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A B S T R A C T

The spatial extension or thickness of the electrical double layer determines many thermodynamic and elec-
trokinetic properties of charged colloids in solution. In the classical Debye-Hückel formalism of point ions,
the thickness of the electrical double layer around a spherical macroion or next to an infinite planar elec-
trode can be characterized by the bulk Debye length of the supporting ionic fluid. As a result, that approach
neglects, at least, the influence of the colloidal charge on the spatial extension of the ionic cloud. Given
that the Debye-Hückel formalism of point ions is valid only in the limit of very weak colloidal charges,
in this work we use the non-linear Poisson-Boltzmann equation to study the thickness of the electrical
double layer near a positively charged electrode in spherical and planar geometries, in the presence of
several binary charge-asymmetric −1:z+ point-ions electrolytes with monovalent counterions and multi-
valent coions. The properties of counterions are maintained fixed, whereas the properties of coions (such
as their valence and concentration) are varied fulfilling the bulk electroneutrality condition. The thickness
of the ionic cloud is quantified here via the recently introduced capacitive compactness idea (Phys. Chem.
Chem. Phys. 20 (2018) 262). Physically, this length represents essentially the separation distance between
two electrodes associated to the corresponding effective electrical double layer capacitor, in both planar and
spherical geometries. Our numerical calculations show that the capacitive compactness obtained via the
non-linear Poisson-Boltzmann equation reduces to the Debye length of the supporting bulk electrolyte at
the point of zero charge. In the presence of a charge symmetric −1:+1 electrolyte, the capacitive compact-
ness always decreases as a function of the colloidal charge. Contrastingly, the electrical double layer may
expand or shrink as a function of the surface charge density, in the presence of multivalent coions, which
is confirmed here by primitive model Monte Carlo simulations. This last non-monotonic behaviour of the
capacitive compactness for multivalent coions, depending on the colloidal charge, is related to the micro-
scopic behaviour of the local electric field, the mean electrostatic potential, and the net ionic charge per
unit volume close to the colloidal surface. At very large colloidal charges, the capacitive compactness of all
−1:z+ electrolytes collapses onto a single curve illustrating the dominance of counterions in the non-linear
Poisson-Boltzmann theory.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The ionic cloud surrounding a charged colloid or surface dis-
solved in a coulombic fluid is the so-called electrical double layer.
The spatial extension or thickness of the electrical double layer plays
a crucial role in the thermodynamic and electrokinetic properties
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of macroions or charged plates in solution [1-24]. According to the
classical Debye-Hückel theory of point ions, the separation distance
between the electrodes of an effective electrical double layer capac-
itor for a z−:z+ electrolyte (with z− = −z+) is equal to the Debye
length of the supporting bulk electrolyte in planar and spherical
geometries [25-27]. As a result, in this theoretical description the
spatial location of the centroid of charge [27] associated to the dif-
fuse ionic cloud is independent of the magnitude of the colloidal
charge. One major limitation of the Debye-Hückel theory is that it is
valid only in the limit of very weakly charged surfaces neutralized
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by point-ions electrolytes. At non-weak colloidal charges, one would
expect, intuitively, that increasing the charge density of a spheri-
cal or a planar electrode should have the effect of always reducing
the spatial extension of the electrical double layer. In other words,
if the colloidal surface charge density increases one would expect,
naively, that the net ionic charge per unit volume profile would be
closer to the colloidal surface. In this regard, and instead of the Debye
length, we use here the novel concept of capacitive compactness [27]
to characterize the location of the centroid of charge of a coulom-
bic fluid for several −1:z+ point-ions electrolytes near a positive
spherical macroion or next to a positive and infinite planar electrode.
The properties of monovalent counterions (anions) are the same in
all −1:z+ electrolytes, whereas the properties of multivalent coions
(cations), such as their valence and concentration, are varied accom-
plishing the bulk electroneutrality condition. In order to calculate the
capacitive compactness –and differently from the classical Debye-
Hückel viewpoint– we use here the non-linear Poisson-Boltzmann
theory, which should provide sensible results in the presence of
medium/highly charged colloids monovalent counterions and multi-
valent coions, as it will be shown below.

Our main objective in this study is to investigate the behaviour
of the capacitive compactness of charge-asymmetric point-ions elec-
trolytes as a function of the colloidal charge, in spherical and planar
geometries. In particular, at large colloidal charges, our theoretical
mean-field calculations show that the capacitive compactness curves
of all −1:z+ point-ions electrolytes collapse onto a single curve. This
behaviour illustrates the mean-field dominance of counterions in
the non-linear Poisson-Boltzmann theory [28,29]. In accordance with
this prescription, the properties of counterions rule or determine the
behaviour of the electrical double layer at large electric fields. On
the other hand, our numerical calculations display that the capac-
itive compactness of a −1:+1 electrolyte decreases monotonically
as a function of the colloidal surface charge density. Contrastingly,
the capacitive compactness of a −1:z+ electrolyte, with multiva-
lent coions, exhibits a non-monotonic behaviour as a function of
the colloidal charge: at low surface charge densities the capacitive
compactness increases, whereas at high surface charge densities the
capacitive compactness decreases monotonically. The above com-
portment is associated here to the microscopic behaviour of the local
electric field, the mean electrostatic potential, and the net ionic dif-
fuse charge per unit volume near the colloidal surface in spherical
and planar geometries.

