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Electrolyte-Mediated Assembly of Charged Nanoparticles

via a complex mechanism referred to as “salting-out.” Here, we
combine small-angle X-ray scattering (SAXS), molecular dynamics
(MD) simulations, and liquid-state theory to show that salting-
out is a long-range interaction, which is controlled by electrolyte
concentration and colloid charge density. As a model system, we
analyze Au nanoparticles coated with noncomplementary DNA
designed to prevent interparticle assembly via Watson-Crick
hybridization. SAXS shows that these highly charged nanoparticles
undergo “gas” to face-centered cubic (FCC) to “glass-like” transitions
with increasing NaCl or CaCl, concentration. MD simulations reveal
that the crystallization is concomitant with interparticle interactions
changing from purely repulsive to a “long-range potential well”
condition. Liquid-state theory explains this attraction as a sum of
cohesive and depletion forces that originate from the interelectrolyte
ion and electrolyte-ion-nanoparticle positional correlations.
Our work provides fundamental insights into the effect of ionic
correlations in the salting-out mechanism and suggests new routes
for the crystallization of colloids and proteins using concentrated
salts.

46.1 Introduction

Controlling the crystallization of colloids, including proteins,
from solutions has been a scientific goal for decades [1-7]. The
crystallization of charged colloids is often induced by using high salt
concentrations, a process referred to as “salting-out” [7]. Colloids
can also be concentrated and crystallized via the well-understood
depletion forces induced by the addition of polymers [5, 8] or micelle
forming surfactants [9]. However, colloidal crystallization in high
ionic strength solutions is subtle and not understood. Crystallization
via “salting-out” is observed for specific salts in a narrow range of
salt concentrations, when the interparticle interactions are weakly
attractive [10]. Above this salt concentration range, in the regime
of stronger attractive interactions, amorphous precipitates are
observed. It is generally believed that short-ranged attractions
due to ionic correlations and solvation effects drive the colloidal
assembly [11]. By contrast, the present study reveals that, in high
ionic strength solutions, the interparticle attraction between like-
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charged nanoparticles extends a few nm from the colloidal surface.
This “long-range” attraction is induced by the electrolyte ions, and is
not an effect of van der Waals forces.

Long-range interactions between like-charged colloids near
surfaces [12, 13] have been explored for decades. These interactions
are attractive near surfaces due to hydrodynamic effects [14], but in
bulk solutions they are found to be purely repulsive [15]. Here, we
show that electrolyte-mediated long-range interparticle attractions
are possible in bulk solutions in the regime of high ionic strength. To
enhance the electrostatic coupling between the nanoparticles and the
electrolyte ions, our experimental design used highly charged (>2000
e”/nanoparticle) DNA coated spherical gold nanoparticles (AuNPs)
in solutions containing high concentrations of NaCl or CaCl,. To avoid
interparticle assembly via Watson-Crick hybridization [16, 17], we
used DNAs that lacked self-complementary single-stranded sticky
ends. Naively, one might expect that, in the absence of hybridization,
the interactions between DNA coated AuNPs are purely repulsive.
Here, small-angle X-ray scattering (SAXS) shows that, depending on
the salt concentration and the DNA, FCC crystals are formed with
nearest-neighbor distances (dyy) that are comparable with twice
the nanoparticle hydrodynamic radius R. This demonstrates the
emergence of concentrated electrolyte-mediated attractions.

Various mean field theories have been developed to compute
the effective interactions between charged colloids, for example,
the Derjaguin-Landau-Verwey-Overbeek (DLVO) [18] theory
and its extensions that include the renormalized charges of the
colloids. However, at high ionic strengths these models cannot
account for the correlations among ions surrounding strongly
charged colloids. Recently, numerical techniques have elucidated
that ionic correlations in confined concentrated electrolytes can
induce attractions between like-charged surfaces at concentrations
larger than 300 mM NaCl [19]. These attractions are distinct from
the multivalent (Z = 3) counterion-mediated attractions in DNA and
other polyelectrolytes [20-22], which are observed at low ionic
strengths (LM- mM), are short-ranged (a few A corresponding to the
multivalent ion diameter), and lead to unstable precipitates in the
absence of specific short-range attractions as the salt concentration
increases. Here, we find attractions at high ionic strengths (>100 mM)
and even in monovalent salts, resembling the “salting-out” effect.
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By molecular dynamics (MD) simulations and liquid-state theory
we provide evidence that the ionic correlations in the concentrated
electrolyte induce interparticle long-range attractions and drive the
assembly.

