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Quantifying the thickness of the electrical double
layer neutralizing a planar electrode: the
capacitive compactness†

Guillermo Iván Guerrero-Garcı́a, *a Enrique González-Tovar,b

Martı́n Chávez-Páez,b Jacek Kłosc and Stanisław Lamperskic

The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually

characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial

length arises naturally in the linear Poisson–Boltzmann theory of point charges, which is the cornerstone

of the widely used Derjaguin–Landau–Verwey–Overbeek formalism describing the colloidal stability of

electrified macroparticles. By definition, the Debye length is independent of important physical features

of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume

effects, or specific short-range interactions, just to mention a few. In order to include consistently these

features to describe more accurately the thickness of the electrical double layer of an inhomogeneous

charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a

generalization of the compactness of the spherical electrical double layer around a small macroion

(González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive

compactness to characterize strongly coupled charged fluids in external electric fields, we use integral

equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt

near a planar electrode. In particular, we study the electrode’s charge neutralization, and the maximum

inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic

concentration, and the electrode’s charge. The behaviour of the associated capacitive compactness is

interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which

evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive

compactness and its first two derivatives are expressed in terms of experimentally measurable

macroscopic properties such as the differential and integral capacity, the electrode’s surface charge

density, and the mean electrostatic potential at the electrode’s surface.

1 Introduction

The surface of an electrode or a colloidal particle can become
charged when it is immersed in a liquid solvent. The ionic
cloud neutralizing this electrified interface is the so-called
electrical double layer. The spatial distribution of the electrical
double layer determines the electrostatic and electrokinetic
properties of charged particles or surfaces dissolved in

coulombic fluids. These properties are crucial in diverse tech-
nological applications involving, e.g., the colloidal stability of
charged solutions,1–12 the storage capacity of electrical energy
in batteries or supercapacitors,13,14 or the recovery and transfer
of inorganic macroions and biomolecules in the presence of oil/
water interfaces.15

According to the linearized Poisson–Boltzmann theory of
point ions, the spatial extension of the electrical double layer
neutralizing an infinite planar electrode can be characterized
by a single parameter, namely, the Debye length of the surround-
ing charged fluid in the bulk.16,17 In spite of the wide use of the
Debye length as a practical measure to characterize the thickness
of the electrical double layer (due probably to its simplicity), this
iconic length does not take into account important characteristics
of ionic fluids such as electrostatic ion correlations, ionic excluded
volume, image charges, short-range van der Waals specific inter-
actions, and colloidal charge.18–48 Thus, in order to incorporate
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several of these features, some authors have proposed mean field
approaches including the influence of the colloidal charge and
the excluded volume effects of ions.49 In this kind of study, the
extension of the electrical double layer associated with a binary
electrolyte in the presence of a planar electrode is characterized by
an ‘‘effective thickness’’ x1/2. The thickness x1/2 is defined therein
as the distance from the electrode’s surface at which the concen-
tration of excess counterions drops to half of its value regarding
its concentration at the electrode’s surface. However, even if the
excluded volume of ions and solvent molecules is taken into
account via a three-dimensional cubic lattice using statistical
mechanics methods, electrostatic ion correlations are missing in
this approach. Another possibility to characterize the spatial exten-
sion of the electrical double layer could be via the effective charge of
a colloid. If the colloidal charge and the diffuse charge of ions are
integrated up to a distance at which this quantity is equal to the
effective charge of the colloid, this distance could be used, in
principle, as a measure of the thickness of the electrical double
layer. However, it is worth mentioning two important limitations if
this approach is used. In the literature, there is not a unique
manner to define or calculate the effective charge of a colloid. For
instance, the effective charge of a spherical macroion immersed in
an electrolyte could be calculated as the net charge (of the macroion
plus the ionic species) up to a radial distance at which either (i) the
electrostatic energy of counterions is equal to the thermal energy of
the electrolytic bath or (ii) the counterions’ concentration is equal to
the average ionic concentration in the bulk.50,51 In addition, there
are other criteria to calculate the effective colloidal charge of
macroions in salt-free and added salt systems, such as the Alexander
prescription52 or the recently proposed Extrapolated Point Charge
method,53 just to mention a few. Thus, such a definition of the
spatial extension of the electrical double layer would be dependent
on the criterion used to calculate the effective colloidal charge.
Another more critical problem would arise if the profiles of counter-
ions are nonmonotonic: in such a scenario, it would be possible to
observe several distances at which the electrostatic energy of
counterions is equal to the thermal energy or at which the counter-
ions’ concentration might be equal to the average concentration of
counterions in bulk at high ionic volume fractions.

In the present study, we would like to follow a different path to
characterize the spatial extension of the electrical double layer.
Specifically, we generalize here a previous proposal to quantify the
spatial extension, or thickness, of the ionic cloud surrounding a
small spherical macroion54 to study now the behaviour of the
electrical double layer around an infinite planar electrode. Speci-
fically, we propose here that the role of the Debye length, as a
measure to characterize the thickness of the electrical double layer,
be replaced by the corresponding capacitive compactness of the
associated ionic fluid. The capacitive compactness has the advan-
tage of being able to take into account consistently important
characteristics of charged fluids such as electrostatic ion correla-
tions, ionic excluded volume, image charges, and short-range van
der Waals specific interactions, as well as the surface charge
density of the solute. Even though our approach is general, we
would like to study here the capacitive compactness of strongly
coupled charged fluids. In this sense, molten salts are constituted

by ionic particles with high electrostatic correlations in the liquid
phase. Molten salts are relevant for several technological applica-
tions including electricity storage devices,55 coolants in nuclear
reactors,56 or pyrochemical treatment of nuclear waste.57

Thus, we have chosen to analyze the electric properties of a
divalent model molten salt near a planar charged electrode via
Monte Carlo simulations and integral equations theory, in an
approach that goes well beyond the classical Poisson–Boltzmann
picture. Our main aim is to demonstrate the advantages of using
the capacitive compactness to characterize the spatial extension
of the ionic cloud neutralizing a charged electrode, instead of the
widely used Debye length of the supporting bulk ionic fluid. In
particular, in this work we relate the behaviour of the integrated
surface charge density (or net charge per unit area) of the
electrode-molten salt system to the behaviour of the capacitive
compactness, under several conditions of surface charge density
and ionic concentration. We also establish here explicit connec-
tions between the capacitive compactness and its first two
derivatives, and physically measurable quantities such as the
differential and integral capacities, the colloidal charge density,
and the mean electrostatic potential at the electrode’s surface.
On the other hand, counter-intuitive phenomena such as
the inversion of the integrated charge in regions close to the
colloidal surface can be observed under strong electrostatic
coupling conditions. In this regard, the appearance and the
behaviour of the maximum inversion of the integrated surface
charge density are investigated here in different regimes.

