely first passage time t′, which is approximately independent of
the height barrier U0, or the associated escape probability, and it is located very close to
the critical time t*. This behavior suggests that the critical time t*, defining the crossover
between short- and long-time regimes, can be identified as the most likely first passage
time t′ as a first approximation.
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1 INTRODUCTION

A colloidal particle undergoing Brownian motion presents
deviations from pure diffusion when such a particle interacts
with an external potential or when it moves in a crowded
environment. Some examples of crowded environments that
affects colloidal motion include the colloidal motion of
proteins or organelles in the interior of a cell [1–3], the
motion of a tracer particle in complex fluids [4–9] and
colloidal motion near the glass transition [10, 11]. On the
other hand, examples of external fields that affect Brownian
motion are electric and magnetic fields [12], gravitational
forces [13–15] and optical manipulation induced by light [16,
17]. The diffusion of tracers in periodic, quasiperiodic, and
random external potentials has been also studied in
underdamped and overdamped conditions theoretically,
experimentally and via numerical simulations [18–21].

On the other hand, the main effect of external potentials, or
crowded environments, in colloidal dynamics is to promote the
appearance of time regimes in which particles might slow down
(subdiffusion) or speed up (superdiffusion) their motion as
compared with normal diffusion. Generally speaking, a
colloidal particle senses its environment when it moves in
Brownian motion. As a result, each time regime is related to a
particular length scale. The dynamics of a colloidal tracer
provides useful information about the concentration of other
colloidal macromolecules, the degree of coupling between the
tracer and an applied external field, as well as the competition
between the energy associated to the external potential and the
thermal energy [4, 10, 17, 22].

One of the most simple cases where the appearance of different
time regimes has been reported, due to the interaction of a
particle with an inhomogeneous external field, is a one
dimensional periodic potential interacting with a 2D colloidal
suspension [23–25]. Such a system has many advantages: it can be
simulated via BD simulations and can be experimentally realized
by using the interference of two coherent beams, providing
energy barriers of height close to the thermal energy, for laser
powers smaller than 1W [26]. A colloidal particle interacting
with a periodic potential presents three time regimes related with
different effects: free diffusion with a linear mean square
displacement can be observed at short times; a plateau in the
mean square displacement associated to “caging,” produced by
the existence of an energy barrier, can be seen at intermediate
times; and a hopping motion of the colloidal tracer between
adjacent periodic fringes in a second diffusive regime can be
observed at long times [23, 24]. Similarly, a random walker
simulation have been used extensively to simulate Brownian
motion [27–29]. In this type of simulations, the trajectories
are obtained from random numbers just as the BD
simulations, but the displacement is chosen more simply, not
derived from a force. Thus, the confinement is introduced as a
spatial condition of no escaping from a region. The height barrier
effect is then introduced as a cage-to-cage hopping probability.
This allow us to observe a process similar to that displayed by a
Brownian particle in a periodic potential, showing a short- and a
long-time diffusive regime as a function of time. Note, however,

that in the random walker simulation the particle is free to move
within the cage in contrast to the cosine-like potential used in the
Brownian dynamics approach.

It is important to note that the three time regimes presented
above mainly depend on the periodicity of the external potential
and the amplitude of the energy barrier, or the hopping
probability, and they can extend over several time decades [23,
24, 30]. For example, the short time regime is related with free
diffusion and thus is limited to the time the particle takes to
diffuse at the bottom part of the potential; the extension of the
plateau region is directly related with the amplitude of the
potential, and finally the long time diffusion results of a
balance between hopping time, and thus related with the
amplitude of the potential, and the periodicity of the potential.
Furthermore, this potential had been also studied for mean first
passage time calculations, giving theoretical predictions for the
ratio between the diffusion coefficients associated with its
dynamics [31]. In such a scenario, colloidal dynamics can be
described by the ratio between the short- and long-time diffusion
coefficients [23]. Other quantities of interest are the time at which
the caged motion begins, and the time at which the hopping
motion starts. As indicated before, the phenomenology found in
this potential can be mapped to several other situations. Thus, for
complex fluids, the long-time diffusion coefficient is related to the
zero shear viscosity [22], whereas the glass transition is related to
the so-called alpha relaxation [32]. Despite numerous theoretical,
simulation, and experimental studies that had been performed
since last century, a complete characterization of the prediction of
the short- and long-times diffusion coefficient, using available
theoretical models, as well as the study of the critical caging time
and the distribution of hoping times, is still lacking.

In this work, the dynamics of a colloidal particle in periodic
potentials is studied by using experiments and simulations,
focusing in the short- and long-times dynamics. We are
particularly interested in the behavior of the critical time at
which the MSD changes its curvature when the caging effect
appears, and in the distribution of hoping times between adjacent
periodic cells. We also compare our results with available
theoretical predictions. Our results give a full characterization
of the phenomena in terms of energy barriers and the associated
dynamical caging, providing a simple model to understand the
colloidal dynamics under different, but equivalent scenarios.

2 MODEL AND METHODS

2.1 Experimental Methods
The experimental system consists of a highly dilute water
suspension of 1 µm polystyrene spherical particles (Thermo
Scientific) confined between one microscope slide and a cover
slip. The sample has been prepared by following the procedure
described by Carbajal-Tinoco et al. [33].

The experimental set up for the light potential is based on the
interference of two beams in the plane of the sample, which
produces a periodical array of bright fringes of a specific width.
This experimental setup has been fully described elsewhere [34],
here we only discuss the main points. The laser beam used has a
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spectral width <200 kHz (Azur Light Systems) and range powers
between 40 and 500 mW. A half-wave plate and a fixed polarizer
allow us to vary the input power by rotating the half-wave plate.
The laser beam passes through a beam splitter, which divides the
beam in two with the same laser power. Both beams are directed
into a prism mirror that reflects the beams parallel each other.
The prism is mounted on a base that can be moved manually to
change the distance between the beams. A spherical lens
initializes the convergence of both beams in order to produce
the interference pattern in the focal plane of the lens. The distance
of separation between the beams determines the angle ψ of
incidence, which defines the periodicity of the intensity
pattern. However, it also changes the effective focal distance of
the lens due to spherical aberration. Thus, a focusing lens is
mounted on a moving stage to correct such effect. This
interferometer is coupled using a dichroic mirror to an
inverted microscope (OLYMPUS U-LH100-3) with a 60X
objective and numerical aperture 0.6, that allows us to obtain
high quality clear field images in order to get the time evolution of
the system.