46.2 Results and Discussion

46.2.1 SAXS Studies of DNA-Coated AuNP Assembly

To analyze the effect of charge density, DNA rigidity, and electrolyte
concentration, we studied four sample sets. These sets correspond
to two nanoparticle types: AuNPs (nominally, 10 nm diameter)
functionalized with single-stranded (ss)-DNA (ssDNA-AuNP) or
double-stranded (ds)-DNA (dsDNA-AuNP) (insets, Figs. 46.1A and C),
each dispersed in two solution types, NaCl and CaCl,. For all samples,
the nanoparticle concentration was ~50 nM, corresponding to an
average center-to-center interparticle distance of ~400 nm in the gas
phase. For each set, ionic strengths (y) in the range ~30-2000 mM
were examined. By definition, for NaCl solutions, ps = [NaCl] and for
CaCl, solutions, ug = 3 x [CaCl,]. In salt-free solutions, dynamic light
scattering (DLS) yield hydrodynamic radii of R= 19 nm and R = 13
nm for ssDNA-AuNP and dsDNA-AuNP, respectively, corresponding
to volume fractions of ~8.7 x 10~* and ~2.7 x 10~% These salt-free
values mark the upper bounds for the volume fractions since the
radial extension of the DNA on the nanoparticles, as expected [23], is
found to decrease with increasing y; due to the enhanced screening
of the intra-DNA electrostatic repulsions.

For all the sample sets, Fig. 46.1 shows representative
SAXS intensity profiles (I) as a function of the scattering vector
magnitude q (= 4m sin 6/A). Here, A is the X-ray wavelength and 26
is the scattering angle. For ssDNA-AuNPs in NaCl solutions, the main
features of the intensity profiles are ug-independent. To illustrate,
two extreme ug cases are shown in Fig. 46.1A. These SAXS profiles
exhibit the characteristics of scattering from isolated DNA-coated-
AuNPs, which is predominantly due to the electron-dense Au cores
[24]. Based on SAXS from a solid homogeneous sphere [25], the
position of the first minima (g, = 1 nm~1) corresponds to a Au core
radius of Ry, = ~4.5/qmin = 4.5 nm. Unlike ssDNA-AuNPs in NaCl
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solutions, ssDNA-AuNPs in CaCl, or dsDNA-AuNPs in NaCl or CaCl,
solutions aggregate into clusters above a threshold ionic strength y;,
as evidenced by the appearance of sharp intensity modulations in
the ¢ < 1 nm~! region (Fig. 46.1B-D). DLS measurements show that
a typical cluster size is ~1.7 pm.

. B.
ss-DNA capped AuNPs 10
-(CH,),-TT....TT

ss-DNA capped AuNPs

¥ [Ca™] =
o 650 mM|

AGNPS
10° Trg..gn

=10 +18 Ease’paurs
[Na]=

Figure 46.1 lonic-strength-dependent assembly behavior of DNA coated
AuNPs. 1D SAXS intensity profiles for ssDNA-AuNP and dsDNA-AuNP in NaCl (A,
C) and CaCl, (B, D) solutions. The data shown is the scattered intensity above the
background scattering from empty capillary and pure water. The insets in panels
A and C show the DNA-grafted-AuNP components. There are ~60 thiolated-
DNA tethered to each AuNP. About 40% of the strands on dsDNA-AuNPs were
in duplexed form. The ssDNA is a T,q strand. The DNA chain in panel C consists
of a 10 base long ssDNA spacer A;y and an 18 base-pair long dsDNA segment.
Therefore, the total charge on the nanoparticles is ~2400 e”/NP and ~2100
e”/NP for ssDNA-AUNP and dsDNA-AuNP, respectively. Solid red lines are the
expected scattered intensities from isolated DNA-grafted-AuNPs.

Comparison of u, in different sample sets shows that Ca?* induces
aggregation of DNA-coated-AuNPs at much lower yug; than Na*
(Figs. 46.1C and D). Similarly, dsDNA-AuNPs form aggregates at
a much lower pg than ssDNA-AuNPs (Figs. 46.1B and D). Thus, the
DNA-coated-AuNPs form aggregates more readily when the DNA
charge density and the counterion valency are increased. These
trends indicate that the responsible attractions cannot originate
from van der Waals forces.
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Figure 46.1 shows the simulated intensities P(q) for isolated
DNA-grafted-AuNPs (solid red lines). For all the cases where
nanoparticle aggregation is not observed, the measured I(q) are well
described by simulations based on mean Au core size <RAu> =4.5nm
and polydispersity (PD) = 8.5% or <RAu> = 4.4 nm and PD = 7.7%,
depending upon the nanoparticle batch used. This analysis allows
extraction of the structure factor [S(q) = I(q)/P(q)] for nanoparticle
aggregates (Figs. 46.2A and B).