The structure of the present study is as follows. First, the
derivation of the capacity compactness, and the relationship of
its first two derivatives with the integral and differential capacities
in planar geometry are presented. With the purpose of illustrating
the adequacy of the capacity compactness to characterize the
thickness of a strongly charged fluid, a model system constituted
by a divalent molten salt near an electrified planar electrode is
introduced. A brief description of the Monte Carlo simulations and
the integral equations theory used in this work is also provided.
Then, the accuracy of our integral equations scheme is tested
against simulation data collating (i) microscopic properties such as
the ionic profiles and mean electrostatic potential close to the
electrode’s surface, and (ii) macroscopic properties of the electrical
double layer such as the differential capacity and the capacitive
compactness. Afterwards, the behaviour of the capacitive compact-
ness is analyzed as a function of the microscopic ionic structure
via the integrated surface charge density, and the net ionic volume
charge density. The appearance and behaviour of the maximum
inversion of the integrated surface charge density are analyzed as a
function of the electrode’s charge and the ionic concentration of
the molten salt, to finish with some concluding remarks.

2 Theory, model, and numerical methods
2.1 The capacitive compactness of a charged fluid in planar
geometry

In 2004, González-Tovar et al. proposed the concept of com-
pactness to characterize the extension of the ionic cloud
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surrounding a spherical macroion of radius R and charge Q0 as
the centroid of the diffuse charge of an equally sized binary
electrolyte using electrostatic arguments.54 In brief, the com-
pactness idea was derived in ref. 54 starting from the exact
equation for the mean electrostatic potential at the macroion’s
surface, csphere

0 , which can be written as:

csphere
0 ¼ Q0

4pe0eR
þ 1

4pe0e

ð1
Rþða=2Þ

relðtÞ
~t
�� �� 4pt2dt; (1)

where a is the diameter of all ionic species, relðrÞ ¼
P

j¼þ;�
zjerjðrÞ

is the net volume charge density of the electrolyte at a distance r
measured from the macroion’s center, rj (r) is the local number
of ions per unit volume of valence zj, e is the dielectric constant
of the solvent, e0 is the vacuum permittivity, and e is the proton
charge. Defining

1

tspherec

¼

Ð1
Rþða=2Þ

relðtÞ
~t
�� �� 4pt2dt

�Q0
; (2)

eqn (1) can be re-written as

csphere
0 ¼ Q0

4pe0e
1

R
� 1

tspherec

� �
: (3)

From eqn (3), the quotient Q0/csphere
0 can be physically inter-

preted as the capacitance of a spherical capacitor with one
electrode, of charge Q0, located at R and the other one, of
charge �Q0, placed at tsphere

c .
Naturally, the compactness associated with an infinite

charged electrode can be obtained from tsphere
c in the limit case

of a spherical macroion with infinite radius. However, we
would like to propose here an alternative and more simple
derivation of the compactness in planar geometry. This will be
done by using the concept of a parallel plate capacitor that is
equivalent to a single charged electrode and its associated
electrical double layer.

Let us start by considering an infinite electrode immersed in
a binary charged fluid with valences z+ and z�, bulk concentra-
tions rbulk

+ and rbulk
� , temperature T, and dielectric constant e.

According to the bulk electroneutrality condition, the charged
fluid satisfies the condition z+r

bulk
+ + z�r

bulk
� = 0 in bulk.

Formally, the inhomogeneous ionic profiles around the
charged electrode can be written as

ri(x) = rbulk
i gi(x) = rbulk

i exp�Wi(x)/kBT, (4)

where gi(x) = exp�Wi(x)/kBT, kB is the Boltzmann constant, and
Wi(x) is the potential of mean force of a charged particle of
species i (with i = +, �) located at a distance x from the
electrode’s surface.58 Note that the potential of mean force,
Wi(x), is the required work to bring a charged particle of species
i from infinity up to a distance x (measured from the electrode’s
surface) in the presence of other charged particles and the
electrode (in all possible configurations consistent with a
temperature T). Even if this statistical mechanics relationship
is exact, in practice, several approximations are usually
assumed in the explicit calculation of gi(x) or Wi(x), as we will

illustrate below. If the electrode has a constant surface charge
density, s0, then a mean electrostatic potential at the electro-
de’s surface, c0, can be observed as a boundary condition. Very
far away from the electrode’s surface, the mean electrostatic
potential and the electric field vanish due to the electroneu-
trality condition and the Gauss law. Let us suppose now that
the ionic profiles (or the associated ionic potentials of mean
force) are known for both ionic species. Therefore, several
properties of the electrical double layer such as the mean
electrostatic potential, c(x), the integrated surface charge
density, s(x), and the electric field, E(x), can be calculated from
the ionic singlets, gi(x), as we show explicitly below.

In order to pose our alternative derivation for the capacitive
compactness tc in planar geometry, let us consider for a
moment a pair of infinite parallel electrodes separated by a
distance tc and with surface charge densities s0 and �s0, which
are immersed in a continuous solvent with dielectric constant e
(in the absence of charged particles) as it is shown in Fig. 1(a).
The difference in the mean electrostatic potential between both
electrodes can be written as:

DC ¼ s0
e0e

tc: (5)

On the other hand, let us consider now a single charged
electrode with surface charge density s0 in the presence of a
binary charged fluid (see Fig. 1(b)). Due to the electroneutrality
condition for the whole system, the net charge per unit area of
the electrical double layer is �s0, which has exactly the same
magnitude but opposite sign regarding the electrode’s surface
charge density. Hence, an effective planar capacitor can be
defined if the net charge per unit area of the electrical double
layer is placed at a certain distance from the electrode’s surface.
Moreover, if the difference in the mean electrostatic potential

Fig. 1 (a) Equivalent planar capacitor. (b) Schematic representation of the
model system.
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between the plates of this effective capacitor in eqn (5) is
equated to the mean electrostatic potential at the surface of
an electrode immersed in a charged fluid, that is, DC = c0, then
tc can be defined as:

tc ¼ e0e
c0

s0
: (6)

Eqn (6) shows clearly why we propose to call tc the capacitive
compactness of the planar electrical double layer: tc is a natural
measure of the spatial extension of the electrical double layer
since it represents the distance at which the net charge of the
ionic cloud (neutralizing the electrode) should be placed in
order to have an effective planar capacitor with a difference in
the electrostatic potential c0 between the plates. Moreover,
eqn (6) is an exact relationship among the capacitive compact-
ness, the colloidal surface charge density, and the mean
electrostatic potential at the electrode’s surface. One significant
difference between the Debye length of a charged fluid in the
bulk, lD, and the capacitive compactness, tc, to characterize the
extension of the electrical double layer is that tc can include
effects due to electrostatic ion correlations, ionic excluded
volume, image charges, and short-range specific attractions
(such as van der Waals forces) via its relationship with the
mean electrostatic potential at the electrode’s surface c0.
Besides, for a given ionic strength the Debye length is a
constant, and thus the thickness of the electrical double layer
is completely independent of the surface charge density on the
electrode. In contrast, the thickness of the electrical double
layer quantified via the capacitive compactness, tc, explicity
depends on s0, and also depends implicitly on s0 via c0(s0)
(see, e.g., Fig. 6).