The interference of the coherent beams produce an intensity
pattern expressed as [35].

I(x) � 2I0{1 + cos[2kx sin(ψ/2)]}e−2(x/R)2 cos2(ψ/2) (1)

where I0 is the intensity of each beam, k � 2π/λ0, with λ0 �
488    nm the incident beam wavelength and R the laser beam
radius. As it can be seen here, the periodicity of the distribution of
light is directly related to the angle ψ. For our experimental
conditions, the set-up is able to produce fringes between 1.3 and
6.0 μm by varying the position of the prism mirror. As shown
before [34], if the periodicity of the light distribution is larger than
the size of the particle, such a distribution produces a periodical
potential with the same periodicity, where the bright fringes
corresponds to the minima in the potential. For this study, the
periodicity of the distribution of light was set to 1 µm. Similarly as
in optical tweezers, instead of estimating the external potential
using the distribution of light and some model of interaction of
light with an spherical particle [36, 37], in this work the external
potential was calibrated comparing the experimental values of the
MSD with those resulting from the Brownian dynamics
simulation.

The time evolution of the system has been recorded by using
standard video equipment at 30 frames per second, giving an
experimental time resolution of 0.033 s. The tracking of the
particles has been performed by using Trackpy [38], which
implements and extends the Crocker-Grier algorithm in
Python language [39]. Furthermore, by placing neutral density
filters on the lens of the recording camera, the intensity profile
generated by the interference of the beams can be imaged, and
thus the spatial position of the minima has been estimated. This is
very helpful for the calculation of the spatial-dependent statistical
properties. It is important to note that we analyze the trajectories
of particles at the center of the field of view since the spatial
distribution of light is not homogeneous at the edges due to the
Gaussian envelope. This ensures that the variation of the intensity
in the region of interest is less than 10%, where the particles

interact with a similar external potential. The area in the region of
interest corresponds to 1908.5 µm2, and a total of 2 h of
recording, divided in three videos, were analyzed, giving
almost 2,000 trajectories. However, most of them are very
short, corresponding to particles that remained within the
region of interest only for a few frames. Such trajectories
contributed to the short time dynamics, and thus giving a
reliable quantification of the mean squared displacement at
short times as well as of the density of probability of
displacements. However, the long time dynamics lacks of
statistics as only a few particles remain during the total
duration of the video. The duration of each experiment was
defined due to the presence of a small drift in the laser beam,
producing a motion of the fringes in one direction. We found that
during intervals of 20 min there is a very small variation of the
position of the fringes, giving confidence in the position of the
fringes. Fringes were also found to vibrate due to external
mechanical noise, even tough the experiment was performed
on an isolated optical table. Once we get the trajectories of the
particles we are able to calculate the total average displacement
and the mean square displacement of all trajectories of particles in
a time interval. A schematic representation of the protocol we
have described is shown in Figure 1.

2.2 Theoretical Model and Brownian
Dynamics Simulations
In this work, we consider that a tracer particle is under the
influence of a periodic cosine potential of the form:

U(x,U0, L) � U0(1 − cos(2πx
L

)) (2)

where U0 and L are the amplitude and periodicity of the external
potential, respectively.

The Brownian dynamics simulations were performed using
the method proposed by Ermak and McCammon without
hydrodynamic interactions [40]. As the experimental particle
concentration is very low, we consider a single particle in a one-
dimensional simulation box with periodic boundary conditions
along the x − axis. In the y − axis, the experimentally developed
field is constant, and thus we restrict the simulation to a one
dimensional problem. In the Brownian dynamics simulations, the
position of the particle at time t + dt is calculated from the
previous position at time t by using the equation:

x(t + dt) � x(t) + D0F(x(t))dt
kBT

+ R(dt) (3)

whereD0 is the translational diffusion coefficient of the particle at
short-times, F(x) � −dU(x)

dx is the force that the particle
experiences due to the external periodic potential U(x), and
R(dt) is a random displacement, having a normal distribution
with zero mean value and variance 2D0dt, fulfilling the so-called
fluctuation-dissipation theorem. In Brownian dynamics
simulations, the magnitude of the time step dt is crucial. If it
is too short, the computational time can increase significantly. If it
is too large, the stochastic differential equation can display
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incorrect values of the dynamic properties of the system. The use
of a single tracer under the influence of an external field allowed
us to utilize a time step of 3 µs. Let us note here that the
experimental time resolution is an order of magnitude larger.
Such time step allowed us to reproduce the analytic mean square
displacement of the Brownian harmonic oscillator with an
error less than 1 percent for a wide range of spring constants
[41]. In a typical Brownian dynamics simulation a maximum
Nmax � 1 × 1011 times steps have been performed, which is
equivalent to a total time of 3 × 105 s. Once the positions of
the tracer are known as a function of time, and assuming that the
statistical properties do not depend on the initial time, the mean
square displacement has been calculated as:

MSD (tj) � 1
Nmax − j

∑Nmax−j

i�1
[x(ti + jdt) − x(ti)]2 (4)

where ti � idt.
On the other hand, Bellour et. al. [9]. have proposed the

following functional form to fit the MSD of tracer particles in
worm-like micelle solutions:

MSDBellour(t) � 2δ2(1 − exp{ − (D0t

δ2
)α})

1
α(1 + DMt

δ2
) (5)