A L] 4 asear=somm) B 2r—a—e
=y %  ds([Na']=750 mM) 8{="J\ “T (1ca1= 100 mm)
CASEpL
w o _ ss ([Ca™] =350 mM)( & ds ([Na'} = 1500 mM)
4 g5s>1% 2 AW
cﬁi g 3 Eg% ss ([Ca™] = 650 mM
0 | = i 0 —_—
05 10 15 20 25 30 05 10 15 20 25 3.0
o alq, alq,
7 2f|¢
5 of\
a2
T
L)
=0
=
312
T
o ~
N | t 1111
10 15 20 25 30 35 lonic Strength

rir,

Figure 46.2 Structure of DNA coated AuNP assemblies. (A, B) SAXS-derived
S(q) for DNA-grafted-AuNP aggregates (circles) along with simulations based
on FCC lattices (red lines). For reference, the expected peak positions and
relative intensities for Bragg reflections from ideal FCC lattices are shown
(A, vertical black lines). The labels ss and ds correspond to ssDNA-AuNP and
dsDNA-AuNP, respectively. (C) Representative radial distribution functions for
dsDNA-AuNPs in CaCl, as a function of ug along with the expected positions
and relative populations (P/12) for neighbors in a FCC lattice (black lines). For
visual comparisons, g(r) is plotted against normalized radial distance r/r;. Here,
ry = dyn represents the nearest-neighbor interparticle distance. Monte Carlo
simulations for g(r) based on random close packing (RCP) of hard spheres (blue
lines) reasonably describe the experimental g(r) for u, much higher than p,. (D)
Schematic of the observed changes in colloidal packing as a function of ionic
strength.

Two types of S(q) profiles are observed. First, regardless of the
DNA-coating and the salt solution, S(gq) exhibits similar features
at the threshold ionic strength () for aggregation. These S(q) are
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plotted against q/q, (Fig. 46.2A), where, q; is the position of the
principal peak. Similarly, for us >> p, S(q) vs. q/q, profiles are nearly
identical (Fig. 46.2B), but subtly different from the profiles at ug =
U, The analysis of S(q) based on a formalism by Forster et al. [26]
shows that, for us = y, DNA functionalized AuNPs are arranged on
FCC lattices (Fig. 46.2A). The positions of the principal FCC (1 1

Ji2m

4
34.4 nm for ssDNA-AuNPs in CaCl,, and dsDNA-AuNPs in NaCl and
CaCl, solutions, respectively. For the three cases in Fig. 46.24, the
widths of the (h k I) diffraction profiles yield average crystallite sizes
of 200-300 nm. Taken together, the DLS-measured aggregate size
(1.7 um) and the SAXS-derived crystallite size imply that the DNA-
grafted-AuNPs assemble into polycrystalline aggregates at ionic
strengths equal to or slightly above p,. Therefore, under appropriate
conditions, electrolyte-mediated interactions can induce crystalline
order in DNA functionalized AuNPs even in the absence of Watson-
Crick hybridization.

Figure 46.2B shows that, for us>> 1, the assembly does not consist
of FCC crystallites. More information about the nanoparticle packing
in these aggregates is gleaned from radial distribution function g(r).
Figure 46.2C shows the y,-dependence of g(r) for dSDNA-AuNPs in
CaCl, solutions. For the 50 mM [Ca?*] case (us = ), the amplitudes
and the positions of maxima in g(r) at r/ry = 1, \/2, \/3, \/4, \/5, etc.
are consistent with FCC lattices (Fig. 46.2C, bottom). With increasing
Us, the r/ry = V2 modulation smears out. Further, the g(r) exhibit
a slightly split doublet with nearly equal amplitude maxima at
r/r; = V3 and ~ V4 (Fig. 46.2C, middle and top). This doublet is a
signature of a glassy phase [27]. Specifically, the g(r) for [Ca?*] = 100
mM (Fig. 46.2C, middle) resembles the g(r) for the “metallic-glass-
like” packing of spherical colloids [2]. Similarly, the g(r) for [Ca?*]
= 250 mM, where the r/r; = V2 feature is mostly smeared out, is
reminiscent of the g(r) for random-close-packed (RCP) spheres [28].
These observations imply that the packing of DNA-grafted-AuNPs
transforms from isolated particles (gas-like) to face centered cubic
(FCC) to “glass-like” arrangement with increasing pg (Fig. 46.2D).
The structural phase transition sequence is similar to that observed
for protein crystallization [10]. Furthermore, similar to the case of

