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The capacitive compactness has been introduced very recently [G. I. Guerrero-Garcı́a et al., Phys.
Chem. Chem. Phys. 20, 262–275 (2018)] as a robust and accurate measure to quantify the thickness, or
spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical
macroion. We propose here an experimental/theoretical scheme to determine the capacitive compact-
ness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and
the associated mean electrostatic potential at the macroparticle’s surface. This is achieved by numer-
ically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere
and matching the corresponding theoretical mobility, predicted by the O’Brien and White theory [J.
Chem. Soc., Faraday Trans. 2 74, 1607–1626 (1978)], with experimental measurements of the elec-
trophoretic mobility under the same conditions. This novel method is used to calculate the capacitive
compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as
a function of the salt concentration. Published by AIP Publishing. https://doi.org/10.1063/1.5024553

I. INTRODUCTION

The electrical double layer is the ionic cloud existing
around charged macroions or electrodes in electrolyte solu-
tions. The thickness, or spatial extension, of this ionic cloud
determines many of the thermodynamic and electrokinetic
properties of charged colloids dissolved in Coulombic flu-
ids.1–16 In a very recent study, some of the present authors
have proposed the concept of capacitive compactness to char-
acterize the thickness of the electrical double layer.17 The
main idea is to consider that the diffuse ionic charge sur-
rounding, for instance, a spherical charged colloid can be
replaced by an infinitely thin spherical shell, defining an
effective electrical double layer capacitor (see Fig. 1). The
separation distance between the electrodes of this effective
capacitor plus the radius of the spherical charged colloid
defines the capacitive compactness τc. In order to determine
τc, the electrostatic potential difference between the elec-
trodes of the effective electrical double layer capacitor is
equated to the mean electrostatic potential at the surface of
the charged colloid.17 This definition is general, and it has
been theoretically supported by electrostatics and statistical
mechanics arguments.17,18 With the aim of providing the spe-
cific expression of the capacitive compactness in spherical
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geometry, let us consider a z
�

: z+ electrolyte dissolving a
spherical macroion of radius RM , valence zM , and surface
charge density σ0 = (e0zM )/(4πR2

M ), where e0 is the protonic
charge. Ions can approach up to a closest approach instance b
measured from the colloidal surface, and this distance defines
the location of the so-called Helmholtz plane, as shown in
Fig. 1. The capacitive compactness in spherical geometry can
be explicitly written as17,18

τc = *
,

1
RM
−

ε0ε

R2
Mσ0

ψ0+
-

−1

, (1)

where ψ0 is the mean electrostatic potential at the colloidal
surface, ε is the dielectric constant everywhere, and ε0 is the
vacuum permittivity. Notice that the explicit dependence of
the capacitive compactness on the microscopic structure can
be obtained by replacing the definition of the mean electrostatic
potential at the colloidal surface in terms of the correspond-
ing ionic radial distribution functions in spherical coordinates,
gi(r), viz.,

ψ0 =
e0

ε0ε

∫ ∞
0

∑
i

zi ρ
bulk
i gi(t)

(
t −

t2

r

)
dt, (2)

where zi and ρbulk
i are the valence and bulk concentration of

species i of the supporting electrolyte, respectively. In the
classical linear Poisson-Boltzmann or Debye-Hückel theory
of point ions, the capacitive compactness measured from the
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FIG. 1. (a) Spherical electrical double layer and (b) the
associated capacitive compactness τc, which is defined
as the sum of the separation distance between the two
electrodes of the corresponding effective capacitor plus
the radius of the spherical charged colloid. The closest
approach distance between point ions and the colloidal
surface, specifying the Helmholtz plane, is drawn with a
black dashed line in panel (a).

Helmholtz plane reduces to the Debye length in spherical and
planar geometries.19 In such a scenario, the thickness of the
electrical double layer is independent of the colloidal charge.
One major limitation of the Debye-Hückel theory is that it is
valid only in the limit of very weakly charged surfaces neu-
tralized by point ions. As the non-linear Poisson-Boltzmann
theory is valid even at larger colloidal charges than the Debye-
Hückel description, this full Poisson-Boltzmann approach is
more appealing as a way to calculate the capacitive compact-
ness via Eq. (1). In this defining equation of τc, it is necessary
to know the colloidal charge and the mean electrostatic poten-
tial at the colloidal surface in order to obtain the capacitive
compactness. Aiming for a practical determination of τc, the
colloidal charge is available from chemical titration experi-
ments. However, until very recently, it had been thought that
it was impossible to measure directly the mean electrostatic
potential of charged electrodes by experiments.20,21 Fortu-
nately, this limitation has been lately overcome via sophisti-
cated X-ray photoelectron spectroscopy experiments22 which
are able to measure directly the mean electrostatic potential at
the colloidal surface. In any case, even if this technique is very
promising, nowadays only very few research groups are able
to use it (see, e.g., Refs. 23–29).