2. Model and methods

2.1. The non-linear Poisson-Boltzmann description

In this study, we consider a point-ions −1:z+ electrolyte either
i) surrounding a spherical macroion of radius RM and valence zM, or
ii) bathing a charged and infinite planar electrode with bare surface
charge density swall

0 . The bare surface charge density of the spheri-
cal macroion is denoted by s

sphere
0 = (e0zM)/

(
4pR2

M

)
, where e0 is the

protonic charge. In both instances, ions can approach up to a closest
approach distance b measured from the colloidal surface. This dis-
tance defines the location of the so-called Helmholtz plane, as shown
in Fig. 1. The Helmholtz plane was introduced in the past century to
prevent the appearance of non-physical concentrations of counteri-
ons (higher than the ionic close packing concentration) very near the
colloidal surface. In this study, two closest approach distances are
considered: b = 2.125 and 3.3 Å. In addition, and as a reference,
a surface charge density of 0.1 C/m2 is equivalent to an elementary
charge e0 per 160 square angstroms (or 0.6 elementary charges e0

per 100 square angstroms) approximately.
The non-linear Poisson-Boltzmann equation can be written in

terms of the ionic profiles next to the charged colloid. In turn, the

Fig. 1. Effective electrical double layer capacitor in spherical (top) and planar (bot-
tom) geometries. The closest approach distance b between point-ions and the colloidal
surface, or Helmholtz plane, is indicated with black dashed lines.

normalized ionic profile gi(x) of the species i can be formally written,
in planar and spherical geometries, in terms of the ionic potential of
mean force Wi(x):

qi(x) = qbulk
i gi(x) = qbulk

i exp
(

− Wi(x)
kBT

)
, (1)

where kB is the Boltzmann constant and T is the absolute tempera-
ture of the system.

The potential of mean force is the necessary work required to
bring a charged particle from infinite up to a distance x, where x is
the perpendicular distance between a point in the three-dimensional
space and the colloidal or electrodic surface. As a first approxima-
tion, the potential of mean force can be equated to the electrostatic
energy W(x) = e0zix(x), where zi is the valence of ions of species i
and x(x) is the mean electrostatic potential due to the charged sur-
face and the electrolyte. If the ionic profiles, defined in terms of the
mean electrostatic potential, are substituted in the Poisson equation,
∇2x(x) = −qel(x)/(e04), then the non-linear Poisson-Boltzmann
equation is obtained

∇2x(x) = − 1
e04

∑
i

qbulk
i zie0 exp

(
− e0zix(x)

kBT

)
, (2)

where e0 and 4 are the vacuum permittivity and the dielectric
constant of the solvent, respectively. The linear Poisson-Boltzmann
equation can be obtained by linearizing Eq. (2). For a charge sym-
metric z−:z+ electrolyte (with z− = −z+) this linear approximation
results in the following relation between the mean electrostatic
potential at the electrode’s surface x0, and the colloidal charge s0

x0 =
zMe0

4pe04RM(1 + jDRM)
(3)

in spherical geometry, and

x0 =
s0

e04jD
(4)
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in planar geometry. In these expressions, the Debye length of the
supporting electrolyte in bulk is defined as kD = 1/jD with

jD =

(∑
iq

bulk
i z2

i e2
0

e04kBT

) 1
2

. (5)

In the linear Poisson-Boltzmann, or Debye-Hückel theory, the
reduced mean electrostatic potential x∗(x) = x(x)/x0 and the
reduced electric field E∗(x) = E(x)/E0 have the same functional form
in planar geometry, namely

x∗(x) = E∗(x) = e−x/kD . (6)

In spherical geometry, the reduced mean electrostatic potential
x∗(r) = x(r)/x0, and the reduced electric field E∗(r) = E(r)/E0 can
be written as

x∗(r) =
RM

r
e−(r−RM)/kD , (7)

E∗(r) = x∗(r)
(

RM

r

)2
(

r2 + kDr

R2
M + kDRM

)
, (8)

From Eqs. (6)–(8), it is clear that, according to the linear Poisson-
Boltzmann or Debye-Hückel theory, the reduced mean electrostatic
potential and the reduced electric field (in planar and spherical
geometry) are independent of the colloidal surface charge density.
This is not necessary the case in the non-linear Poisson-Boltzmann
theory, as it will be illustrated below.

On the other hand, if the normalized ionic profiles are known it is
possible to write, in general, the integrated charge, the electric field,
and the mean electrostatic potential around a spherical macroion of
valence zM as [29]

P(r) = zM +
∑

i=−,+

∫ r

0
ziq

bulk
i gMi(t)4pt2dt, (9)

Esphere(r) =
e0

4pe04

P(r)
r2

, (10)

and

x(r) = −
∫ r

∞
Esphere(t)dt =

∫ ∞

r
Esphere(t)dt. (11)

In planar geometry, the global electroneutrality condition implies
that the above quantities can be written analogously as [29]

swall(x) = swall
0 +

∫ x

0

∑
i

qbulk
i gi(t)e0zidt, (12)

Ewall(x) =
swall(x)

e04
, (13)

and

x(x) =
e0

e04

∫ ∞

x
(x − t)

⎛
⎝ ∑

i=−,+

qbulk
i zi(gi(t) − 1)

⎞
⎠ dt. (14)

In a very recent work [27], some of the present authors have
proposed the use of the capacitive compactness tc as a novel, accu-
rate and robust measure of the spatial extension of the electrical
double layer next to a charged surface. Physically, the capacitive
compactness can be thought as the separation distance between two
electrodes associated to an effective electrical double layer capacitor,

as shown in Fig. 1. In general, the capacitive compactness in spherical
and planar geometries can be written as

t
sphere
c =

(
1

RM
− 4pe04

x
sphere
0

zMe0

)−1

(15)

and

twall
c = e04

xwall
0

swall
0

, (16)

where x
sphere
0 and xwall

0 are the mean electrostatic potential at the
charged surface in spherical and planar geometries, respectively.
Notice that the capacitive compactness in Eq. (15) is measured from
the center of the spherical macroion, whereas this quantity is mea-
sured from the surface of the planar charged electrode in Eq. (16), as
it is shown schematically in Fig. 1.