1) peak yield lattice parameters agcc (: J =29.2, 36.7, and
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proteins, the crystallization of DNA-coated AuNPs occurs in a narrow
usregime, for example, us=1050-1500 mM for ssDNA-AuNP in CaCl,.
Our results suggest that the electrolyte concentration induced “gas”
to “crystalline” to “amorphous” transitions are a general feature of
the assembly of charged colloids in high-ionic-strength solutions.

Some insight into the assembly mechanism of DNA-grafted-
AuNPs is obtained from the (nearest-neighbor distance) dyy versus
U trends. First, the dyy continuously decreases with increasing y to
reach a constant value in the glassy state, which is ~94% of the dyy
observed for FCC crystals at ug = u.. Second, the observed dyy are
smaller than estimates for 2R that are based on the combination of
modified Daoud-Cotton model parameters [23] for the ssDNA radial
extension and the experimental values for the average inter-base-
pair separation for dsDNA in Watson-Crick hybridization-driven
assemblies [29]. Both these observations suggest a dense packing
of DNA-grafted-AuNPs that is driven by electrolyte-mediated
attractions.

46.2.2 MD Simulations for Potential of Mean Force
between DNA-Coated AuNPs

The hypothesis of electrolyte-mediated interparticle attractions was
validated by MD simulations. Figure 46.3A shows the potential of
mean force between two dsDNA-AuNPs as a function of the distance
between their centers in the presence of an electrolyte with divalent
cations and monovalent anions (2:1 electrolyte). Here, the two
DNA-grafted-AuNPs interact only via short-ranged repulsive steric
interactions, and long-ranged Coulomb potentials. Two values
of us were simulated: 15 mM (ug << y;) and 150 mM (u, = u,). For
the 15 mM case, the interaction is repulsive for all interparticle
separations. At the onset of crystallization (150 mM case),
the potential barrier at low interparticle separations reflects
the steric and electrostatic repulsions arising due to the strong
interdigitation of the DNA strands on neighboring nanoparticles.
However, the effective potential is clearly attractive over a ~7 nm
wide region. The minima position in the interparticle potential
(Fig. 46.3A) corresponds to the case where the DNA coronas of
the two nanoparticles are just touching (Fig. 46.3B). Thus, the
interparticle interactions are attractive at separation distances
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where dsDNA chains with maximum extension can overlap slightly,
but also at separation distances that are ~4 nm larger than the
tangential contact distance between the nanoparticles (Fig. 46.3C).
The range of attractive interactions is approximately five times
higher than the Debye screening length (k' = 0.78 nm) for ug =
150 mM. Attractions between high charge density macromolecules
such as DNA in bulk solutions [30] and at interfaces [31] have been
previously observed at or above g = 150 mM for 2:1 electrolytes.
However, these attractions were hypothesized to be short-ranged,
with a decay length comparable to the hydrated divalent cation
diameter.

4
A ds-DNA-AuNP in CaCl,
|—ln W, =
9;‘: \ «15mM
B, & e150mM
@
=
2l
1
§ 0-—‘—.— 1———..!'—'" —— —
&0 I.___‘Q!;'_.‘--'—"\_

12'1l4.1lﬁ'1|8‘zlﬂ'2I2'2‘4
Center-Center DNA-AuUNP distance (nm)

Figure 46.3 Effective interaction potential between two DNA-grafted-AuNPs.
(A) Potential energy as a function of interparticle separation for two dsDNA-
AuNPs in two solutions of different p,. The minima position (circled point 1)
corresponds to tangential contact between the two dsDNA capped AuNPs.
Simulation snapshots corresponding to circled points 1 and 2 are shown in
panels B and C, respectively.