Notice that eqn (6) is a general result for a charged fluid in
the presence of an infinite planar electrode. This can be seen
directly starting from the definition of the mean electrostatic
potential at the electrode’s surface

c0 ¼ �
e

e0e

ð1
0

t
X
j

rbulkj zjhjðtÞdt; (7)

where hi(x) = gi(x) � 1. Considering the bulk electroneutrality of
the charged fluid and the global electroneutrality of the whole
system, eqn (7) can be written as

c0 ¼
s0
e0e

Ð1
0 t
P
j

rbulkj zjhjðtÞdtÐ1
0

P
j

rbulkj zjhjðtÞdt

0
B@

1
CA; (8)

and identifying the capacity compactness as

tc ¼

Ð1
0 t
P
j

rjzjhjðtÞdtÐ1
0

P
j

rjzjhjðtÞdt
; (9)

then eqn (6) is recovered. One advantage of eqn (9) is that it
displays explicitly the connection between the capacity com-
pactness, which is a macroscopic property of the electrical
double layer, with the microscopic structure of the charged
fluid from first principles.

From the definition of the integral capacitance of a charged
electrode

Cint ¼
s0
c0

; (10)

it is straightforward to show that the capacitive compactness is
inversely proportional to the integral capacitance

tc ¼
e0e
Cint

: (11)

On the other side, let us ponder now the special case in
which there is a common closest approach distance between all
charged particles and the planar electrode’s surface, as occurs
in the restricted primitive model where all ionic species are
equally sized. In this instance, the capacitive compactness and
the integral capacity can be written as:

tc ¼
e0e
s0

cH þ
a

2
; (12)

and

Cint ¼
cH

s0
þ a

2e0e

� ��1
; (13)

where a/2 is the radius of the ionic species. The closest
approach distance between the charged particles and the
electrode’s surface (located at x = 0) defines the so-called
Helmholtz plane (see Fig. 1(b)), and cH = c(x = a/2) is the
mean electrostatic potential at the Helmholtz plane.

As an important illustration of the use of eqn (9), let us
consider the case of the linearized Poisson–Boltzmann theory.
In this mean field approach, the capacitive compactness
reduces to the Debye length of the supporting charged fluid
in bulk. This result can be easily obtained as follows. First, let
us approximate the ionic potential of mean force by the
corresponding electrostatic energy, Wi(x) E ziec(x), in eqn (4).
If these ionic profiles are substituted in the Poisson equation,
c00(x) = �rel(x)/(e0e), one obtains the non-linear Poisson–Boltz-
mann equation:

d2cðxÞ
dx2

¼ � 1

e0e

X
i

rbulki zie exp �ezicðxÞ
kBT

� �
: (14)

Linearizing the exponential term, eqn (14) reduces to the
linearized Poisson–Boltzmann equation:

d2cðxÞ
dx2

¼ kD2cðxÞ; (15)

where

kD ¼

P
i

rbulki zi
2e2

e0ekBT

0
@

1
A

1
2

; (16)

and lD = 1/kD is the Debye length. From the solution of this
equation and the electroneutrality condition, it is straight-
forward to show that the surface charge density is proportional
to the mean electrostatic potential at the surface:

s0 = e0ekDc0. (17)
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Inserting eqn (17) in eqn (6) shows that tc = lD, that is, the
capacity compactness effectively reduces to the Debye length of
the supporting charged fluid in the bulk in this mean field
approach. From eqn (6), (10) and (17) it is possible to observe
that, in the linearized Poisson–Boltzmann equation, the inte-
gral capacitance is proportional to kD and the capacitive
compactness is inversely proportional to the integral capaci-
tance, satisfying eqn (11).

On the other hand, from the fundamental definition of the
capacitive compactness (see eqn (6)), it is possible to write, in
general, the differential capacity as

Cdiff
�1 ¼ dc0

ds0

� �
¼ c0

0 ¼ s0
e0e

dtc
ds0
þ tc
e0e
; (18)

which implies that Cdiff
�1 explicitly depends on the capacitive

compactness and its first derivative. Using the definition of the
integral capacity (see eqn (10)), eqn (18) can be also written as

Cdiff
�1 = CD

�1 + Cint
�1, (19)

where

CD
�1 ¼ s0

e0e
dtc
ds0
¼ s0

e0e
tc
0
: (20)

In general, tc depends on the colloidal surface charge

density s0. However, if tc is independent of s0 then
dtc
ds0
¼ 0

and Cdiff = Cint, which occurs precisely in the linearized Pois-
son–Boltzmann theory. Such an approximation is valid only in
the limit of very dilute electrolytes with low electrostatic cou-
pling and in the presence of very weakly charged colloids or
electrodes.

On the other side, if the differential and integral capacities
are known from experiments, simulations, or theory, the first
derivative of the capacitive compactness can be calculated as

dtc
ds0
¼ tc

0 ¼ e0e
s0

CD
�1 ¼ e0e

s0
Cdiff

�1 � Cint
�1� �

: (21)

Note that eqn (21) is trivially fulfilled in the linearized
Poisson–Boltzmann theory given that Cdiff = Cint in such a
theoretical approach.

In addition, the second derivative of the capacitive compact-
ness can be written as

d2tc
ds02

¼ tc
0 0 ¼ e0e

s0
c0

0 0 � 2
tc
0

s0
; (22)

or equivalently:

d2tc
ds02

¼ tc
0 0 ¼ e0e

s0

dCdiff
�1

ds0
� 2

s0
Cdiff

�1 � Cint
�1� �� �

: (23)

2.2 Model system

For simplicity, a molten salt is modeled here using the so-called
restricted primitive model. In this representation, the ionic
particles are mimicked by equally-sized hard spheres of dia-
meter a with point charges qi = zie embedded at their centers,

such that zi is the valence of the ionic species i and e is the
proton charge. An infinite and impenetrable charged wall is in
contact with a molten salt, which is additionally characterized
by a dielectric constant e at a temperature T (a schematic
representation is shown in Fig. 1(b)).