This equation correctly describes the above mentioned
dynamical regimes: short time diffusion within the network
of micelles, cage effect at intermediate times, and hopping
motion due to breaking of the living polymer giving a second
linear regime at long times and thus can be used as a model to
estimate some parameters characterizing theMSD of particles in

periodical potentials. D0 is the short time diffusion coefficient,
which can be approximated as D0 ≈ kBT/6πηa according to the
Stokes-Einstein relationship as a first approximation, where kBT
is the thermal energy, η is the solvent viscosity, and a is the
particle’s radius. Experimentally, the short time diffusion
coefficient D0 is frequently different from kBT/6πηa given
that D0 also contains information regarding inter-particle
interactions and wall-particle interactions. δ2 is related to the
amplitude of the MSD within the cage and thus, it is usually
called the cage size. Notice that in general 2δ2 is not equal to the
periodicity L of our oscillatory potential. DM corresponds to the
long time diffusion coefficient, which in our system
characterizes the hopping of the tracer between fringes as a
function of time in our periodic system. Finally, α is a parameter
related to the smoothing of the transition between short times
and the caging, and it has a value close to 0.25 in worm-like
micelle solutions [5]. The Bellour parametrization was
originally proposed by considering that a tracer immersed in
a semidilute solution of worm-like micelles was describing three
different dynamic regimes in one dimension: 1) at short times
the dynamics is Brownian, that is, MSD(t) � 2D0t, where D0 is
the local diffusion coefficient; 2) at intermediate times, the MSD
remains constant for a given time interval, in such a way that 2δ2

is the value of the MSD at the inflexion point; and 3) at long-
times the motion becomes diffusive again and the long-time
diffusion coefficient corresponds to the macroscopic viscosity of
the solution. Thus, the starting point to describe this
phenomenology is to hypothesize that the particle is under
the influence of a harmonic potential. As a result, the MSD
cannot grow indefinitely but reaches a plateau:

FIGURE 1 | (Color online): Experimental measurement protocol of the dynamic properties of spherical tracers in periodic cosine-like potentials: (A) long exposure
photograph showing the light path producing the periodic distribution of light; (B) schematic representation of the experimental set-up; (C) light intensity profile
generated experimentally; (D) typical bright field images of spherical tracers interactingwith the external field; (E) trajectories obtained from the experiment using Trackpy;
(F,G) the maxima andminima of the periodic potentials are estimated from the bright and dark regions displayed in the panel (C); and (H) the density of probability is
calculated from the information obtained from the trajectories of the particles over the fringes.
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MSD(t) � 2kBT
kspring

(1 − exp(− kspring t

c
)) (6)

where D0 � (kBT)/c. By assuming that kspring � (KBT)/δ2, it is
possible to write

MSD(t) � 2δ2(1 − exp(− D0t

δ2
)) (7)

If the exponential is linearized, it is easy to see that at short times
MSD(t) � 2D0t, whereas at long times a plateau is reached at 2δ2.
One simple form in which the MSD can reach the physical limit
MSD(t) � 2DMt is by multiplying the analytical MSD associated
to a Brownian particle under the influence of a harmonic
potential by the term 1 + (DMt)/δ2:

MSD(t) � 2δ2(1 − exp(− D0t

δ2
))(1 + DMt

δ2
) (8)

Even though this last equation is able to reproduce the MSD of a
tracer immersed in a semidilute solution of worm-like micelles at
short- and long-times, in general fails to describe the onset of the
plateau around the inflexion point. Thus, Bellour proposed to add
a parameter α in order to adjust the onset of the experimental
plateau of the MSD. As one can appreciate here, the same basic
arguments employed by Bellour in this heuristic derivation of Eq.
5 can be used in the case of the systems studied here.

Another methodology to characterize the dynamical behavior
of a particle in hindered motion is related with the logarithmic
derivative, that corresponds to the temporal behavior of the
exponent γ in MSD∝ tc. As such, a numerical calculation can
be complex due to the experimental noise. We used here a more
direct approach by fitting the experimentally obtained MSD to

the Bellour model. Afterwards, these fitted parameters have been
used in the analytic calculation of the logarithmic derivative
of Eq. 5.

In order to calculate the long-time diffusion coefficient DM

theoretically, we consider that this quantity corresponds to the
effective diffusion coefficient of a hopping Brownian particle that
moves a distance L in the presence of a periodic external potential
with periodicity L. In such a scenario [42],

DM � Deff � 1
2
kescapeL

2 (9)

where kescape � 1/τescape is the escape or hopping rate of the
Brownian particle. Let us define the mean first passage time
(MFPT) τMFPT as the average time a Brownian particle needs to
reach the separatrix manifold for the first time, when was located
initially at a position x0 inside the initial domain of attraction. At
large height barriers, the MFPT τMFPT(x0) becomes essentially
independent of the starting point, that is, τMFPT(x0) is
approximately the same for all starting configurations away
from the immediate neighborhood of the separatrix. If the
probability of crossing the separatrix to the right or to the left
equals one half, the total escape time equals to two times the
MFPT, and the escape or hopping rate of the Brownian particle
can be written as:

kescape � 1
2τMFPT

(10)

Thus, Eq. 9 can be written in terms of the MFPT as:

FIGURE 2 | (Color online) ρ(x, t) at different times for the random walker
simulation. For t � 0.1 s the step distribution is recovered, whereas the
probability evolves to a Gaussian after a few steps. Inset: Representative
trajectory obtained from the simulation, showing the caging effect and a
hopping effect.

FIGURE 3 | (Color online): Mean square displacement MSD(t) of a
spherical tracer as a function of time. The red solid squares and the blue
dashed line correspond to the total mean square displacement (associated to
the free diffusion in the y− and x − axis directions) associated to
experimental and Brownian dynamics results, respectively, in the absence of
an external field. The black solid circles and the magenta dot-dashed line
correspond to the MSD(t) in the x − axis associated to experimental and
Brownian dynamics results, respectively, in the presence of a periodic cosine-
like external field.
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DM � 1
4τMFPT

L2 (11)

On the other hand, the diffusion coefficient of a Brownian particle
in the presence of a periodic potential, according to the Kramers
approach in the overdamped limit, can be written as [43].