Therefore, and in view of such a difficulty, we would
like to propose here an alternative experimental/theoretical
approach to calculate the electrokinetic colloidal charge and
the corresponding mean electrostatic potential at the colloidal
surface, with the ultimate objective of determining the capaci-
tive compactness τc of the electrical double layer. This method
is based on standard electrophoresis experiments to measure
the mobility of charged particles and on the theoretical calcu-
lation of the electrophoretic mobility through the widely used
O’Brien and White approach.30

II. THEORETICAL AND EXPERIMENTAL METHODS

According to the well-known O’Brien and White pre-
scription, the theoretical electrophoretic mobility of a charged
spherical colloid, including hydrodynamic retardation and
relaxation effects due to the electrolyte, can be obtained from
a perturbation approach as follows. In the O’Brien and White
theory, under the influence of an external electrical field ~E0

and for low-Reynolds numbers, the stationary motion of an
incompressible and Newtonian electrolytic fluid around a

fixed spherical colloid is governed by the non-equilibrium
equations

η ∇2~u(~r) − ∇p(~r) = ρc(~r) ∇ ψ(~r) (3)

and
∇ · ~u(~r) = 0. (4)

In the above equations, η is the dynamic viscosity of the
medium and ~u(~r), p(~r), ρc(~r), and ψ(~r) are, respectively, the
velocity, pressure, volume charge density, and mean elec-
trostatic potential at position ~r inside the fluid. Due to the
presence of ψ(~r) in Eq. (3), the previous equations must
be complemented with the corresponding Poisson equation,
viz.,

∇2ψ(~r) = −
1
ε0ε

ρc(~r), (5)

where
ρc(~r) =

∑
i=+,−

e0 zi ρi(~r). (6)

In turn, to determine the stationary ionic densities ρi(~r), the
following ion conservation equations are required:

∇ ·
[
kBT ∇ρi(~r) + e0zi ρi(~r)∇ψ(~r) − λi ρi(~r)~u(~r)

]
= 0, (7)

with kB, T, and λi being the Boltzmann constant, the temper-
ature, and the ionic drag coefficients, respectively; i = +, �,
and

ρi(~r) = ρbulk
i gi(~r). (8)

As indicated previously, in the O’Brien and White descrip-
tion, the reference system is located at the center of the
colloid; therefore, the resolution of Eqs. (3)–(7) yields the
velocity of the fluid at infinite. Clearly, the negative value of
such a velocity should be equivalent to the velocity of the
macroparticle moving in a quiescent electrolytic environment
and, then the colloidal electrophoretic mobility (velocity per
unit electrical field) is a final result of this hydrodynamical
theory.

At this point, it is important to notice that all the functions
involved in the above equations are non-equilibrium quantities.
Hence, to proceed with the solution, any of the non-equilibrium
functions, A(~r), is written in the general perturbative form

A(~r) = Aeq(r) + δA(~r), (9)

where Aeq(r) is the corresponding radially symmetric quantity
at equilibrium (i.e., when ~E0 = ~0), and δA(~r) stands for the
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deviation from equilibrium due to the presence of the external
force. In a perturbation scheme, the reference functions Aeq(r)
are supposed to be known and, in our particular case, we have,
for example, that

ψeq(r) = −
kBT
zie0

ln geq
i (r), (10)

with i = + or �, indistinctly, and geq
i (r) being the Poisson-

Boltzmann ionic distributions for a point-ion spherical double
layer at equilibrium, corresponding to a given colloidal sur-
face charge density σ0. Substituting all the hydrodynamical
fields, in the form given by Eq. (9), in Eqs. (3)–(7) leads to the
following first-order system of partial differential equations
for the supposedly small perturbations δA(~r):

η∇2δ~u(~r)−∇δp(~r)−ρeq
c (r)∇δψ(~r)−δρc(~r)∇ψeq(r) = ~0, (11)

∇ · δ~u(~r) = 0, (12)

∇2δψ(~r) = −
1
ε0ε

δρc(~r), (13)

and

∇ ·
[

kBT ∇δρi(~r) + e0zi ρ
eq
i (r)∇δψ(~r)

+ e0ziδρi(~r)∇ψeq(r) − λi ρ
eq
i (r)~u(~r)

]
= 0. (14)

By symmetry arguments,30 the perturbation terms can be
expressed in polar coordinates as

δA(~r) = Ar(r) Aθ (cos θ). (15)

The usage of the previous variable-separated forms in
Eqs. (11)–(14) produces a system of ordinary differential equa-
tions for the radial functions Ar(r), which can be straightfor-
wardly integrated in a numerical way (e.g., via a Runge-Kutta
method). The implementation of the full O’Brien and White
theory of electrophoresis was carried out here by means of
a fast and accurate Fortran code of our own.31–33 This pro-
gram provides the electrophoretic mobility for a given set
of parameters of the system and a fixed boundary condition,
e.g., at a constant surface charge density σ0 at the colloidal
surface.

