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The non-dominance of counterions in charge-
asymmetric electrolytes: non-monotonic
precedence of electrostatic screening and
local inversion of the electric field by
multivalent coions

Guillermo Iván Guerrero-Garcı́a,*a Enrique González-Tovar,b

Manuel Quesada-Pérezc and Alberto Martı́n-Molinad

The asymptotic convergence of the thermodynamic and structural properties of unequally-sized

charge-symmetric ions in strong electric fields was postulated more than thirty years ago by Valleau and

Torrie as the dominance of counterions via the non-linear Poisson–Boltzmann theory [Valleau and Torrie,

J. Chem. Phys., 1982, 76, 4623]. According to this mean field prescription, the properties of the electrical

double layer near a highly charged electrode immersed in a size-asymmetric binary electrolyte converge

to those of a size-symmetric electrolyte if the properties of counterions are the same in both instances.

On the other hand, some of the present authors have shown that, in fact, counterions do not dominate

the electrical properties of a spherical macroion in the presence of unequally-sized ions, symmetric in

valence, if ion correlations and ionic excluded volume effects are taken into account consistently. These

ingredients are neglected in the classical Poisson–Boltzmann picture. In the present work, we show the

occurrence of the non-dominance of counterions in the opposite scenario, that is, when ions are equally-

sized but asymmetric in valence. This is performed in the presence of highly charged colloidal surfaces of

spherical and planar geometries for different ionic volume fractions. In addition to the phenomenon of

non-dominance of counterions, our simulations and theoretical data also exhibit a non-monotonic order

or precedence in the mean electrostatic potential, or electrostatic screening, at the Helmholtz plane of a

charged colloid. This interesting behaviour is analyzed as a function of the coion’s valence, the ionic

volume fraction, and the charge and size of the colloidal particle. All these phenomena are explained in

terms of the decay of the electric field near the colloidal surface, and by the appearance of a local

inversion of both the electric field and the integrated surface charge density of the colloidal particle in the

presence of monovalent counterions and multivalent coions.

1 Introduction

Due to its unquestionable relevance in colloid science, the
attainment of a correct description of the ionic cloud surrounding
charged surfaces in solution, i.e., the so-called electrical double
layer, has convoked a great deal of theoretical, experimental,

and simulation effort since the last century. As a result of this
collective endeavour, a clearer picture of this physico-chemical
charge distribution has recently emerged. In spite of these advances,
several interesting and counterintuitive new phenomena, which
includes the local charge reversal and surface charge amplification
of colloids,1–5 have much revivified the study of the electrical
double layer in recent years.6–22 Thus, we can realize that, even
if a fundamental understanding of the electrical double layer
has already been established, there is still space for new knowl-
edge and refinements in relation to this concept.

In 1982, Valleau and Torrie performed a theoretical study of
the role of the ionic size-asymmetry in the charge distribution of
a binary mixture of semi-punctual ions, symmetric in valence,
next to a charged plane.23 In that Poisson–Boltzmann work, they
enunciated an apparently ‘‘obvious’’ or expected fact later known
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as the dominance of the counterions in the electrical double
layer. According to these authors, only counterions are found
near the surface of a strongly charged colloid of either sign.
Thus, in the limit of strong electric fields, the ionic size-
asymmetry between coions and counterions becomes irrelevant
and the only important ion-size parameter is the effective radius
of the counterions. In other words, and quoting those authors:
‘‘. . .When there is a substantial surface charge...we expect the
double layer properties of a dilute electrolyte to become similar
to those of a completely symmetric electrolyte having an effective
size equal to that of the counterion. . .’’. In such a scenario, the
contribution of coions to the properties of the diffuse electrical
double layer becomes negligible regarding the contribution of
counterions. As a result, the properties and behaviour of coions
at large electric fields are irrelevant in this classic description of
the electrical double layer, whose characteristics are dominated
or determined mainly by counterions. It must be stressed that
this appealing dominance idea was proved to be asymptotically
exact for large fields only in the non-linear Poisson–Boltzmann
theory of semi-punctual electrolytes asymmetric in size and
symmetric in valence.23

Note that in the semi-punctual model of the electrical
double layer introduced by Valleau and Torrie the electrolytic
bath is constituted by ions with a dual character, i.e., these ions
interact between them as point charges but they act as charged
hard spheres (with different closest approach distances for
counterions and coions) with respect to a planar electrode.
Therefore, this semi-punctual representation of the electrolyte
can be considered as the lowest-order way to incorporate ion-
size effects in the electrical double layer treatment.