DKramers
M � w0wbL2

2πc
exp{− Eb

kBT
} (12)

where Eb � V(xmax) − V(xmin), w2
0 � V ′′(xmin), w2

b � V ′′(xmax),
and D0 � kBT

c . If we chose

V(x) � U0(1 − cos(2πx
L

)) (13)

xmin � 0, xmax � L
2, and Eb � 2U0, Eq. 12 can be written as:

DDF
M

D0
� 2πU0

kBT
exp{−2U0

kBT
} (14)

which is the Dalle-Ferrier et al. [23] (DF) formula for a Brownian
particle in a periodic cosine potential. According to Lifson and Jackson
[30], the ratio of the long-time diffusion coefficient of a Brownian
particle in the presence of a periodic potentialU(x) can be written as:

DLJ
M

D0
� 1
〈exp{U(x)/(kBT)}〉〈exp{−U(x)/(kBT)}〉 (15)

where the brackets 〈 . . . 〉 indicate the average over the unit cell.
This result was obtained subsequently by several authors using
different routes, mainly based in solving the mean first passage
time problem using the one-dimensional Smoluchowski
equation.

The correspondingMFPTs can be obtained by equating Eq. 11
with either Eq. 12 or Eq. 15 to yield:

τDFMFPT � 1
4π

τ0
kBT
U0

exp{2U0

kBT
} (16)

and

τLJMFPT � 1
2
τ0〈exp{U(x)/(kBT)}〉〈exp{−U(x)/(kBT)}〉 (17)

where

τ0 � L2

2D0
(18)

is the time that a particle needs to move a distance L in pure
Brownian motion, that is, in the absence of any external potential,
when the diffusion constant of the particle is D0. As it is shown
below, the Kramers escape time resembles more to the escape
times predicted by the Lifson-Jackson prescription and the
Brownian dynamics simulations at high values of U0. On the
other hand, notice that in the absence of an external potential

FIGURE 4 | (Color online): Density of probability per unit length of finding a tracer ρ(x, τ) as a function of the position and the reduced time τ � t/Δt, withΔt � (1/30)s. In
panels (A,C) there is an applied periodic cosine-like external field in the x-axis direction. In panels (B,D) there is not an applied external field in the y-axis direction. Symbols
correspond to experimental measurements. Lines are associated to Brownian dynamics simulations in which D0 � 1.8 × 10− 13m2/s and U0 � 1.33 kBT .
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(that is, in pure Brownian motion) the τLJescape reduces to τ0 as
expected, whereas the τDFescape diverges to an infinite time. In
addition, note that in the Lifson-Jackson approach the long-
time diffusion coefficient DM requires a numerical integration,
whereas the Dalle-Ferrier formula is completely analytical.

2.3 Random Walker
A random walker simulation follows a similar recipe to obtain a
trajectory as the Ermak and McCammon algorithm, however the
choice of the displacement is generated randomly either following
a distribution, or with a defined step size but without specification
of the force or diffusion coefficient [27–29]. In our case, such
distribution is flat of fixed width δx, instead of the typical
Gaussian distribution found experimentally and also simulated
in the BD protocol. The time scaling constant is not fixed and can
be chosen arbitrarily. In our case it was fixed to a value of
δt � 0.1 s. The evolution of density of probability ρ(x, t) of
finding a tracer at the position x at time t given that a t � 0
the particle was located at x � 0 produces a Gaussian distribution
after a few time steps, thus becoming dynamically equivalent to a
BD simulation after such time (see Figure 2), as expected. As the
distribution if perfectly Gaussian, it is expected also that higher
moments are also equivalent. If the width of the distribution δ and
the time scaling constant are chosen conveniently, this walker can
reproduce the diffusion coefficient, D0, of the BD simulations at
short times. Thus, we can conclude that the implemented random
walk simulation follows the most simple selection of
displacements between time steps. This naive selection gives
an important difference between the BD and the random walk
at short times, as the probability function of displacements is not
Gaussian in the first few lag times. However, this function evolves
to a Gaussian distribution function, and thus not only the second

moment but also higher moments are equivalent and
indistinguishable from the BD. Thus, at large times both
simulations are dynamically equivalent for a free particle.

In order to introduce the cage effect, the particle is located
inside a periodic cell of length L# with potential barriers of
vanishing small width at the boundaries. Then the random
walker is free to move within the cage, undergoing random
steps with displacement probability. The particle can cross the
cell boundary to move to an adjacent cage with a transition
probability p if a given generated step is out of the cage. The
success event gives a transition to the neighboring cage, whereas a
failure reflects the step to keep the particle inside the cage. Thus,
decreasing the transition probability gives a higher amount of
events before a success one, effectively producing confinement
within the cell for a given time. Inset in Figure 2 shows a typical
trajectory for a random walker in a cage of size 2 µm and
transition probability 0.001, showing the typical confinement
and several transitions within the simulation time. A transition
probability of zero leads to total confinement, and the walker is
unable to escape from the cage. In the opposite, free diffusion is
found for a transition probability of 1. Despite that, after few time
steps the random walker simulation and the BD simulation are
dynamically equivalent for free particles, the case of a caged
particle, either in the periodic potential or in a cage with a
probability of transition, is different. In this case, a direct
computation of the probability density within a unity cell
would show that the random walker is almost free within the

FIGURE 5 | (Color online): Maximum of the density of probability of
finding a tracer ρ(x, τ) at x � 0 as a function of the reduced time τ � t/Δt, with
Δt � (1/30)s. The solid squares and the dashed line correspond to
experimental and Brownian dynamics results, respectively, in the
absence of an external field. The black solid circles and the magenta dot-
dashed line correspond to experimental and Brownian dynamics results,
respectively, in the presence of a periodic cosine-like external field. FIGURE 6 | (Color online): Mean square displacement MSD(t) of a

spherical tracer as a function of time in the presence of a periodic cosine-like
potential of amplitude U0. Solid symbols correspond to Brownian dynamics
simulations in which L � 1.0 × 10−6 m and DBD

0 � D0 � 1.8 × 10− 13 m2/s
for several UBD

0 values (in kBT units). Dotted, dashed, and dot-dashed black
lines correspond to Bellour fittings (Eq. 5) using the parameters displayed in
Table 1.
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cage, giving a probability density almost constant within the cage,
whereas the presence of the continuous potential in the BD would
produce a more complex scenario. Despite this, and as shown
here, choosing properly the parameters of the random walker, the
evolution of the MSD is equivalent.