Due to computational constraints, the MD simulations were
performed for Ry, = 1.5 nm particles with 12 DNA/AuNP and only
for 2:1 electrolytes at the two ionic strengths described above.
Correcting for the radius of the AuNPs, MD simulations show that
the equilibrium inter-dsDNA-AuNP separation is 23.6 nm, close to
the experimental dyy = (aFCC/V2) = 24.3 nm for the py, = 150 mM
case. The nanoparticle size-correction should also be applied to the
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potential well depth (~0.33kgT, Fig. 46.3A). This is because liquid-
state theory (next section) shows that the magnitude of the two-
body attraction depends on the nanoparticle size. The size-corrected
potential well depth is 0.45kgT.

The interparticle attractive potential well is shallow. However,
crystallization is a many-particle collective process. Taking into
account only the coordination number of 12 in a FCC lattice, the
potential energy/particle becomes ~5.4kgT. Considerations of
DNA-coated nanoparticles at finite concentration could further
increase this energy estimate via inclusion of multiparticle effects
that are absent in our potential of mean force calculations, due to
the assumption of infinite dilution of nanoparticles. We note that
the attractive potential well condition coincides with a strong
enhancement in the cation-anion positional correlations in the
supporting electrolyte and the DNA corona.

Finally, previous simulation studies that utilized simplifying
assumptions of screened Coulomb or Yukawa-like effective potentials
[32] yielded short-ranged attractions between functionalized
nanoparticles. Now, by explicitly considering the positional
correlations between electrolyte ions in bulk solutions and between
the electrolyte ions and the nanoparticles, our simulations reveal the
long-range nature of the observed electrolyte mediated attractions.

46.2.3 Liquid-State Theory for Like-Charged Attraction

Insights into the origin of the attraction between like-charged objects
are provided by a liquid-state-theory based analytical approach.
Specifically, the interaction potential between the nanoparticles can
be derived from first principlesin an algebraic form that distinguishes
contributions from ion entropy and ion-nanoparticle and interion
correlations. The range of the interaction is connected to the length
over which the nanoparticles influence the ionic density profile in
the electrolyte. This length typically extends beyond the radial size
of the DNA linkers because of electrostatic and steric interactions
[24]. At low salt concentrations, this extension is well approximated
by the Debye length, whereas at high concentrations, it is typically
larger than the Debye length, measuring a few hydrated ionic radii.
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To illustrate like-charge attraction in a simpler case, we
calculate the potential of mean force between like-charged ions in
primitive electrolytes. Figure 46.4A shows that, at sufficiently high
concentrations, like charges attract, mediated by opposite charges.
These attractions appear roughly above 0.1 M for a 1:1 electrolyte
of the primitive model (e.g., NaCl) and a few tens of mM for 2:1
electrolyte (e.g., CaCl,). Furthermore, the range of the interaction is
greater than 2.5 nm (6-7 x the hydrated ionic radii [33]).

2:1at0s M

"11at1Mq

i
CI-Cl 1

3

«ie

1 L] ] »*

Figure 46.4 Origin of like-charge attraction at high salt concentration. (A)
Calculations of the potentials of mean force in primitive model 2:1 and 1:1
electrolytes. At sufficient concentrations, like charges attract. Mean field theory
[Poisson-Boltzmann (PB)] misses these attractions, while liquid-state theory
[Ornstein-Zernike equation (OZ)] captures these effects. (B) Schematic of the
regions that are influenced by a DNA coated AuNP (region Il), and the overlap of
spheres of influence of two DNA coated AuNPs (region IlI).

To extend these conclusions, we calculate the electrolyte-induced
interaction between two smooth, parallel, like-charged surfaces,
by solving the Ornstein-Zernike equation with the anisotropic
hypernetted chain (HNC) closure [19, 34, 35]. The mean potential
between two highly charged surfaces exhibits a qualitatively similar
spatial profileastheinteractionbetweenelectrolyteions. Theinduced
attraction is strongly amplified by a small dielectric contrast between
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the surfaces and the solvent, driven by an enhanced depletion of
ions caused by polarization charge. Furthermore, at small interplate
separations and for high salt concentrations, exclusion of electrolyte
ions from the volume confined by the two plates results in very
strong interplate attraction due to the osmotic pressure difference.
A similar effect for DNA-coated AuNPs could explain the crystal to
glass transition observed at high salt concentrations.