By substituting Eqs. (3) and (4) in Eqs. (15) and (16), respec-
tively, it is straightforward to obtain the capacitive compactness
in the linear Poisson-Boltzmann or Debye-Hückel theory. Following
this theoretical description, the capacitive compactness tc measured
from the colloidal surface is equal to the Debye length in spheri-
cal and planar geometries (when the ionic closest approach distance
between the point-ions and the colloidal surface is zero). Notice that
in this approximation the capacitive compactness tc is independent
of the colloidal charge. A major limitation of the linear Poisson-
Boltzmann or Debye-Hückel theory is that it is valid only in the
limit of very weak charged surfaces. On the contrary, the non-linear
Poisson-Boltzmann equation describing point-ions is valid even at
medium/large surface charge densities. The capacitive compactness
associated to this higher-order description can be obtained from Eqs.
(15) and (16), in spherical and planar geometries, if the mean elec-
trostatic potential is calculated at the colloidal surface in terms the
corresponding ionic profiles via Eqs. (11) and (14).

To our best knowledge, there are not exact analytical solutions
to the non-linear Poisson-Boltzmann equation in the presence of
charge-asymmetric −1:z+ point-ions electrolytes. Thus, numerical
solutions of these equations are required. Notice that instead of solv-
ing the differential equation associated to the non-linear Poisson-
Boltzmann theory, we prefer to solve here the corresponding inte-
gral equations via an efficient finite element approach. Detailed
and explicit derivations of these equations in spherical and planar
geometries can be found elsewhere [27,28], so we will just briefly
sketch them here.

The Ornstein-Zernike equations describing the ionic cloud around
a single spherical macroion M can be written as

hMj(r) = cMj(r) +
∑

k=−,+

qk

∫
hMk(t)ckj(|�r − �t|)dV , (17)

for j = +, −, and where hMj(r) = gMj(r) − 1 are the total ionic
correlation functions, and gMj(r) are the ionic radial distribution func-
tions. The direct correlation functions between ions and the spher-
ical colloid are specified using the hypernetted-chain (HNC) closure
cMj(r) = −bUMj(r) + hMj(r) − ln[hMj(r) + 1] and, if ckj(|�r − �t|) =
−b

(
zkzje2

0

)
/(4pe04|�r − �t|) is used in the integrand of Eq. (17), then

the integral equations version of the non-linear Poisson-Boltzmann
theory is obtained (see Ref. [28] for the explicit expressions). The
integral form of the non-linear Poisson Boltzmann equation for the
electrical double layer of a binary electrolyte next to a planar charged
surface can be straightforwardly obtained from Eq. (17) by taking the
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limit of a colloid with infinite radius [27]. Dropping the subscript M,
these equations can be explicitly written as

gi(x)=exp

⎧⎨
⎩−zie0bx0 − zi

(
e2

0
kBT404

)∫ ∞

b

⎡
⎣∑

j

zjqjgj(t)

⎤
⎦F (x, t) dt

⎫⎬
⎭ ,

(18)

for x ≥ b, i, j = +, −, and

F (x, t) =
(x + t) − |x − t|

2
. (19)

In our finite element implementation, the upper limit in the
integral of Eq. (18) was approximated by a cut-off distance
Rmax = 400 Å, which is at least 130 times larger than the maximum
capacitive compactness associated to each −1:z+ electrolyte.

2.2. Monte Carlo simulations

In our simulations of the planar electrical double layer, the aque-
ous electrolyte is modeled using the so-called restricted primitive
model. In this representation, the ionic particles are mimicked by
equally-sized hard spheres of diameter a = 4.25 Å with point
charges qi = zie0 embedded at their centers. An infinite and impen-
etrable charged wall is in contact with the ionic particles, which are
dissolved in a continuum solvent characterized by a dielectric con-
stant 4 at a temperature T. The pair interaction potential between any
pair of ionic particles is given by

Uij(r) =

⎧⎨
⎩

∞, r < a,
zizje

2
0

4pe04r , r ≥ a,
(20)

where the subscripts i, j = +, −; r denotes the distance between
the centers of two charged hard particles of type i and j, and 4 is
the dielectric constant in all space, including the interior of the solid
electrode.