In our actual numerical calculations, the physical param-
eters used are the following: a negatively charged spherical
particle of radius RM = 8000 Å is immersed in an aque-
ous electrolyte solution with dielectric constant ε = 78.5,
at a temperature T = 298 K, with a solvent ionic friction
η = 0.008 937 P. For the 1:1 electrolyte, λ+ = λ

�

= 2.212
× 10�19 dyn s cm�1. For the 2:1 salt, λ+ = 4.424 × 10�19 dyn
s cm�1 and λ

�

= 2.212 × 10�19 dyn s cm�1. The Helmholtz
plane, or the closest approach distance between point ions and
the colloidal surface, is b = 2.5 Å. As usual, the Debye length
of the supporting electrolyte in bulk is defined as λD = 1/κD,
where

κD = *
,

∑
i ρ

bulk
i z2

i e2
0

ε0εkBT
+
-

1
2

. (16)

In order to calculate the capacitive compactness, it is nec-
essary to know both the colloidal charge σ0 and the associated

mean electrostatic potential at the colloidal surface ψ0, which
is a function of σ0, i.e., ψ0(σ0). This can be done by numer-
ically solving the equilibrium non-linear Poisson-Boltzmann
equation for point ions

∇2ψeq(r) = −
1
ε0ε

∑
i=+,−

ρbulk
i zie0 exp

(
−
ψeq(r)zie0

kBT

)
, (17)

which is valid even at non-weak colloidal charges under the
same conditions used in the experiments. Next, and with
the purpose of matching the experimental and the theoreti-
cal electrophoretic mobilities, we proceed as follows. First,
we solve the integral equation version of the non-linear
Poisson-Boltzmann equation (by employing an accurate and
efficient finite element scheme) for a very small surface
charge density σtrial

0 at a fixed ionic concentration.34 This
allows us to know the corresponding ionic profiles and the
associated mean electrostatic potential at the colloidal sur-
face ψ0(σtrial

0 ). Subsequently, the electrophoretic mobility can
be numerically determined from these ionic profiles via the
O’Brian and White theory. If the theoretical electrophoretic
mobility is equal to the experimental one, the electrokinetic
colloidal charge is then σ0 = σtrial

0 and the capacitive com-
pactness can be calculated from Eq. (1). On the other hand,
if the theoretical electrophoretic mobility is lower than the
experimental one, σtrial

0 is gradually increased until both
the theoretical and the experimental mobilities match each
other.

III. RESULTS AND DISCUSSION

With the goal of illustrating the experimental/theoretical
approach proposed here to calculate the capacitive compact-
ness τc of aqueous electrolytes, we have performed elec-
trophoresis experiments of charged colloids in the presence
of monovalent and divalent counterions with added salt. A
Zetameter 3.0 was used to measure the experimental elec-
trophoretic mobilities (Zetameter, Inc.). In order to prepare
the particle suspension, negatively charged polystyrene par-
ticles (≈1.6 µm of diameter, Invitrogen) were diluted in a
buffer solution at pH 7 (NaH2PO4 buffer at low ionic strength),
whereas the concentration of macroparticles was fixed at
Φm = 0.0005%. Afterwards, the polystyrene particles were dis-
solved in aqueous NaCl and CaCl2 electrolytes at different salt
concentrations that ranged from 1 mM up to 200 mM. For these
systems, the experimentally measured electrophoretic mobil-
ities of polystyrene particles are plotted in Fig. 2 as a func-
tion of the ionic concentration. At a concentration of 1 mM,
the electrophoretic mobilities of the charged polystyrene
particles immersed in NaCl and CaCl2 electrolytes are
�6.96× 10�8 and�3.93× 10�8 m2/(V s), respectively. Accord-
ing to the O’Brien and White theory, the electrokinetic sur-
face charge densities σ0 associated with these mobilities are
�0.0138 and �0.0157 C/m2 in the presence of NaCl and CaCl2
salts, respectively. In addition, the mean electrostatic potentials
at the colloidal surface ψ0(σ0) associated with these surface
charge densities are �108.62 and �60.89 mV, respectively.
Once σ0 and ψ0(σ0) have been determined for all experimen-
tal concentrations, it is then possible to calculate the thickness
of the electrical double layer via the capacitive compactness τc



154703-4 Moraila-Mart́ınez et al. J. Chem. Phys. 148, 154703 (2018)

FIG. 2. Experimental electrophoretic mobilities of polystyrene particles
(≈1.6 µm of diameter) in the presence of (a) NaCl and (b) CaCl2 electrolytes
at different salt concentrations.

by using Eq. (1). If the spherical colloid has an infinite radius,
the capacitive compactness in the planar limit17 can be written
as τc = ε0ε

ψ0
σ0

. This equation provides the same results that
Eq. (1) with an error of less than 1% for the parameters used
in this study.