The pair interaction potential between any pair of ionic
particles, used in simulations and theory, is given by:

UijðrÞ ¼
1; ro a;

zizje
2

4pe0er
; r � a;

8><
>: (24)

where the subscripts i,j = +, �; r denotes the distance between
the centers of two charged hard particles of type i and j, and e is
the dielectric constant in all space, including the interior of the
solid electrode. As a result, polarization effects are not taken
into account in the present study.

The interaction potential between a hard ionic particle of
type i and the infinite and impenetrable charged electrode is
given by:

UiðxÞ ¼
1; xo

a

2
;

�s0zie
e0e
jxj; x � a

2
;

8>><
>>: (25)

where s0 is the surface charge density on the electrode’s
surface. The electrode’s surface is placed at x = 0, and the
closest approach distance between the ionic particles of dia-
meter a and the hard electrode is located at xH = (a/2), which
defines the so-called Helmholtz plane (see, e.g., Fig. 1(b)).

2.3 Monte Carlo simulations

Monte Carlo simulations of a molten salt in the presence of a
charged electrode have been performed in a rectangular simu-
lation cell. Periodic boundary conditions are used in two
directions (y- and z-axis), and a finite length along the x-axis
is considered. Two infinite and impenetrable charged walls
with surface charge density s0 are placed in both sides of the
simulation cell. The width and length of the simulation cell are
W = 50.63 and L = 58.00 Å, respectively. During all simulations,
the surface charge density on the electrodes is neutralized by
the presence of an excess of counterions. For efficiency, Monte
Carlo simulations in the grand canonical ensemble have been
performed at low ionic concentrations, whereas NVT canonical
simulations have been done at large ionic volume fractions.
The ionic profiles are quantified via singlet distribution functions
gi(x) for each ionic species i = +,�. The method of interpolation of
polynomials59 is applied to calculate the differential capacitance
Cdiff in the simulations. A fifth-order polynomial has been used to
fit a series of mean electrostatic potentials at the electrode’s
surface, and the associated surface charge density. Electrostatic
interactions are calculated via the charge-sheets method proposed
by Valleau and Torrie,60 in which an infinite charged plane with a
square hole is considered in the simulation cell. More details
about the Monte Carlo simulations can be found elsewhere.61–64
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2.4 Integral equations theory

The ionic profiles around an infinite charged hard wall, including
ion correlations and excluded volume effects, can be calculated via
the Ornstein–Zernike equation suplemented with the hypernetted-
chain/mean spherical approximation (HNC/MSA) closures. The
HNC/MSA description of the planar electrical double layer initiates
with the Ornstein–Zernike equations describing the ionic cloud
around a single spherical macroion, which can be written as

hMjðrÞ ¼ cMjðrÞ þ
X

k¼�;þ
rk

ð
hMkðtÞckj ~r�~t

�� ��� �
dV ; (26)

for j = �, +; where hMj(r) = gMj(r) � 1 are the total ionic correlation
functions between a single spherical macroion M and the ionic
species j, and gMj(r) are the ionic pair distribution functions. The
direct correlation functions between ions and the spherical colloid
are specified using the hypernetted-chain (HNC) closure cMj(r) =
�bUMj(r) + hMj(r) � ln[hMj(r) + 1]. The ion–ion direct correlation

functions ckj(|
-
r � -

t|) are approximated by the analytical mean
spherical approximation (MSA) expressions for a bulk electrolyte
at a concentration rk.

65,66 The planar limit of the HNC/MSA integral
equations was obtained by Carnie et al.67 in a study of the electrical
double layer of equally-sized ions next to an infinite and impene-
trable charged wall. The detailed derivation of these equations for
the planar instance is given in the ESI.† The final equations are the
following:

giðxÞ ¼ exp

(
�ezibc0 þ 2prAðxÞ

þ 2p
X
j

rj

ð1
a=2

gjðtÞ � 1
� �

Kðx; tÞdt

þ2pbe
2zi

e

X
j

zjrj

ð1
a=2

gjðtÞ � 1
� �

Lðx; tÞdt
)

(27)

for x � a

2
, c0 = c(x = 0), and i,j = �, +, where

AðxÞ ¼ � c1

2
þ c2

3
� c3

5

	 
 3a

2
� x

� �
a2 � c1

6
x� a

2

	 
3
�a3

� �

� c2

12a
x� a

2

	 
4
� a4

� �
þ c3

30a3
x� a

2

	 
6
�a6

� �
(28)

if
a

2
� xo

3a

2
, and A(x) = 0 if

3a

2
� xo1;

Kðx; tÞ ¼ c1

2
a2 � jx� tj2
� �

þ c2

3a
a3 � jx� tj3
� �

� c3

5a3
a5 � jx� tj5
� � (29)

if x � a r t r x + a, and K(x,t) = 0 if t o x � a or x + a o t; and

Lðx; tÞ ¼ a� x� t� G
ð1þ GaÞ a

2 � jx� tj2
� �

þ 1

3

G
1þ Ga

� �2

a3 � jx� tj3
� � (30)

if x � a r t r x + a; L(x,t) = �2t if t o x � a; and L(x,t) = � 2x
if x + a o t.

In terms of the total correlation functions, eqn (27) can be
written as

1þ hiðxÞ � exp

(
�ezibc0

þ 2prAðxÞ þ 2p
X
j

rj

ð1
a=2

hjðtÞKðx; tÞdt

þ2pbe
2zi

e

X
j

zjrj

ð1
a=2

hjðtÞLðx; tÞdt
)
¼ 0:

(31)

These equations are a complete set of integral equations that
are solved numerically via an efficient finite element method.68

Once the ionic singlet profiles gi(x) have been determined,
from theory or simulation, it is possible to calculate the mean
electrostatic potential and the integrated surface charge density
as a function of the distance to the electrode’s surface,
respectively, as:

cðxÞ ¼ e

e0e

ð1
x

ðx� tÞ
X
j

rjzjhjðtÞ
 !

dt (32)

and

sðxÞ ¼ s0 þ
ðx
0

X
i

riðtÞezidt: (33)