The interaction potential between a hard ionic particle of type i
and the infinite and impenetrable charged electrode is given by

Uwall
i (x) =

{
∞, x < a

2 ,

− s0zie0
e04

|x|, if x ≥ a
2 ,

(21)

where s0 is the surface charge density on the electrode’s surface.
The electrode’s surface is placed at x = 0, and the closest approach
distance between the ionic particles of diameter a and the hard elec-
trode is located at b = (a/2), which defines the so-called Helmholtz
plane. Monte Carlo (MC) simulations of an aqueous electrolyte in
the presence of a charged electrode were performed in the canoni-
cal NVT ensemble. A rectangular simulation cell of volume V = W2L
was considered. Periodic boundary conditions were used in two
directions (y- and z-axis), and a finite length along the x-axis was
considered. Two infinite and impenetrable walls in both sides of the
simulation cell were used to confine the electrolyte. One wall was
charged with a surface charge density s0 and the other one was neu-
tral. The width and transversal section of the simulation cell were
W = 126.57 Å and W2, respectively. The length L of the simulation
cell was at least two times the width W, and it was adjusted to reach
the desired bulk concentration with an error of 1% or less. Accord-
ing to this prescription, notice that the length L is at least 80 times
the maximum capacitive compactness associated to each −1:z+ elec-
trolyte. In a typical run of a −1:+1 salt, at a concentration 1 M and
electrode’s surface charge density s0 = 0.05 C/m2, approximately

4800 ions were placed inside the simulation box. In all simula-
tions, the surface charge density on the electrode was neutralized
by the presence of an excess of monovalent counterions. The classi-
cal Metropolis algorithm was used in the NVT canonical simulations.
At least 1 × 105 MC cycles were performed in the thermalization
process, and 1 × 106 MC cycles were done in the production runs.
The electrostatic interactions were calculated via the charged-sheets
method proposed by Torrie and Valleau [30] using Boda’s modifica-
tion [31], in which an infinite charged plane with a square hole is
considered in the simulation cell. More details about the Monte Carlo
simulations can be consulted elsewhere [29,32-34]. The ionic profiles
were quantified via singlet distribution functions gi(x) for each ionic
species i = +, −. Once these ionic profiles were known, the capaci-
tive compactness was calculated by using Eqs. (14) and (16) in planar
geometry.

0 0.1 0.2 0.3 0.4 0.5
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(R

M
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(a)

(b)

Fig. 2. Capacitive compactness tc calculated via the non-linear Poisson-Boltzmann
theory (a) in the presence of a spherical macroion of radius RM = 15 Å and bare
surface charge density s

sphere
0 , and (b) in the presence of an infinite charged hard wall

with bare surface charge density swall
0 . In both cases, the charged colloid is in contact

with a binary charge-asymmetric −1:z+ point-ions electrolyte with an ionic closest
approach distance b to the colloidal surface for both ionic species. The concentration
of anions is q− = 1 M in all cases, and the ionic strength of the solution is 1, 1.5
and 2 M, for z+ = +1, z+ = +2, and z+ = +3, respectively. tc is measured from
the center of the macroion in spherical geometry, and from the electrode’s surface in
planar geometry. Filled black circles, red squares, and blue triangles at the point of
zero charge (uncharged colloid) correspond to the bulk Debye length of the supporting
electrolyte for z+ = +1, z+ = +2, and z+ = +3, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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3. Results and discussion

The behaviour of the capacitive compactness tc associated to a
charge-asymmetric sizeless electrolyte either surrounding a positive
spherical macroion or next to a positive planar hard wall is dis-
played in Fig. 2 (a) and (b), respectively. In both figures, the ionic
concentration and the valence of counterions (anions) are 1 M and
z− = −1, respectively. Two different closest approach distances
between point ions and the colloidal surface, or Helmholtz planes,
are considered: b = 2.125 Å, and b = 3.3 Å for a binary electrolyte.
For a given Helmholtz plane, three valences z+ = +1, +2, +3 are
considered for coions (cations), whose concentration is adjusted to
fulfill the bulk electroneutrality condition z−qbulk− + z+qbulk

+ = 0.
In both geometries (spherical and planar), it is observed that the
capacitive compactness measured from the Helmholtz plane tends
asymptotically to the Debye length of the supporting bulk electrolyte
(indicated by filled symbols) very close to the point of zero charge
(i.e., when the surface of the spherical macroion or the planar elec-
trode is uncharged). This limit capacitive compactness is predicted
by the linearized Poisson-Boltzmann theory in the presence of point-
ions electrolytes. According to this last theoretical formalism, tc is
independent of the colloidal charge and only depends on those prop-
erties of the supporting bulk electrolyte defining the Debye length,
such as the valence and concentration of ions, as well as the tem-
perature and dielectric permittivity of the solvent. On the contrary,
in the non-linear Poisson-Boltzmann theory tc depends on the col-
loidal charge, the electrode’s geometry, and the properties of the
electrolyte defining the bulk Debye length. When the colloidal charge
increases, the behaviour of tc is very different depending if coions are
monovalent or multivalent. In the presence of monovalent coions,
tc decreases monotonically when the colloidal charge increases, as
shown in Fig. 2. Thus, the separation distance between the electrodes
of the associated effective capacitor, in both geometries, decreases
and the electrical double layer becomes more compact. Contrastingly,
tc displays a non-monotonic behaviour when coions are multivalent.
In specific, at very low colloidal charges the capacitive compactness
with multivalent coions increases until the surface charge density
reaches a critical value scritical

0 at which tc displays a maximum.
When the colloidal charge further increases, tc decreases as a func-
tion of the surface charge density. In other words, the separation
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Fig. 3. The same as in Fig. 2 (a) but for an effective surface charge density s∗
0 =

(RM/(RM + b))2s
sphere
0 , where s

sphere
0 is the bare charge density on the surface of the

spherical macroion.
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Fig. 4. Electric field obtained via the non-linear Poisson-Boltzmann theory (a) around
a spherical macroion of radius RM = 15 Å and bare surface charge density s

sphere
0 ,

and (b) next to an infinite charged hard wall with bare surface charge density swall
0 ,

for several colloidal charges. In both cases, the charged colloid is in contact with a
binary charge-symmetric −1:+1 point-ions electrolyte with an ionic closest approach
distance b = 2.125 Å to the colloidal surface for both ionic species. The concen-
tration of anions is q− = 1 M and the ionic strength of the solution is 1 M in all
instances. For the spherical macroion, the effective surface charge density is s∗

0 =
(RM/(RM + b))2s

sphere
0 . For the infinite planar wall, the effective surface charge density

is s∗
0 = swall

0 . The distance x is measured from the colloidal surface in both cases.

distance between the electrodes of the associated effective capacitor
increases and decreases depending on the magnitude of the colloidal
surface charge. This behaviour indicates an expansion and a shrinkage
of the electrical double layer that depends on the geometry and charge
of the colloid in the presence of multivalent coions.