The random walker model is also useful to study the typical
mean first passage time problem, that will be used later to analyze
our results in terms of the distribution of escape times. However, as

in this case the particle either cross the barrier or not, in principle,
the random walker undergoes escaping processes, characterized by
an escape time τE , instead of the mean first passage time. By now it
is important to highlight the relation between the escape time
problem and the parameters of such stochastic model. Consider
first that the potential that can be modeled using the random
walker is a flat bottom well with delta barriers as frontiers. When
considering the simple case of a flat potential with perfectly
absorbing barriers, the mean first passage time, equivalent to
escape time only in this case, was found to be L#2/(16D0), as
expected from this simple model [44]. By including a transition
probability p, the escape time can bewritten as L#2/(16D0p), which
provides a definition of the long time diffusion coefficient DM

similar to that used in the BD simulation case

DM � 1
2τE

L#2 (19)

where DM � 8D0p. In such a scenario, the escape time is twice the
mean first passage time, which is consistent with a 1/2 probability
of jumping to the next cage per event.

3 RESULTS AND DISCUSSION

3.1 Short Time Dynamics
In order obtain the short time diffusion coefficient D0 of a tracer,
and the amplitude of the periodic potential U0 in our experiment,

FIGURE 7 | (Color online): Long-time diffusion coefficient DM(U0) of a
spherical tracer as a function of the maximum height barrier U0. The black
solid circles, the blue dashed-line, and the red solid-line correspond to
Brownian dynamics, the Lifson-Jackson prescription (Eq. 15), and the
Dalle-Ferrier formula (Eq. 14), respectively. In all cases, L � 1.0 × 10− 6 m and
DBD
0 � D0 � 1.8 × 10−13 m2/s.

TABLE 1 | Bellour fitting parameters DBD
M , δ2BD, and αBD associated to the

Brownian dynamics mean square displacement curves displayed in Figure 6,
as a function of the maximum height barrier UBD

0 . In all Brownian dynamics
simulations, L � 1.0 × 10−6 m and DBD

0 � D0 � 1.8 × 10− 13 m2/s.

UBD
0 [kBT] DBD

M [m2/s] δ2BD[m2] αBD

1.5 6.53 × 10− 14 1.28 × 10− 14 0.80
2.0 3.50 × 10− 14 1.28 × 10− 14 0.92
2.5 1.61 × 10− 14 1.12 × 10− 14 0.84
3.0 8.10 × 10− 15 9.78 × 10− 15 0.93
3.5 3.63 × 10− 15 8.49 × 10− 15 0.93
4.0 1.47 × 10− 15 7.34 × 10− 15 0.96
4.5 6.58 × 10− 16 6.42 × 10− 15 0.98
5.0 2.45 × 10− 16 5.62 × 10− 15 0.92
5.5 9.43 × 10− 17 5.12 × 10− 15 0.95
6.0 4.58 × 10− 17 4.65 × 10− 15 0.99
6.5 1.75 × 10− 17 4.26 × 10− 15 1.00
7.0 6.66 × 10− 18 3.93 × 10− 15 0.95
8.0 8.45 × 10− 19 3.38 × 10− 15 0.97

FIGURE 8 | (Color online): Logarithmic derivative of the mean square
displacement MSD(t) of a spherical tracer as a function of time in the presence
of a periodic cosine-like potential of amplitude U0. Solid symbols correspond
to Brownian dynamics simulations in which L � 1.0 × 10−6 m and DBD

0 �
D0 � 1.8 × 10−13 m2/s for several UBD

0 values (in kBT units).
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we measured the mean square displacements along the y− and
x − axis directions as a function of time. Given that along the
y-axis there is not an applied external field, the tracer experiences
free diffusive Brownian motion. Using the total mean square
displacement (associated to the free diffusion in the y− and x −
axis directions), the short time diffusion coefficient was found to
be D0 � 1.8 × 10− 13 m2/s, which in turn is used in our Brownian
dynamics simulations, allowing us to reproduce the observed
experimental behavior as it is shown in Figure 3. The reduction of
D0 is about 35% with respect the Stokes-Einstein equation for free
diffusion in the bulk, in accordance with previous results for a
similar geometry confinement [45]. Some deviations from these
value are expected experimentally as the separation between glass
plates varies within the sample, but deviations in D0 are also
expected to be small and thus does not greatly affect the
comparison between experimental and numerical results. A
direct comparison with the experimental mean square
displacement measured in the x-axis allowed us to fit the
maximum height of the periodic potential, resulting in the
numerical value of U0 � 1.33 kBT . Brownian dynamics
simulations of the tracer with the above values of D0 and U0

yielded a numerical mean square displacement that correlate very
well with experimental measurements in the x-axis, as it is shown
in Figure 3. Some deviations from the perfect linear relation was
found in the experimental MSD and associated with the small
vibrations reported above. As only a few particles remain withing

the field of view for more than 100 s, the long time dynamics is
also found to be affected by statistical noise.

A more stringent test for the estimated value of U0 parameters
(fitted via the experimental mean square displacement) is to
observe if it is able to predict other microscopic time dependent
properties such as the density of probability ρ(x, t) of finding a
tracer at the position x at time t given that at t � 0 the particle was
located at x � 0. This quantity, obtained from experiments and
Brownian dynamics calculations, is shown in Figure 4. The
behavior of ρ(x, t) in the presence of a periodic external field
is shown in panels (a) and (c), whereas ρ(x, t) in the absence of an
external field is displayed in panels (b) and (d). In general, good
agreement between the experimental and Brownian dynamics
data is observed either in presence or in the absence of the
periodic external field.

In the absence of an external field, ρ(x, t) displays a Gaussian
behavior for all times displayed, as expected. Specifically, the
maximum height ρ(x � 0, t) and the width of ρ(x, t) decreases
and increases, respectively, as a function of time. In the presence
of a periodic external field, a similar behavior to that observed in
the absence of an external field is seen only at very short times.