Charge reversal occurs when s(x)/s0 o 0, that is, when the
integrated surface charge density displays an opposite sign
regarding the sign of the native surface charge density on the
electrode, s0. Physically, this behaviour can be promoted by a
strong adsorption of counterions to a colloidal surface produ-
cing, in turn, a local overcompensation of the native charge on
the colloid.69

The bare surface charge density of the electrode can also be
calculated in terms of the total ionic adsorption of each ionic
species, Gi, as

s0 ¼ �e
X2
j¼1

zjGj ; (34)

where19

Gi ¼
ð1
0

rigiðtÞ � rbulki

� �
dt: (35)

On the other hand, if the ionic adsorption is now defined
locally as a function of the distance to the electrode’s
surface, namely

GiðxÞ ¼
ð1
x

rigiðtÞ � rbulki

� �
dt; (36)

and due to the global electroneutrality, the local integrated
surface charge density can then be put in the form

sðxÞ ¼ �e
X2
j¼1

zjGjðxÞ: (37)
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Based on the above, since the electric field is proportional to
s(x), the capacity compactness can also be recast as

tc ¼
Ð1
0 sðtÞdt
s0

¼ � 1

s0

ð1
0

X2
j¼1

ezjGjðtÞ
 !

dt: (38)

From the previous equation we deduce that the determination
of the capacity compactness is indeed possible if the integrated
surface charge density or the generalized local ionic adsorp-
tions, dependent on the distance to the electrode’s surface, are
available.

3 Results and discussion
3.1 Comparisons between integral equations and Monte
Carlo data

The integral equations approach based on the HNC/MSA clo-
sure has been successfully employed in a large number of
investigations of monovalent, and divalent aqueous electrolytes
in the bulk, and near charged interfaces with different
geometries.69–72 However, to the best of our knowledge, this
theoretical scheme has not been used to study strongly coupled
charged fluids such as molten salts or ionic liquids. Thus, in
order to validate the accuracy and limitations of the HNC/MSA
integral equations in such conditions, we present first a series
of comparisons with Monte Carlo simulations of a primitive
model charge-asymmetric 2 : 1 molten salt near a planar
charged electrode.61 In this system, anions are divalent, z� = �2,
cations are monovalent, z+ = +1, and both ionic species have a
diameter a = 4 Å. Notice that the molar concentration of cations is
twice the molar concentration of anions due to the electroneu-
trality condition of the bulk solution. The dielectric constant and
temperature of the molten salt are 10, and 2800 K, respectively.61

The valences, the ionic size, and the dielectric permittivity and
temperature of the molten salt are kept constant hereinafter.

The adsorption of counterions theoretically predicted by the
HNC/MSA ionic singlets is compared with the corresponding
Monte Carlo results in Fig. 2. Three cases are displayed in this
figure: (i) divalent counterions for s0 4 0, (ii) monovalent
counterions for s0 o 0, and (iii) the electrode is uncharged.
The magnitude of the electrode’s surface charge density is the
same when the electrode is charged (|s0| 4 0), and the ionic
strength is also constant in all cases. A sensible agreement
between theory and simulation is observed in a wide region
near the electrode’s surface, where the height and location of
the extrema are similar in both approaches. The largest differ-
ence is observed very near to the closest approach distance
between the ionic species and the electrode, or Helmholtz
plane, where the ionic contact values predicted by the HNC/
MSA integral equations are larger than the corresponding
Monte Carlo values. This behaviour is a well known limitation
of the HNC/HNC and HNC/MSA closures that usually appears
in the presence of strong attractive interactions. On the other
hand, an analogous comparison to that displayed in Fig. 2 is
now shown in Fig. 3 for divalent and monovalent coions. Here,

we observe again a sensible agreement between theory and
simulations for all regions except close to the Helmholtz plane.

Electrical properties of a charged fluid such as the mean
electrostatic potential or the integrated surface charge density
(eqn (32) and (33)) are functionals (or spatial integrals) of the
ionic density profiles. In Fig. 4, a comparison between the
theoretical and simulation values of the mean electrostatic
potential as a function of the distance to the electrode’s surface
is displayed for several surface charge densities. An excellent
agreement is observed here at low surface charge densities,
even though the theoretical description deteriorates at large
electric fields. In spite of this limitation, we observe a semi-
quantitative agreement between integral equations and Monte
Carlo results, e.g., the theoretical positions of the maxima and
minima are very close to those obtained via simulations, and
we also observe both in theory and simulation that the magni-
tude of the mean electrostatic potential at the electrode’s sur-
face is larger in the presence of monovalent counterions (s0 o 0)
compared to divalent counterions (s0 4 0) when the magnitude
of the electrode’s charge and the ionic concentration are large, at
the same ionic strength. A more stringest test is the comparison
of the differential capacity obtained via theory and simulation as
a function of the electrodode’s surface charge density and the
ionic concentration of the molten salt. Such comparisons are
displayed in Fig. 5, where a qualitative agreement between the
HNC/MSA integral equations and Monte Carlo simulations is
observed. The best agreement is seen at low ionic concentrations
and close to the point of zero charge (that is, when the electrode

Fig. 2 Singlet distribution functions of divalent, and monovalent counter-
ions near a charged electrode: g�(x) corresponds to an electrode’s surface
charge density s0 = 0.5 C m�2 (upward red triangles and solid line), and g+(x)
is associated to an electrode’s surface charge density s0 = �0.5 C m�2

(downward green triangles and dashed line). For comparison, the singlet
distribution g0(x) corresponding to an uncharged electrode (blue circles and
dot-dashed line) is presented. Solid symbols and lines correspond to Monte
Carlo simulations61 and integral equations theory results (this work), respec-
tively. The contact values are gMC