Another interesting feature observed in Fig. 2 is that the tc curves,
associated to electrolytes with the same Helmholtz plane and dif-
ferent coions, converge and collapse onto a single curve at large
colloidal charges when the properties of counterions are the same
in all instances. Such a behaviour illustrates the so-called dominance
of counterions in the non-linear Poisson-Boltzmann theory [28].
This mean-field formalism predicts that two binary electrolytes, in
which the counterions have the same properties (differing only in the
properties of coions), will display the same microscopic and thermo-
dynamic properties at very large colloidal charges. In other words, at
large electric fields, the properties of counterions rule or determine
the structure of the electrical double layer and the characteristics
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Fig. 5. Mean electrostatic potential obtained via the non-linear Poisson-Boltzmann
theory (a) around a spherical macroion of radius RM = 15 Å and bare surface charge
density s

sphere
0 , and (b) next to an infinite charged hard wall with bare surface charge

density swall
0 , for several colloidal charges. In both cases, the charged colloid is in

contact with a binary charge-symmetric −1:+1 point-ions electrolyte with an ionic
closest approach distance b = 2.125 Å to the colloidal surface for both ionic species.
The concentration of anions is q− = 1 M and the ionic strength of the solution is
1 M in all instances. For the spherical macroion, the effective surface charge density is
s∗

0 = (RM/(RM + b))2s
sphere
0 . For the infinite planar wall, the effective surface charge

density is s∗
0 = swall

0 . The distance x is measured from the colloidal surface in both
cases.

of coions become irrelevant. In spherical geometry, the asymptotic
value of tc at large colloidal charges depends on b, as shown in Fig. 2
(a). In planar geometry, the asymptotic value of tc is the same inde-
pendently of the value of b when tc is measured from the closest
approach distance between the point-ions and the planar electrode,
as portrayed in Fig. 2 (b). In addition, note that the capacitive com-
pactness curves displayed in Fig. 2 (a), corresponding to the same
−1:+z electrolyte for two different Helmholtz planes, can merge
onto the same curve if tc is plotted as a function of an effective sur-
face charge density s∗

0 = (RM/(RM + b))2s
sphere
0 , as shown in Fig. 3

(notice that for a plate s∗
0 = swall

0 ). Another notable trait discerned
in Figs. 2 (b) and 3 is that the onset of the asymptotic collapse of the
tc curves onto a single curve occurs at lower values of the effective
surface charge density in planar geometry regarding the spherical
geometry. This geometric effect is due to the fact that the electric
field near an infinite planar electrode is stronger than the electric
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Fig. 6. The same as in Fig. 4 but for a binary charge-asymmetric −1:+3 point-ions
electrolyte with an ionic closest approach distance b = 2.125 Å to the colloidal sur-
face for both ionic species. The concentration of anions is q− = 1 M and the ionic
strength of the solution is 2 M in all instances. The distance x is measured from the
colloidal surface in both cases.

field associated to an spherical colloid with the same effective surface
charge density.

The behaviour of the capacitive compactness tc can be associated
to the microscopic structure of the electrical double layer. In quanti-
tative terms, this feature will be discussed below in terms of the local
electric field, the mean electrostatic potential, and the net charge per
unit volume near the colloidal surface. With this purpose in mind, the
behaviour of the electric field and the mean electrostatic potential in
the presence of a −1:+1 electrolyte as a function of the distance to
the colloidal surface is plotted in Figs. 4 and 5, respectively, in spheri-
cal and planar geometries. In both figures, it is observed that the elec-
tric field and the mean electrostatic potential deswells or becomes
more compact when the colloidal surface charge density increases
in each geometry, that is, E

(
x,s∗

0

)
/E

(
b,s∗

0

)
< E

(
x,s∗

0
′)/E

(
b,s∗

0
′)

and x
(
x,s∗

0

)
/x

(
b,s∗

0

)
< x

(
x,s∗

0
′)/x (

b,s∗
0

′) if s∗
0 > s∗

0
′ for all x

displayed, where x is the perpendicular distance between a point
in the three-dimensional space and the colloidal surface, in spher-
ical and planar geometries. As a result, the electrical double layer
shrinks monotonically when the colloidal charge increases in charge-
symmetric monovalent electrolytes. Such a behaviour, as a function
of the magnitude of the surface charge density, contrasts with that
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Fig. 7. The same as in Fig. 5 but for a binary charge-asymmetric −1:+3 point-ions
electrolyte with an ionic closest approach distance b = 2.125 Å to the colloidal sur-
face for both ionic species. The concentration of anions is q− = 1 M and the ionic
strength of the solution is 2 M in all instances. The distance x is measured from the
colloidal surface in both cases.