DNA-coated AuNPs should attract in high salt concentrations
in a manner analogous to the like-charged ions in primitive model
electrolytes and the like-charged surfaces, with differences in the
magnitude because of geometric reasons. Additionally, the cohesive
forces driven by ion-bridging and ionic correlations are dominant
in polyelectrolyte gels and blends if the pair correlation functions
and the ionic-interaction potentials of the local salt are oscilla-
tory [36], such as those shown in Fig. 46.4A. Although the mean
attraction per charge can be small compared to the thermal energy
(Fig. 46.4A), the attractive force between DNA-coated AuNPs should
be amplified due to the polyvalency of the nanoparticles and the large
number of associated ions in the overlap region of influence between
two nanoparticles (region III, Fig. 46.4B). Our MD simulations point
to such enhanced correlations between the DNA charges and the
electrolyte-ions and between the electrolyte-ions in the DNA corona
(regions Il and 111, Fig. 46.4B). Specifically, in going from ys = 15 mM
to us = 150 mM for a 2:1 electrolyte, the number of cations in the
DNA corona increases by 25%, overcompensating the charge on
DNA-coated AuNPs by ~20%. A near electroneutrality condition
is achieved by a simultaneous ~12-fold increase in the number of
associated anions. Second, the enhanced local concentration of cat-
ions and anions in the overlap region (region IlI, Fig. 46.4B) elevates
the local activity of the ions, and reduces the excluded volume for the
salt. This should induce depletion attractions between nanoparticles
due to a locally decreased osmotic pressure. The combined effect of
these cohesive forces and depletion-like attractions is calculated
by the MD. Interestingly, the total effective potential as in the case
of the Asakura-Oosawa depletion potential [37], is determined by
the number of mediating particles (polymers in Asakura-Oosawa
case; ions in the current case) in the overlap volume of the influence
spheres. For the typical parameters of DNA-grafted nanoparticles in
NaCl and CaCl, solutions, the effective potential may exceed 1kgT if
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the concentrations are, roughly, larger than 0.1 M. On the basis of
these rough estimates we expect an attractive interaction between
DNA-grafted nanoparticles, induced by the ions, via ion entropy,
“ion bridges,” and ionic cohesion. In principle, these contributions
can be extracted from an algebraic form for the thermally averaged
potential between two nanoparticles,

Umean(l Rl — RZD _

=—Vo(IR; = Ryl)
keT T (46.1)
2 2i(Zy + Zy —2Zy)
ie{+,—}
where V) is the overlap volume of region III,
3 3

Vo) =20} 1-L 4+ (46.2)

6 2D 2p?

The subindices I, II, and III refer to the regions shown in
Fig. 46.4B, Z; is an ion partition sum corresponding to region i at
a fixed configuration of the nanoparticles, and z; is the fugacity of
species i. For a mixture of hard spheres and small depletants, Eq.
46.1 reduces to the Asakura-Oosawa potential, with D being the
sum of the hard sphere and the depletant diameters. lons however
interact over long distance and add energetic contributions, which
can be quantified by an excess chemical potential (ion cohesion), a
local Donnan potential (a mean electrostatic potential), and a direct
ion-nanoparticle interaction (ion bridges).

The linear dependence of the interparticle attraction on the
overlap volume V, (Eq. 46.1) was used to obtain the size-corrected
value for the MD simulations derived interparticle potential energy.
Here, the radius of the influence sphere was assumed to be 2 nm
greater than that for the DNA-coated AuNP to correspond to the 4 nm
range of the attractive interactions. Furthermore, the interparticle
attraction also increases exponentially with the counterion valency
due to the Boltzmann weight in the partition sums Z;. This correlates
well with the SAXS observation that the threshold ionic strength for
nanoparticle aggregation is ~5x lower for dsDNA-AuNP in CaCl,
than in NaCl solutions. While the effective potential is generally
attractive, the nanoparticles are stabilized by the opposing steric
and electrostatic repulsions between the DNA chains, which increase
sharply if the nanoparticles interdigitate.
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46.3 Conclusions

We experimentally show that, in the absence of specific short-
range interactions, highly charged nanoparticles undergo “gas-
like” to crystalline to “glass-like” transformations with increasing
salt concentration. MD simulations reveal that crystallization of
the highly charged nanoparticles is driven by electrolyte-mediated
attraction with a spatial extension of 4 nm from the nanoparticle
surface. MD simulations and liquid-state theory suggest that the
attractive interactions arise due to enhanced ionic correlations in
the concentrated electrolyte and are the sum of cohesive forces and
depletion interactions. These results provide fundamental insights
into the very commonly observed “salting-out” phenomenon, which
is extensively used to crystallize and concentrate colloids, including
polyelectrolytes and proteins.
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