At longer times, the tracer starts to experience the external
field and it is seen that: 1) the rate at which the maximum height
ρ(x, t) at x � 0 decreases becomes lower compared to the case in
which the external field is not applied; and 2) the profile of ρ(x, t)
displays multiple damped maxima, which correspond to the
spatial localization of the minima of the applied periodic

FIGURE 9 | (Color online): (A) Critical time tp at which a change of
curvature in the MSD is observed (green squares), and (B) mean square
displacement at the critical time MSD (t*) as a function of the maximum height
barrier U0 (black circles). The blue triangles are associated the Bellour
fitting parameter 2δ2BD displayed in Table 1. These values were obtained from
Brownian dynamics simulations in which L � 1.0 × 10−6 m and D0 � 1.8 ×
10− 13 m2/s in all cases.

FIGURE 10 | (Color online) Random walker MSD fitting of Brownian
dynamics simulations in which the size of the periodic cell is L � 8 microns for
different energy barriers U0 (in KBT units). The fitting parameters used in the
random walker are the spatial and time increments a# and dt#, which
determine the short-times diffusion coefficient D0; and the cage size L# and
the jump probability p, which determine the long-times diffusion coefficient
DM . These values are explicitly indicated in the labels.
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external potential. This effect has been also reported in the
literature [23]. A comparison of the rate at which the
maximum of the density of probability ρ(x, t) at x � 0
decreases, in the presence and in the absence of the periodic
external field, is displayed in Figure 5 as function of time. Here,
an excellent agreement is observed between experimental
measurements and Brownian dynamics simulations.

3.2 Mean Square Displacement and Long
Time Dynamics
The good agreement observed between experimental and
simulation results presented above, motivates a study of long
time dynamic properties of the tracer via Brownian dynamics
simulations for a fixed periodicity L. The MSD of a spherical
tracer is displayed in Figure 6 as a function of time and the
amplitude of the periodic potential U0. Here, we observe that a
change of curvature and a plateau appear, which is more
noticeable when U0 increases. As a whole, the behavior of the
MSD found here is similar to reported results using simulations
and experiments [23, 24]. Moreover, it is observed that the
diffusion coefficient at long times, DM , is significantly lower
that the short time diffusion coefficient. DM and the Bellour

parameters δ2 and α, were estimated by fitting the numerical
results obtained from our Brownian dynamics simulations using
the Bellour Eq. 5. These numerical values are displayed in
Table 1. In contrast to the case in which tracer particles are
dispersed in worm-like micelles solutions, with α ≈ 0.25, the α
parameter here is higher than to 0.9, which gives a sharper
transition between the short and the caging times regime.
Interestingly, the asymptotic value of one is found in the
solution to the Langevin equation for a parabolic potential
[16]. The long time diffusion coefficient DM normalized with
the short time diffusion coefficient D0 is shown in Figure 7. In
this figure, it is observed that DM/D0 decreases rapidly as a
function of U0, as expected from Figure 6, reaching a value
close to 1 × 10− 5 for an energy barrier of 8kBT . In order to have a
theoretical estimation of DM at long times, it is possible to use the
Lifson-Jackson prescription (Eq. 15) or the Dalle-Ferrier et al.
formula (Eq. 14) if the periodic potential is known. In this study,
the periodic cosine potential given by Eq. 2 is fully defined in
terms of the parameters U0 and L. In Figure 7, it is observed that
the Lifson-Jackson prescription provides an excellent estimation
of the long time diffusion coefficient DM for all values of the
maximum height of the periodic potential U0 displayed.
Contrastingly, the Dalle-Ferrier et al. approach shows a

FIGURE 11 | (Color online):Brownian dynamics histograms of the first passage time (FPT) τ for different barrier heightsU0 and Δt bins. The value ofU0 in kBT units is
1, 2, 3, and 4 for (A–D), respectively. The Δt bin is 0.08, 0.04, 0.02, and 0.01 s for pink circles, red squares, blue diamonds, and green triangles, respectively. Black lines
are exponential tail fittings associated to Eq. 20. For a given U0 value, the vertical purple solid line corresponds to the critical time t* , and the vertical orange dashed line
indicates the mean first passage time τMFPT . The periodicity of the fringe and the short times diffusion coefficient are L � 1.0 × 10− 6 m and
DBD
0 � D0 � 1.8 × 10−13 m2/s, respectively, in the Brownian dynamics simulations.
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reasonable agreement, with the Brownian dynamics data, only for
large values of U0. In this regime, the Dalle-Ferrier et al. data
tends to those yielded by the Lifson-Jackson prescription (see the
inset of Figure 7).

In Figure 6 it appears that the time t* at which the first change of
concavity of the MSD occurs is the same for all values of U0

considered here. In order to locate this time more precisely, we
calculate the logarithmic derivative of the MSD which is plotted in
Figure 8 for different amplitudes of the periodic potential U0. At
very short and long times, the logarithmic derivative of the MSD
tends to one, again showing a purely diffusive behavior. At
intermediate values, the logarithmic derivative of the MSD shows
a minimum at a time which we identify as t*, i.e., at which a change
of curvature of the MSD curve is observed. The magnitude of the
logarithmic derivative at t* decreases as the energy barrier increases.
Figure 9A shows the value of t*as a function of U0. Here it is
observed that t* oscillates around the numerical value of 0.3 s. This
suggests that themagnitude of t* is independent of themagnitude of
U0 for a fixed periodicity L. In the same figure, the value of theMSD
at t* is shown, indicating a monotonic decrease by increasing U0.

On the other hand, another interesting feature regarding the
Bellour fitting is that the parameter 2δ2BD converge
asymptotically to the MSD at the time t* for large U0 values,
as shown in Figure 9B. This gives a new interpretation of 2δ2 in
this type of periodical potentials.