observed in the presence of an electrolyte constituted by monova-
lent counterions, and divalent or trivalent coions. In particular, the
electric field and the mean electrostatic potential in the presence of
trivalent coions as a function of the distance to the colloidal surface
is plotted in Figs. 6 and 7, respectively, for several low surface charge
densities in spherical and planar geometries. In both figures, an
opposite behaviour to that displayed in Figs. 4 and 5 is observed, that
is, in this instance the electric field and the mean electrostatic poten-
tial swells or dilates when the surface charge density increases, that
is, E

(
x,s∗

0

)
/E

(
b,s∗

0

)
> E

(
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0
′)/E

(
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0
′) and x
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>

x
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′)/x (

b,s∗
0

′) if s∗
0 > s∗

0
′ for all x displayed. Thus, the elec-

trical double layer expands at low surface charge densities when
the colloidal charge increases in the presence of trivalent coions.
The electric field and the mean electrostatic potential as a function
of the distance to the colloidal surface is plotted in Figs. 8 and 9,
respectively, now at large colloidal charges in spherical and planar
geometries. In both figures, an analogous behaviour to that displayed
in Figs. 4 and 5 is seen, viz., for highly electrified surfaces, the local
electric field and the mean electrostatic potential associated to a
−1:+3 electrolyte deswells or becomes more compact when the
surface charge density increases. In other words, the electrical dou-
ble layer associated to monovalent counterions and trivalent coions
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Fig. 8. The same as in Fig. 6 but for high colloidal charges.

shrinks at large colloidal charges, as occurred in the presence of
a −1:+1 monovalent salt, in planar and spherical geometries. In
summary, the microscopic behaviour of the local electric field and
the mean electrostatic potential displayed above is totally consis-
tent with the behaviour of the capacitive compactness displayed in
Fig. 2, namely if the electric field or the mean electrostatic poten-
tial expands or swells as a function of the colloidal charge then the
magnitude of the capacitive compactness increases; on the contrary,
if the electric field or the mean electrostatic potential shrinks or
deswells as a function of the colloidal charge then magnitude of the
capacitive compactness decreases.

The spatial extension of the electrical double layer can be also
analyzed in terms of the net ionic charge per unit volume qel(�r) =∑

i
zie0qi(�r), for i = +, −. In planar geometry, this quantity is

proportional to the difference between the singlets of counterions
(anions) and coions (cations). Then, we define g∗

diff (x) as the differ-
ence between these ionic singlets normalized regarding the value of
such a difference at the ionic closest approach distance, or Helmholtz
plane:

g∗
diff (x) =

gwall− (x) − gwall
+ (x)

gwall− (b) − gwall
+ (b)

. (22)

The behaviour of g∗
diff (x), associated to the local electric field dis-

played in Fig. 4 (b) for a −1:+1 electrolyte in planar geometry, is
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Fig. 9. The same as in Fig. 7 but for high colloidal charges.

presented in Fig. 10. Here, it is observed that g∗
diff (x) approaches to

the colloidal surface monotonically when the surface charge density
increases, that is, g∗

diff

(
x,s∗

0

)
< g∗

diff

(
x,s∗

0
′) if s∗

0 > s∗
0

′ for all x. As a
result, the electrical double layer deswells or becomes more compact
monotonically as a function of the colloidal charge. This microscopic
behaviour is consistent with the shrinking of the local electric field
observed in Fig. 4 (b) and the deswelling of tc displayed in Fig. 2 (b).
On the other hand, Fig. 11 portrays the behaviour of the g∗

diff (x) asso-
ciated to a −1:+3 electrolyte in planar geometry for several colloidal
charges. In particular, note that the g∗

diff (x) plotted in Fig. 11 (a) and
(b) corresponds to the local electric field displayed in Figs. 6 (b) and
8(b), respectively. At low colloidal charges, g∗

diff (x) goes far away from
the colloidal surface when the surface charge density increases, that
is, g∗

diff

(
x,s∗

0

)
> g∗

diff

(
x,s∗

0
′) if s∗

0 > s∗
0

′ for all x. Thus, the electrical
double layer swells or expands when the colloidal charge augments
in the presence of trivalent coions. This microscopic behaviour is
also consistent with the expansion of the local electric field seen in
Fig. 6 (b) and the swelling of tc observed in Fig. 2 (b) at low the
surface charge densities. Contrastingly, at high colloidal charges, the
g∗

diff (x) curves displayed in Fig. 11 (b) show an analogous behaviour
to that observed in the presence of monovalent coions (see Fig. 10),
that is, g∗

diff

(
x,s∗

0

)
< g∗

diff

(
x,s∗

0
′) if s∗

0 > s∗
0

′ for all x. As a result,
at large surface charge densities, the electrical double layer becomes
more compact when the colloidal charge increases in the presence of
trivalent coions.
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Fig. 10. Normalized difference between the ionic singlets g−(x) and g+(x) next to an
infinite charged hard wall with bare surface charge density swall

0 . The ionic singlet
difference g∗

diff (x) = [g−(x) − g+(x)]/[g−(b) − g+(b)] has been obtained via the non-
linear Poisson-Boltzmann theory in planar geometry. The infinite charged hard wall is
in contact with a binary charge-symmetric −1:+1 point-ions electrolyte with an ionic
closest approach distance b = 2.125 Å to the colloidal surface. The ionic concentra-
tion of anions is q− = 1 M and the ionic strength of the solution is 1 M in all cases.
The effective surface charge density is s∗

0 = swall
0 . The distance x is measured from

the colloidal surface.