Therefore, the capacitive compactness τc associated with
NaCl and CaCl2 electrolytes, surrounding a negatively charged
spherical particle of radius RM = 8000 Å, is plotted in Fig. 3.
A distinctive common feature observed in both electrolytes is
that the capacitive compactness τc decreases monotonically as
a function of the salt concentration. In particular, in Fig. 3(a),
it is evident that, in the presence of monovalent counteri-
ons, the capacitive compactness τc [obtained from Eq. (1)]
is significantly lower than the associated bulk Debye length
at low salt concentrations. As the capacitive compactness in
the non-linear Poisson-Boltzmann theory reduces to the bulk
Debye length in the limit of zero colloidal charge, the previous
behavior suggests that the electrokinetic colloidal charge is sig-
nificantly different from zero. This is consistent with the mag-
nitude of the experimental electrophoretic mobility displayed
in Fig. 2 in the presence of NaCl at the lowest ionic concen-
tration. When the ionic concentration of NaCl increases, the
difference between τc and the Debye length decreases and

FIG. 3. Experimentally derived capacitive compactness τc (solid black dots)
measured from the Helmholtz plane as a function of the ionic concentration
of (a) NaCl and (b) CaCl2 electrolytes, in the presence of a charged colloidal
particle of radius RM = 8000 Å. For comparison purposes, the corresponding
Debye length of each supporting bulk electrolyte is displayed as a red dashed
line.

both quantities approach to each other. Note that the conver-
gence observed at high salt concentrations in Fig. 3(a) does
not necessarily imply that, in general, the capacitive compact-
ness reduces to the Debye length in concentrated electrolytes.
In fact, we believe that this behavior at low colloidal charges
is rather a coincidence for this particular univalent system.
In this respect, a recent non-linear Poisson-Boltzmann calcu-
lation for a 1:1 electrical double layer displays a monotonic
decreasing of the capacitive compactness as a function of the
colloidal charge at salt concentrations as large as 1M.19 This
means that, if the supporting electrolyte is concentrated, τc is
expected to have a different value regarding the Debye length in
the regime of large colloidal charges, where the Debye-Hückel
equation breaks down. In addition, a significant difference
between τc and the Debye length (larger than that seen in the
presence of monovalent counterions) can be observed at low
salt concentrations of CaCl2, as shown in Fig. 3(b). This differ-
ence decreases when the salt concentration increases, but this
time τc clearly does not approach to the Debye length value
as occurred in the presence of NaCl for the concentrations
displayed.
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IV. CONCLUDING REMARKS

In this report, we have proposed an experimen-
tal/theoretical method to calculate the capacitive compactness
τc associated with a z

�

: z+ electrolyte in the presence of
a spherical charged colloid. The propounded method relies
on standard experimental electrophoresis measurements of
charged particles in aqueous electrolytes, as well as on the
O’Brien and White theory that provides the electrophoretic
mobility associated with these charged colloids. When the
experimental and the theoretical electrophoretic mobilities are
equated, the electrokinetic surface charge density σ0 and the
mean electrostatic potential at the colloidal surface ψ0(σ0)
can be estimated without the necessity of very sophisticated
X-ray photoelectron spectroscopy experiments,22–29 in order
to measure directly the mean electrostatic potential at the
colloidal surface. Once σ0 and ψ0(σ0) are determined, the
associated capacitive compactness τc can be calculated. This
quantity is a robust and accurate measure of the spatial exten-
sion or thickness of the diffuse electrical double layer of ionic
fluids.17,19

It is worth mentioning that even though the non-linear
Poisson-Boltzmann does not include inter-ionic correlations
and ionic exclusion volume effects, we would expect simi-
lar trends at dilute ionic concentrations and very low colloidal
charges regarding more sophisticated approaches. In the oppo-
site regime, however, very interesting phenomena could be
expected. This includes a transition from a shrinking to an
expansion of the electrical double layer as a function of the
colloidal charge and the ionic concentration in the presence of
multivalent coions.17 On the other hand, we foresee that the
present method can also be used if the experimental measure-
ments of the electrophoretic mobility are replaced by the corre-
sponding simulation results. As simulations are performed on
a particular physical model, the theoretical approach selected
has to be able to incorporate the same physical features in order
to provide consistent results. In this manner, it would be possi-
ble to isolate the influence of different effects on the magnitude
of the capacitive compactness, such as ion-correlations, ionic
excluded volume effects, image charges, van der Waals inter-
actions, etc. Work along these lines is currently in progress
and will be published elsewhere.
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