The above mentioned effect related with the decrease of the
2δ2BD parameter increasing U0, can be used to properly select the
parameters for the random walker simulation. As a result, it is
possible to compare the behavior of the random walker in the
most simple periodic potential of periodic flat cages, to that
displayed by a Brownian particle under the influence of a
periodical potential as 2. If the cage-size and the transition
probability p are chosen appropriately, this walker can also
reproduce the same trend of the DM/D0 ratio as found in the
BD simulation. As a consequence of the different potentials (a
periodic cosine-like one vs. a flat cage with a delta barrier), the
magnitude of the cage size decreases as p increases. Thus, the
transition probability p is a monotonic decreasing function of the
energy barrier. Interestingly, the MSD of the random walker is
able to reproduce very accurately the MSD obtained from the BD
simulations as shown in Figure 10, showing the same
independence of t* for different transition probabilities (that
are associated to different height barriers U0). This suggests
that the behavior of the particles in the two periodic potentials
studied here would be the same in other periodic potentials.

3.3 Histograms of First Passage Time
In order to gain further insight about the independence of t* at
different U0 amplitudes of the periodic potential for a fixed
periodicity L, in Figure 11 the histograms of the first passage

FIGURE 12 | (Color online): Normalized histograms of the first passage times for different barrier heights U0 and Δt bins. Black lines are exponential tail fittings
associated to Eq. 21. Locants have the same meaning as that used in Figure 11.
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time (FPT) τ of the tracer for several values ofU0 and different bin
values are displayed. In all analyzed cases, it is observed that short
FTPs are very rare events, giving also a measure of the time
required for the particles to reach the barrier by Brownian
motion. When the magnitude of the FTP increases, its
frequency of occurrence increases too. This augment of the
frequency of occurrence of the escape time is observed until a
critical value t′ is reached. At the critical FPT t′ the histogram
displays a maximum. The time t′ is then the most likely FPT of
the tracer. For larger FPTs, the associated frequency of occurrence
decreases exponentially. Thus, the tail of each FPT histogram (for
FPTs larger than t′) is fitted to a simple exponential of the form:

F(τ) � A exp(−Kτ) (20)

where F is the frequency of events in the escape time histogram, A
is the asymptotic value of F when τ � 0, and K is the decay
constant of the escape times. These three quantities depend on the
selected values of the bin of the histogram, D0, U0, and L. In each
panel of Figure 11, D0, U0, and L are kept constant, and different
histograms are displayed as a function of the value of the bin used.

On the other hand, all histograms displayed in Figure 11 are
normalized dividing the value of F by the corresponding value of
A, that is:

Fp(τ) � F(τ)/A (21)

These normalized histograms are shown in Figure 12. Here, we
observe that all normalized MFPT histograms collapse onto the

same curve for different bin values. Moreover, it is observed that
the most likely FPT t′ (that is, the FTP at which a maximum is
observed in each histogram) displays approximately a constant
value independently of the height of the periodic potential U0.
In addition, the magnitude of t′ is very close to the magnitude of
t*. As a result, the change of curvature observed in the MSD at t*

can be physically related to the characteristic time at which the
MFPT starts to display its more likely value. Contrastingly, the
mean first passage time (MFPT) τMFPT strongly depends on the
value of the height barrier U0 as it is shown in Figure 13. The
escape time τescape � 2τMFPT obtained from the Brownian
dynamics simulations are displayed in Figure 13 as a
function of the height barrier U0. The theoretical values
predicted by Eqs 16, 17 corresponding to the Dale-Ferrier
and the Lifson-Jackson approaches, respectively, are also
shown. The Dale-Ferrier formula break downs at low height
barriers U0, whereas the Lifson-Jackson Eq. predicts the
expected limit τescape � τ0, where τ0 � L2

2D0
. In both theoretical

approaches, the escape time τescape increases exponentially as a
function of the height barrier U0 and both descriptions
converge to the same value at height barriers. For all
displayed values, the escape time τescape produced by the
Lifson-Jackson equation displays an excellent agreement with
the data obtained from the Brownian dynamics simulations. On
the other hand, it is interesting to note that the histograms of
the FTP displayed in Figure 12 resemble the distribution of first
passage times in complex geometries [46–49], or in energy
landscapes [50–53], and are actually closely related. Here, we
focus the discussion on the relationship between the histograms
of escape times and a more simple statistical quantity such as
the MSD.

As pointed out above, important features of the motion of a
colloidal particle in a periodic potential are also presented in the
simple model of a random walker. Another interesting quantity is
the escape time whose histograms for the random walker
simulation were also calculated and shown in Figure 14. The
normalization of the histograms were performed following the
same protocol used in the BD simulations. Here, it can be
observed a behavior analogous to that observed by BD
simulations: the frequency of short escape times increases as
the escape time increases. This augment of the frequency of
occurrence of the escape time is observed until a critical value t′ is
reached. At the critical escape time t′ the histogram displays a
maximum. The time t′ is then the most likely escape time of the
tracer. For larger escape times, the associated frequency of
occurrence decreases exponentially.

Let us define now t# as the mean time required by the walker
to reach the boundary of the cell, given that it started at any
point of the cell of length L#. This time is displayed by vertical
colored-dashed lines in Figure 14 for several transition
probabilities, which can be associated to the U0 barrier
heights used in the BD simulations. In this figure, it is
observed that the time t# is located very close to the more
likely escape time t′, which is equal to 15, 17, 17, and 25 s for U0

equal to 1, 2, 3, and 4 kBT, respectively. Thus, it is possible to
interpret the more likely escape time as the mean time t#

required by the walker to reach one of the boundary of the

FIGURE 13 | (Color online): Escape time τescape � 2τMFPT as a function of
the barrier height U0. The black solid circles, the blue dashed-line and the red
solid line have been obtained from Brownian dynamics, the Lifson-Jackson
prescription (Eq. 17), and the Dalle-Ferrier formula (Eq. 16), respectively.
In all cases, τ0 � L2