� (a/2) = 21.1, gMC
+ (a/2) = 12.1, and gMC

0 (a/2) =
3.9 for Monte Carlo simulations, and gIE

�(a/2) = 31.727, gIE
+(a/2) = 18.065, and

gIE
0 (a/2) = 8.587 for integral equations. In all cases the ionic concentration of

anions is 5.79 M.
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is weakly charged). When the electrolyte concentration increases,
integral equations theory is able to predict the bell-shape
displayed by the Monte Carlo simulations. In this case, the
agreement is only qualitative because the height of the max-
imum is overestimated and its location is shifted. At low ionic
concentrations and low surface charge densities, integral equa-
tions theory reproduces qualitatively the U-shape differential

capacity typically displayed by aqueous electrolytes very close
to the point of zero charge. On the other hand, when the surface
charge density increases, the simulation differential capacity
increases until a maximum value or peak is reached. At higher
surface charges, the differential capacity decreases and a double-
humped camel shape can be observed according to molecular
simulations and mechanical statistical theories.23,26,27 Notice
that the criterion of inversion of the differential capacity
concavity, as an indication of the local inversion of the electric
field or the charge reversal, is proposed only for charge densities
very close to the point of zero charge and not for the high
colloidal charges at which the double-humped camel shape is
observed. On the other hand, the HNC/MSA integral equations
approach fails to predict the double-hump camel shape dis-
played by Monte Carlo simulations at low ionic concentrations,
although this theory does show the single-hump maximum at
high concentrations. This limitation has its origin very likely in
the use of the Percus–Yevick direct correlation function for the
hard sphere contribution. It is very well known that the pressure
predicted by this approximation in a hard sphere system deviates
from the Carnahan–Starling equation as a function of the volume
fraction. We foresee that this limitation can be overcome by using
a better hard sphere direct correlation function, or by using more
sophisticated approaches such as the Modified Poisson–
Boltzmann theory18–20,22,26 or improved versions of density
functional theory.21,27

3.2 The capacitive compactness of a molten salt near an
electrified electrode

In this section we analyze the capacitive compactness of our
2 : 1 primitive model molten salt as a function of its molar
concentration and the electrode’s charge. The behaviour of
tc obtained via integral equations and Monte Carlo simulations
is displayed in Fig. 6. In this figure, a maximum value of the

Fig. 3 Singlet distribution functions of divalent, and monovalent coions
near a charged electrode: g�(x) corresponds to an electrode’s surface
charge density s0 = �0.5 C m�2 (upward red triangles and solid line), and
g+(x) is associated to an electrode’s surface charge density s0 = 0.5 C m�2

(downward green triangles and dashed line). For comparison, the singlet
distribution g0(x) corresponding to an uncharged electrode (blue circles
and dot-dashed line) is presented. Solid symbols and lines correspond to
Monte Carlo simulations61 and integral equations theory results (this work),
respectively. The contact values are gMC

� (a/2) = 0.01, gMC
+ (a/2) = 1.0, and

gMC
0 (a/2) = 3.9 for Monte Carlo simulations, and gIE

�(a/2) = 0.087, gIE
+ (a/2) =

2.246, and gIE
0 (a/2) = 8.587 for integral equations. In all cases the ionic

concentration of anions is 5.79 M.

Fig. 4 Mean electrostatic potential c(x) for several surface charge den-
sities of the electrode. Solid symbols and lines correspond to Monte Carlo
simulations61 and integral equations theory results (this work), respectively.
In all cases the ionic concentration of anions is 5.79 M.

Fig. 5 Differential capacitance, Cdiff, of the electrical double layer of the
molten salt as a function of the surface charge density, s0, for several
concentrations of anions. Solid symbols and lines correspond to Monte
Carlo simulations61 and integral equations theory results (this work),
respectively.
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capacitive compactness is observed at a slightly negative sur-
face charge density of the electrode (near the point of zero
charge) for the lowest concentration of the molten salt. When
the magnitude of the electrode’s surface charge density
increases, both theory and simulation display a monotonic
decrease of the capacitive compactness. This suggests that, at
low molar concentrations, the electrical double layer becomes
more compact or shrinks as a function of the electrode’s charge
regardless of the valence of the counterions. The largest drop
occurs when counterions are divalent (s0 4 0). If the concen-
tration of the molten salt increases, the theoretical predictions
deteriorate but a qualitative agreement between simulation and
theory can still be observed. The magnitude of the maximum
capacitive compactness displayed at the lowest concentration
of the molten salt decreases when the salt concentration
increases. Eventually such a maximum disappears, and the capa-
citive compactness increases as a function of the magnitude of the
electrode’s charge when counterions are monovalent (s0 o 0). In
the case of divalent counterions at high concentrations, it is
observed that the capacitive compactness decreases near the point
of zero charge, reaching a slow varying plateau as a function of the
positive surface charge density of the electrode. The above beha-
viour suggests that, at very high ionic concentrations, the ionic
cloud swells or expands in the presence of monovalent counter-
ions when the magnitude of the charge on the electrode
augments, whereas the extension of the ionic cloud in the
presence of divalent counterions contracts, reaching a limiting
value, when the charge on the electrode increases. This rich
behaviour of the capacitive compactness tc contrasts with the
constant extension of the electrical double layer predicted by
the linearized Poisson–Boltzmann approach (indicated by the
symbols plotted on the right vertical axis of Fig. 6).

In order to interpret the behaviour of the capacitive com-
pactness tc in terms of the microscopic ionic structure, the
theoretical integrated surface charge density s(x) is displayed in
Fig. 7 as a function of the distance to the electrode’s surface at a
low salt concentration (0.4 M). In the presence of monovalent
counterions (top panel), it is observed that the integrated
surface charge density becomes more compact when the mag-
nitude of the negative surface charge density of the electrode
increases, that is, s(x,s0

00)/s0
00 o s(x,s0

0)/s0
0 if |s0

00| 4 |s0
0| for

all x. A similar behaviour is observed in the presence of divalent
counterions (bottom panel). In addition, it is seen that
the integrated surface charge density is more compact when
counterions are divalent at the same ionic strength, that is,
sdivalent(x,s0)/s0 o smonovalent(x,s0)/s0 for all x and a given |s0|.
On the other hand, an inversion of the integrated surface
charge density is seen at large positive surface charge densities
of the electrode in the presence of divalent counterions, that is,
sdivalent(x,s0)/s0 o 0 for sufficiently large charge densities on
the electrode’s surface. Let us define the maximum inversion of

Fig. 6 Capacitive compactness, tc, of the electrical double layer as a
function of the surface charge density, s0, for several concentrations of
anions. Solid symbols and lines correspond to Monte Carlo simulations
(this work), and integral equations theory results (this work), respectively.
The Debye lengths associated to each bulk ionic concentration are
displayed as empty symbols on the right side next to the dashed vertical
line as a reference.

Fig. 7 Integrated surface charge density, s(x), as a function of the dis-
tance to the colloidal surface obtained via integral equations theory. The
charge density on the colloidal surface is denoted by s0. The concen-
tration of anions in all cases is 0.4 M.
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the integrated surface charge density as �s*/s0 � �s(xmin,s0)/
s0, where s(xmin,s0)/s0 o 0 and s(xmin,s0)/s0 o s(x,s0)/s0 for all
x at a given value of s0. Accordingly, in Fig. 7(b) it is observed
that the maximum inversion of the integrated surface charge
density increases as a function of the electrode’s charge. More-
over, notice that the inversion of the integrated surface charge
density shown in Fig. 7(b) (for divalent counterions at the two
highest electrode charges) is completely absent in Fig. 7(a)
(for monovalent counterions at the same ionic strength when
the electrode’s charge has the same magnitude). Thus, the
presence or absence of a local charge inversion near the
electrode cannot be inferred a priori from the associated
differential capacity or capacity compactness curves shown in
Fig. 5 and 6, respectively, at low ionic concentrations.