The effect of the geometry in the value of the capacitive com-
pactness tc is shown in Fig. 12. Notice that t∗

c = tc − b and t∗
c =

tc − (RM + b) in planar and spherical geometries, respectively. In
particular, in Fig. 12 (a) it is observed that the separation distance
between the two electrodes associated to the effective electrical dou-
ble layer capacitor decreases faster in planar geometry regarding the
spherical geometry, that is, t∗,wall

c
(
s∗

0

)
< t

∗,sphere
c

(
s∗

0

)
for all s∗

0 in
−1:+1 electrolytes. In the presence of −1:z+ electrolytes, with mul-
tivalent coions, two regimes can be observed in Fig. 12 (b) and (c):
in the first regime t∗,wall

c
(
s∗

0

)
> t

∗,sphere
c

(
s∗

0

)
if s∗

0 < s∗
0

′′, whereas
the opposite behaviour is observed if s∗

0 > s∗
0

′′, that is, in the second
regime t∗,wall

c
(
s∗

0

)
< t

∗,sphere
c

(
s∗

0

)
.

On the other hand, the influence of the ionic strength in the mag-
nitude of the capacitive compactness tc is shown in Fig. 13. In this
figure, it is remarkable that the difference between the capacitive
compactness at the point of zero charge and the maximum capac-
itive compactness associated to multivalent coions increases when
the ionic strength of the binary electrolyte decreases.

As a final and very important point, in order to demonstrate
that the expansion/shrinkage of the electrical double layer discussed
above is not just an artifact of the non-linear Poisson-Boltzmann the-
ory, Fig. 14 presents a comparison with Monte Carlo simulations.
Here, it is observed that simulations confirm the main predictions
of the non-linear Poisson-Boltzmann equation, namely i) the mono-
tonic decreasing of the capacitive compactness in the presence of
a −1:+1 electrolyte next to a planar electrode as a function of the
surface charge density; and ii) the non-monotonic behaviour of the
capacitive compactness in the presence of multivalent coions as a
function of the colloidal charge.

4. Concluding remarks

The classical and more widely used parameter to determine the
thickness of the electrical double layer around a spherical macroion
or next to a charged plate is the Debye length of the support-
ing ionic fluid in bulk. This prescription arises naturally from the
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Fig. 11. Normalized difference between the ionic singlets g−(x) and g+(x) next to an
infinite charged hard wall with bare surface charge density swall

0 . The ionic singlet
difference g∗

diff (x) = [gwall− (x) − gwall
+ (x)]/[gwall− (b) − gwall

+ (b)] has been obtained via the
non-linear Poisson-Boltzmann theory in planar geometry. The infinite charged hard
wall is in contact with a binary charge-asymmetric −1:+3 point-ions electrolyte with
an ionic closest approach distance b = 2.125 Å to the colloidal surface. The ionic
concentration of anions is q− = 1 M and the ionic strength of the solution is 2 M in all
cases. The effective surface charge density is s∗

0 = swall
0 . The distance x is measured

from the colloidal surface.

linear Poisson-Boltzmann or Debye-Hückel theory of point-ions elec-
trolytes. In a very recent work [27], we have proposed the general
concept of capacitive compactness to quantify the thickness of the
electrical double layer in spherical and planar geometries. The sta-
tistical mechanics definition of the capacitive compactness, derived
from classical electromagnetism principles, supports its robustness
as a general concept, allowing to include many physical effects
characteristic of coulombic fluids such as the colloidal charge, ion
correlations, ionic excluded volume effects, image charges, and van
der Waals attractions. From a microscopic point of view, the idea of
capacitive compactness is limited only by the mathematical model
used to describe a charged fluid, and by the accuracy of the theory
or simulations used to calculate the ionic profiles that neutralize a
charged colloid. Physically, the capacitive compactness can be essen-
tially defined as the separation distance between two electrodes
associated to an effective electrical double layer capacitor, when the
voltage between the effective electrodes is the mean electrostatic
potential on the colloidal surface (measured with respect to its value
at the bulk of the supporting ionic fluid) [27]. In one of the most
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Fig. 12. Capacitive compactness measured from the Helmholtz plane t∗
c as a function

of the effective surface charge density s∗
0 . Notice that t∗

c = tc−b and t∗
c = tc−(RM +b)

in planar and spherical geometries, respectively. The colloid can be a small spherical
macroion with radius RM = 15 Å or an infinite planar charged wall in the presence
of a binary charge-asymmetric −1:+z point-ions electrolyte, with an ionic closest
approach distance b = 2.125 Å to the colloidal surface in all instances. In the spherical
case, the macroion has a bare surface charge density s

sphere
0 , and an effective surface

charge density s∗
0 = (RM/(RM + b))2s

sphere
0 . In the planar instance s∗

0 = swall
0 , where

swall
0 is the bare charge density on the electrode’s surface. The concentration of anions

is q− = 1 M in all cases, and the ionic strength of the solution is 1, 1.5 and 2 M, for
z+ = +1, z+ = +2, and z+ = +3, respectively. The filled black circle, the red
square, and the blue triangle at the point of zero charge (uncharged colloid) corre-
spond to the bulk Debye length of the supporting electrolyte for z+ = +1, z+ = +2,
and z+ = +3, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