2D0
, L � 1.0 × 10−6 m and DBD

0 � D0 � 1.8 × 10− 13 m2/s.
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cells given that started at any point of a cell of length L#. As this
time depends mainly on L# and not on p, and L# is of the same
order of magnitude for the different U0 values, all t# times are
located close among them. Moreover, it is observed that all t#

times are close to the average time t* of the BD simulations.
Then, it is possible to propose that the characteristic times t′ and
t# can be approximated by t*, which can be easily measured
fromMSD curves. Notice that the mean value of the escape time,
displayed as a vertical colored-solid line, strongly depends on
the U0 value. The above mentioned results can be summarized
following the next arguments and considering the ensemble of
particles located in the periodic potential and undergoing
Brownian motion: at long escape times, longer than t# the
escape process can be considered stationary: considering a time
window of constant width, at each time window a fraction of the

remaining particles are escaping from the potential, giving an
exponential decay of the histograms of escape times. Such
fraction decreases as U0 increases. The absence of escape
events at very short times, and the further increase is related
with an increase in the number of particles reaching the barrier
for the first time. This first regime is mostly independent on the
energy barrier and dominated by the periodicity of the potential.
The independence of the most likely time t′ on the energy
barrier U0 is related to the onset of the stationary regime at long
times. Thus, the time at which the MSD reaches the plateau and
starts to develop the second diffusive regime, characterized by
the parameter tp, can be used to differentiate the short- and
long-time regimes that the spherical tracer experiences under
the influence of a periodic external field, in terms of the behavior
of the escape time histograms.

FIGURE 14 | (Color online) Normalized histograms of the escape times obtained from the random walker simulations. The data are labeled according to the target
Brownian dynamics simulations displayed in Figure 10. Vertical blue, green, and red dashed lines represent the mean time t# required by the random walker to reach
one boundary of a periodic cell of size L#, given that the random walk started at any point inside the periodic cell. Vertical blue, green, and red continuous solid lines are
associated to the mean value of the escape time in the random walker model. The vertical black continuous solid line indicates the average critical time t* obtained
from the Brownian dynamics data.
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4 CONCLUSION

In this work, we have studied some dynamic properties of a
Brownian tracer in two periodic potentials at short- and long-
times. For the experimentally obtained harmonic potential, at
short-times, the proposed protocol allowed us to estimate the
short time diffusion coefficient D0 and the maximum height of
the potential U0, by performing a numerical fitting of the MSD of
the tracer obtained via experiments and Brownian dynamics
simulations. The precision of these parameters was further
tested by calculating another microscopic time dependent
property, namely, the linear density of probability per unit
length of finding the tracer at a position x at a time t. At
long-times, Brownian dynamics simulations were performed to
study some dynamic properties of the tracer such as the MSD.
The numerical MSDs obtained via Brownian dynamics were also
fitted to the Bellour equation. Using the parameters found, a
simpler randomwalker simulation was also performed in order to
test our results in one of the most simple forms of a periodic
potential.

At the level of the MSD, it was observed that a plateau and a
change of curvature appear and become more conspicuous when
the U0 increases. The long time diffusion coefficient of the tracer
DM , obtained from the Brownian dynamics simulations,
decreased rapidly as a function of U0 for a fixed periodicity L.
In order to estimate DM from first principles, we used the Lifson-
Jackson prescription and the analytic Dalle-Ferrier et al. formula.
An excellent agreement between the long time DM of the tracer
obtained via the Lifson-Jackson prescription and the
corresponding Brownian dynamics simulations is observed.
On the other hand, the Dalle-Ferrier et al. formula produces
long time DM coefficients that converge asymptotically, at large
U0 values, to those predicted by our simulations and the Lifson-
Jackson approach. By selecting properly the random walker
simulation parameters, the same trend of the long time
diffusion coefficient is obtained.

In order to locate clearly the time t* at which a plateau and the
first change of curvature appear at large values of U0, the
logarithmic derivative of the MSD was calculated for different
values of U0. It is found that the magnitude of t* remains
approximately constant and independent of U0 for a fixed
periodicity L of the periodic potential, finding the same results
for the case of the periodic potential associated to the random
walker by increasing the probability of hopping p. The most likely
escape time t′ of the tracer displays an analogous behavior regarding
U0 or p, and the magnitude of t′ is very similar to the magnitude of
t*. Thus, the change of curvature observed in the MSD at t* can be
physically related to the characteristic time at which the escape time
starts to display its more likely value. Moreover, the critical time t*

obtained from a single MSD curve can be used as a first
approximation of the most likely escape time t′, obtained from
computationally expensive escape time histograms.

The two periodic potentials studied here via experiments,
Brownian dynamics, and random walker simulations constitute

very simple models useful to characterize or describe more
complex systems such as dense polyelectrolyte solutions,
jammed spheres, and even crowded biological structures as
those found inside living cells. In this sense, if our simple
models are able to provide the long time diffusion coefficient
DM of a tracer in a dense and crowded experimental
environment, then the associated maximum height and
periodicity of the cosine potential can be used as effective
parameters describing the characteristic energy barrier that
the tracer needs to overcome in order to jump, or escape,
from one effective confining cell to another one. The
application of this approach to characterize the long time
dynamics of a tracer in dense tubular micellar solutions is in
progress and will be published elsewhere.
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5 APPENDIX

As both the Dalle-Ferrier et al. formula, and the Bellour fitting
parameter 2δ2BD converge asymptotically to the Lifson-Jackson
prescription, and the MSD at the time t*, respectively, for largeU0

values, the associated errors are displayed in Figures 15A,B. In
Figure 15, it is observed that the error of the Dalle-Ferrier et al.
analytic formula is of the order of ten percent for U0 � 3KBT .

This error can be decreased by increasing the magnitude of U0.
However, the error cannot be reduced less than 2 percent even
for maximum heights of the periodic potential as large as
U0 � 10 KBT . On the other hand, the error in the convergence
of the Bellour fitting parameter 2δ2BD regarding the MSD at
the time t* is similar to that displayed by the Dalle-Ferrier
et al. formula at U0 � 3KBT , even though it reduces very
quickly becoming as small as 0.01 percent for U0 � 3KBT .

FIGURE 15 | (Color online): (A) Error of the long-time diffusion coefficient obtained from the Dalle-Ferrier formula DDF
M regarding the value predicted by the Lifson-

Jackson DLJ
M prescription, and (B) difference between the fitting Bellour parameter 2δ2 and themean square displacement at the critical timeMSD(tp) as a function of the

maximum height barrier U0. These results were obtained from Brownian dynamics simulations in which L � 1.0 × 10− 6 m and D0 � 1.8 × 10− 13 m2/s in all cases.
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