The behaviour of the theoretical integrated surface charge
density, s(x), as a function of the electrode’s charge at a high
concentration of the molten salt (5.0 M) is displayed in Fig. 8.
In the presence of monovalent counterions, a non-monotonic
behaviour is observed as a function of the distance to the
electrode’s surface for all negative surface charge densities as
shown in Fig. 8(a). Moreover, the distances at which extrema
occur increase when the magnitude of the electrode’s charge
augments. This behaviour is consistent with the expansion or
swelling of the electrical double layer suggested by the capaci-
tive compactness in Fig. 6. In addition, notice that the magni-
tude of the maximum inversion of the integrated surface charge
density decreases when the magnitude of the electrode’s charge
augments. On the other hand, let us consider the case in which
counterions are divalent as shown in Fig. 8(b). In this instance,
the integrated surface charge density is non-monotonic and the
magnitude of the maximum inversion of the integrated surface
charge density decreases when the magnitude of the electrode’s
charge augments, as occurred in the presence of monovalent
counterions at the same ionic strength. However, the position
of the maximum inversion of the integrated surface charge
density remains approximately constant as a function of the
magnitude of the electrode’s charge in the presence of divalent
counterions. This behaviour is consistent with the arrest, or
absence of a noticeable shrinking or swelling of the electrical
double layer, displayed by the capacitive compactness in Fig. 6
as a function of the magnitude of the electrode’s charge. In
addition, the presence of the local charge reversal in Fig. 8(a)
and (b) suggests that the concavity’s reversion of the differential
capacity at high ionic concentrations could be used, in principle,
to detect the occurrence of a local inversion of the integrated
surface charge density around the point of zero charge.

Another interpretation of the shrinking, swelling, or arrest
of the electrical double layer predicted by the capacitive com-
pactness can be elucidated from the behaviour of the net ionic
charge density near the electrode. Due to the electroneutrality
condition, it is easy to verify that the net ionic charge densityP
i

riðxÞezi is proportional to the difference of ionic singlets

g+(x) � g�(x). This last quantity is plotted in Fig. 9 under the
same conditions used in Fig. 8. Let us define x0 as the closest
distance to the electrode’s surface at which the difference of the

ionic singlets is zero, i.e., g+(x0) � g�(x0) = 0; and let us define x00

as the distance at which the ionic singlet difference has its
minimum value, that is, g+(x00) � g�(x00) o g+(x) � g�(x) for all x.
In Fig. 9(a), it is observed that both distances, x0 and x00,
increase as a function of the magnitude of the electrode’s
charge density. This microscopic behaviour is consistent with
the swelling of the electrical double layer displayed by the
capacitive compactness in Fig. 6, and with the expansion of
the integrated surface charge density observed in Fig. 8(a). The
arrest, or absence of a significant shrinking or swelling of the
electrical double layer when the magnitude of the electrode’s
charge augments, can be also observed in the presence of
divalent counterions as a function of the ionic singlet differ-
ence in Fig. 9(b). In this figure, it is evident that the location of
extrema and the crossings with zero of the ionic singlet
differences remain approximately constant when the electro-
de’s charge increases. As a result, the main effect of increasing
the surface charge density of the electrode in the presence of
divalent counterions at high salt concentrations is to augment
the net ionic volume charge density locally in specific fixed

Fig. 8 Integrated surface charge density, s(x), as a function of the
distance to the colloidal surface obtained via integral equations theory.
The charge density on the colloidal surface is denoted by s0. The
concentration of anions in all cases is 5.0 M.
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regions without causing a noticeable change in the magnitude
of tc. These observations are again consistent with the beha-
viour displayed by the capacitive compactness in Fig. 6, and
with the microscopic picture described by the integrated sur-
face charge density in Fig. 8(b).

On the other side, one limitation of the differential capacity
or the capacitive compactness is that they cannot provide
information about the appearance of sign inversion of the
integrated surface charge density or the electric field. Thus,
in order to analyze this property as a function of the salt
concentration and the electrode’s charge density, the maxi-
mum inversion of the integrated surface charge density is
plotted in Fig. 10 for several conditions. In this plot, it is
observed that at the lowest salt concentration (0.4 M) there is
no sign inversion of the integrated surface charge density in the
presence of monovalent counterions (s0 o 0). In contrast, a
monotonic increase of the magnitude of the maximum inver-
sion of the integrated surface charge density can be observed in
the presence of divalent counterions (s0 4 0) as a function of

the electrode’s charge at the same ionic concentration (0.4 M).
When the salt concentration increases (to 1 M), we observe the
appearance of an inversion of the integrated surface charge
density very near the point of zero charge. The maximum
inversion of the integrated surface charge density decreases
when the magnitude of the surface charge density, or the
electric field, increases in the presence of monovalent counterions
(s0 o 0). The opposite behaviour is observed in the presence of
divalent counterions (s0 4 0). When the ionic concentration
further increases (to 2 M and higher concentrations), the max-
imum inversion of the integrated surface charge density displays a
maximum value in the presence of divalent counterions (at some
positive surface charge density on the electrode). Note that the
magnitude of the maximum inversion of the integrated surface
charge density displayed in Fig. 10 is larger in the presence of
divalent counterions (s0 4 0) compared to monovalent counter-
ions (s0 o 0) for the same magnitude of the electrode’s charge at
a given ionic strength. Moreover, notice that the local inversion of
the integrated surface charge density around the point of zero
charge at high ionic concentrations displayed in Fig. 10 coincides
with the concavity reversion of the differential capacity around the
point of zero charge displayed in Fig. 5. This suggests that a
change of concavity in the differential capacity around the point
of zero charge as a function of the ionic concentration, from
a U-shape to a bell-shape, could be used to detect the appearance
of a local inversion of the integrated surface charge density of a
charged colloid or electrode.

To finish this section, we would like to discuss some
possible applications of the first two derivatives of the capacity
compactness. In this sense, if the integral capacity is known
experimentally as a function of the electrode’s charge then, in
principle, the first and second derivatives of the capacity
compactness can be calculated numerically. On the other hand,
if the differential and integral capacities are known experimentally,
they have to fulfill eqn (21) and (23). Thus, these equations can be

Fig. 9 Difference between the reduced density profiles of cations and
anions obtained via integral equations theory. The concentration of anions
in all cases is 5.0 M.