simple theoretical descriptions of coulombic fluids, namely the lin-
ear Poisson-Boltzmann or Debye-Hückel theory of point ions, the
capacitive compactness is independent of the colloidal charge and
reduces to the bulk Debye length of the bathing ionic fluid in spher-
ical and planar geometries. A more realistic scenario could include
the effect of the colloidal surface charge density in the spatial exten-
sion, or thickness, of the electrical double layer. With this purpose in
mind, we have used here the non-linear Poisson-Boltzmann equation
to study the capacitive compactness of several −1:z+ point-ions
electrolytes. In these electrical double layer systems, the proper-
ties of monovalent counterions (anions) have been maintained fixed,
whereas the properties of multivalent coions (cations), such as their
valence and ionic concentration, have been varied but fulfilling
the bulk electroneutrality condition. At large colloidal charges, we
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0 is the bare charge density on the electrode’s surface. The concentration of anions
(counterions) is q− = 0.4 M for solid lines and q− = 1 M for dashed lines. The
concentration of cations (coions) is q−/z+ for solid and dashed lines.

have demonstrated the non-linear Poisson-Boltzmann dominance of
counterions in terms of the capacitive compactness, when multi-
valent coions and monovalent counterions are present in spherical
and planar geometries. According to this prescription, the properties
of counterions rule or determine the characteristics of the electri-
cal double layer at large colloidal charges. In other words, in the
presence of large electric fields, the microscopic and macroscopic
properties of −1:z+ charge-asymmetric electrolytes converge to the
same values if the properties of the monovalent counterions are the
same. Thus, the properties of coions are irrelevant at large colloidal
charges in the non-linear Poisson-Boltzmann picture of point-ions.

The capacitive compactness concept has been used very recently
to characterize the thickness of a charge asymmetric −2:+1 model
molten salt in the presence of an infinite and impenetrable posi-
tively charged electrode [27]. In that study, simulation and integral
equations calculations including ion correlations and ionic excluded
volume effects evidenced that the capacitive compactness as a func-
tion of the colloidal charge i) can decrease asymmetrically at low
ionic concentrations depending on the sign of the colloid, ii) can
reach a limit value, becoming “arrested”, in the presence of diva-
lent counterions at high ionic concentrations, and iii) can “expand”
in the presence of monovalent counterions at high ionic concentra-
tions. A very interesting feature of the present study is the obser-
vation that a very simple mean field approach, such as the non-linear
Poisson-Boltzmann theory, is able to predict a non-monotonic behaviour
(expansion and shrinkage) of the electrical double layer even in the
absence of ion correlations and ionic excluded volume effects. Specifi-
cally, we have shown here that the capacitive compactness decreases
monotonically, in the presence of −1:+1 monovalent electrolytes,
as a function of the colloidal charge for a wide range of surface
charge densities. Notwithstanding, in the presence of −1:z+ elec-
trolytes, with monovalent counterions and multivalent coions, the
capacitive compactness displays a non-monotonic behaviour as a
function of the colloidal charge. At low colloidal charges, the capac-
itive compactness expands or swells reaching a maximum value at
some critical surface charge density. When the surface charge den-
sity further increases, the capacitive compactness shrinks or deswell
displaying the same monotonic trend displayed by the −1:+1 elec-
trolyte. Relevantly, this phenomenology has been confirmed here by
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Fig. 14. Monte Carlo simulations of the capacitive compactness tc associated to a
binary charge-asymmetric −1:+z point-ions electrolyte in the presence of an infi-
nite planar charged wall. In all instances, the ionic closest approach distance to the
colloidal surface is b = 2.125 Å. swall

0 is the bare charge density on the electrode’s
surface. The concentration of anions (counterions) is q− = 1 M and the concentration
of cations (coions) is q−/z+ in all cases. Solid symbols correspond to Monte Carlo sim-
ulations, and dashed lines are associated to theoretical predictions of the non-linear
Poisson-Boltzmann equation.

Monte Carlo simulations of charge-asymmetric electrolytes in the
primitive model.

On the other hand, in this study the behaviour of the capacitive
compactness has been also connected to the microscopic structure
of the electrical double layer via the local electric field, the mean
electrostatic potential, and the net ionic charge per unit volume.
Moreover, we have shown that an expansion or swelling of these
three quantities, as a function of colloidal charge, can be associated
to an increase in the magnitude of the capacitive compactness. On
the contrary, when the local electric field, the mean electrostatic
potential, and the net ionic charge per unit volume shrink or deswell,
the magnitude of the capacitive compactness decreases. The role of
the geometry in the behaviour of the capacitive compactness has
been also investigated as a function of the colloidal charge. In this
regard, the capacitive compactness decreases faster in planar geom-
etry regarding the spherical geometry as a function of the effective
bare surface charge density in the presence of monovalent −1:+1
charge-symmetric sizeless ions. Contrastingly, two regimes can be
observed in the presence of multivalent coions. In the first regime, at
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low surface charge densities, the capacitive compactness as a func-
tion of the reduced bare surface charge density increases faster in
planar geometry compared to the spherical geometry. In the second
regime, at large surface charge densities, tc decreases more rapidly
for a plane than for a colloidal sphere. The expansion and a shrinkage
of the electrical double layer reported here, in the presence of mul-
tivalent coions, is very interesting considering that this effect arises
even in the presence of point-ions in a very simple mean-field approach.
A more realistic model could include other physical features typi-
cal of charged fluids, such as ion correlations, ionic excluded volume
effects, image charges, and van der Waals short-range attractions.
Work along those directions, in order to analyze the correspond-
ing capacitive compactness, is currently in progress and will be
published elsewhere.
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