Fig. 10 Maximum integrated surface charge density obtained via the
integral equations theory as a function of the colloidal surface charge
density, s0, and the concentration of anions.
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used to determine the quality and/or uncertainty of both capacities
measured experimentally. Besides, if only the integral capacity is
known, eqn (21) can be used to calculate the differential capacity
of the system. By way of example, the typical behaviour of the first
two derivatives of the theoretical capacity compactness at an ionic
concentration of 0.4 M is displayed in Fig. 11 as a function of the
charge density on the electrode’s surface.

4 Concluding remarks

The Debye length of a charged fluid in the bulk is the classical
and more widely used parameter to characterize the spatial
extension of the ionic cloud surrounding an electrified elec-
trode or a charged colloidal particle. This prescription is based
on the linearized Poisson–Boltzmann equation, which is valid,
in principle, only in the presence of very low colloidal charges
and very weak electrostatic coupling. In spite of the wide use of
the Debye length as a practical measure to characterize the
thickness of the electrical double layer (due probably to its
simplicity), this iconic length does not take into account
important physical features of charged fluids such as electro-
static ion correlations, ionic excluded volume effects, polariza-
tion effects, or specific short-range interactions, as well as the
effect of the colloidal surface charge density. With that purpose
in mind, we have extended here the concept of capacitive
compactness, originally proposed for small spherical colloids,
to characterize the extension of the electrical double layer in
planar geometry taking into account, at the same time, the
above physical features typically present in charged colloidal

fluids. Specifically, it has been shown here that the behaviour
of the capacitive compactness is consistent with the micro-
scopic shrinking and swelling of the integrated surface charge
density, or the electric field, associated with a molten salt next
to an infinite planar electrode. At low salt concentrations of the
molten salt, a maximum in the capacitive compactness is
observed near the the point of zero charge. At these low ionic
concentrations, the main effect of increasing the magnitude of
the electrodes’s charge is to decrease the capacitive compactness
or thickness of the electrical double layer regardless of the
valence of counterions for a given ionic strength. In other words,
the electrical double layer becomes more compact or shrinks if
the magnitude of the electrodes’s charge increases at low ionic
concentrations. At high salt concentrations of the molten salt,
two contrasting behaviours are observed at a given ionic strength
depending on whether the counterions are monovalent or
divalent. If the counterions are monovalent, the electrical double
layer swells or expands when the magnitude of the electrodes’s
charge augments. On the contrary, if counterions are divalent
the distances at which the extrema of the integrated surface
charge density and the net local ionic concentration appear do
not change noticeably when the electrode’s charge increases.
Thus, the spatial extension, or thickness, of the electrical double
layer remains approximately fixed or ‘‘arrested’’ even if the
surface charge density on the electrode augments. In this last
scenario, the main effect of increasing the electrode’s charge is
to augment the magnitude of the integrated surface charge
density and the net local ionic concentration in fixed specific
regions.

One limitation of the capacitive compactness is that this
quantity is not able to provide precise information about the
adsorption of ionic charge or the appearance of a local inver-
sion of the integrated charge (or the electric field). However,
notice that this limitation is also shared by the differential
capacity that has a U-shape, that is, we have shown here that
the numerical values of the differential capacity in these
circumstances cannot be used to determine a priori the
presence of a local inversion of the integrated charge near the
electrode’s surface. Contrastingly, we have observed that an
inversion of the curvature or concavity of the differential
capacity as a function of the electrode’s charge, from a
U-shape to a bell-shape, seems to be indeed related to the
occurrence of an inversion of the integrated surface charge
density or the electric field around the point of zero charge.
This behaviour has been suggested in a previous study of an
electrified nitrobenzene/water interface, in which a monovalent
organic salt was present in the oil phase and a divalent
inorganic salt was present in the aqueous phase at high
electrolyte concentrations.62

Experimental measurements of the capacity compactness
and its derivatives are crucial to validate several of the predic-
tions performed in this study. In order to calculate these
quantities, it is necessary to determine the colloidal surface
charge density, the differential capacity, and the mean electro-
static potential at the electrode’s surface. The colloidal surface
charge density can be determined in experiments via chemical

Fig. 11 Capacitive compactness, tc, and its first two derivatives regarding
the colloidal surface charge density, s0, obtained via the integral equations
theory. The concentration of anions in all cases is 0.4 M.
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titration. The differential capacity can be measured experimen-
tally via impedance techniques. In contrast, the mean electro-
static potential at the electrode’s surface poses important
technical difficulties, which were thought impossible to
overcome.73,74 Fortunately, it has been shown very recently that
it is possible to measure experimentally the mean electrostatic
potential at the surface of charged colloids directly by using
X-ray photoelectron spectroscopy.75 The application of this
kind of measurement is very promising to study fine details
of the electrical double layer of multivalent aqueous electro-
lytes, molten salts, or ionic liquids near charged interfaces.
Therefore, the usage of the above experimental techniques
could be very appropriate to validate the physical reality and
usefulness of the capacity compactness and its derivatives in
colloidal systems. These novel concepts, introduced here, con-
stitute a simple and robust set of tools that allow us to
characterize more accurately strongly correlated charged fluids
in external electric fields.
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Abacus supercomputer for the computer resources, technical
expertise and support provided. G. I. G.-G. acknowledges the
FAI-UASLP grant C16-FAI-09-41.41, the SEP-CONACYT CB-2016
grant 286105, and the CONACYT-Fronteras de la Ciencia grants
440 and FC-2015-2-1155, as well as the financial support
received from the Mexican National Council of Science and
Technology (CONACYT) as a CONACYT Research Fellow at the
Institute of Physics of the Autonomous University of San Luis
Potosı́ (IF-UASLP) in Mexico. G. I. G.-G., E. G.-T., and M. C.-P.
also express their gratitude for the assistance from the compu-
ter technicians at the IF-UASLP. M. C.-P. thanks the CONACYT
grant 182132 and the Laboratorio Nacional de Ingenierı́a de la
Materia Fuera de Equilibrio-279887-2017. S. L. and J. K. grate-
fully acknowledge the financial support from the Faculty of
Chemistry, Adam Mickiewicz University in Poznań.
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Cruz, J. Chem. Phys., 2011, 135, 054701.

72 G. I. Guerrero-Garcı́a, E. González-Tovar, M. Quesada-Pérez
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