Interestingly, Barrios-Contreras et al.24 have reported very
recently a complementary phenomenon to the dominance of
counterions at large electric fields in the non-linear Poisson–
Boltzmann theory, but this time associated with non-highly
charged colloids immersed in a binary mixture of semi-punctual
electrolytes asymmetric in valence and size. In that work it has
also been demonstrated that, for a given ionic size-asymmetry, a
fixed concentration of the smallest ionic species, and weakly/
moderate colloidal surface charges, the valence of small ions
rules or mainly determines the thermodynamic and structural
properties of the electrical double layer regardless of the polarity
of the charged colloid. In other words, according to the non-
linear Poisson–Boltzmann theory, the characteristics of small
ions dominate the properties of the electrical double layer of
non-highly charged colloids, independently if the smallest ions
are coions or counterions.24

Returning to the predominance of semi-punctual counter-
ions at large electric fields, it is remarkable that its seeming
‘‘obviousness’’ was taken for granted, in general, in later electrical
double layer investigations. In fact, this mean field recipe has led
many researchers to unfoundedly extend its validity to the case of
genuine hard-sphere ions of arbitrary size and valence close to a
charged surface,2,25–34 which corresponds to the so-called ‘‘unrest-
ricted’’ primitive model of the electrical double layer. The direct
application of the dominance principle, stated by Valleau and
Torrie exclusively in the non-linear Poisson–Boltzmann framework,

to the primitive model of colloidal systems is neither appropriate
nor justified when ion correlations and ionic excluded volume
effects are relevant. On the other hand, some of the present authors
have showed in a couple of previous papers3,5 that, precisely, and
contrary to the common belief, the counterions do not dominate or
determine the properties of the primitive model electrical double
layer. In these articles it was found that, at large colloidal charges,
the behaviour of the primitive model electrical double layer
associated with a z:z size-asymmetric electrolyte does not con-
verge to that of a z:z size-symmetric electrolyte when the
properties of counterions (such as the ionic size, valence, and
concentration) are the same in both electrolytes. That is, it has
been evinced in previous works that the characteristics of the
coions in z:z electrolytes, symmetric in valence and asymmetric
in size, are relevant and do matter for highly electrified colloids
at high salt concentrations.

The aforementioned non-dominance of hard-sphere counter-
ions has been clearly corroborated by theories and computer
experiments35–37 in recent studies. However, in all these articles
this has been done exclusively for size-asymmetric primitive
model systems. From that evidence, a working hypothesis that
could transpire is that the origin of the non-dominance of
counterions in the unrestricted primitive model resides solely
in the ionic size-asymmetry. Thus, one of our main goals in this
study is to show explicitly that the non-dominance of counterions
is not restricted to occur only in the presence of unequally-sized
electrolytes with symmetric z:z valences, but it can also arise in
the presence of equally-sized electrolytes (i.e., in the ‘‘plain’’
restricted primitive model of the electrical double layer) with
asymmetric valences (monovalent counterions and multivalent
coions). With this aim in mind, a reputed theoretical integral
equation approach1,38 and Monte Carlo computer simulations
are used to analyze the electrostatic screening of a charged
colloid under several conditions. Specifically, the behaviour of
the mean electrostatic potential at the closest approach distance
of ions to the colloidal surface, which is the so-called Helmholtz
plane, is studied as a function of the colloidal surface charge
density, the ionic volume fraction, and the valence of multivalent
coions in the spherical and planar geometric instances of the
colloidal particle. In addition to the non-dominance of counter-
ions, an unexpected non-monotonic order, or precedence, in the
electrostatic screening of the colloidal particle at the Helmholtz
plane is observed. This interesting outcome is rationalized in
terms of the spatial decay rate exhibited by the electric field near
the colloidal surface, and by the appearance of a local inversion
of both the electric field and the integrated surface charge density
of the colloid, which is promoted by monovalent counterions and
multivalent coions at high electrolyte concentrations.

2 Model system, simulations, and
theories

Our representation of the electrical double layer is based on the
well-known restricted primitive model of a binary electrolyte.
In this description, a colloid is represented by a hard and
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uniformly charged sphere of radius RM and surface charge
density s0 = QM/(4pRM

2), where QM = ZMe is the colloidal charge,
ZM is the valence of the colloid, and e is the protonic charge.
The spherical macroion is surrounded by an equally-sized z:1
electrolyte, asymmetric in valence, with monovalent counter-
ions. Ions are represented by hard spheres of diameter a with
point charges qi = zie embedded at their centers, such that zi is
the valence of the ionic species i. The spherical macroion and
all ions are immersed in a continuum aqueous solvent char-
acterized by a dielectric constant e = 78.5 at a temperature
T = 298 K in all instances.

The pair interaction potential between any pair of charged
particles in spherical geometry, used in Monte Carlo simula-
tions and integral equation theory, is given by:

UijðrÞ ¼
1; ro ri þ rj ;

zizje
2

4pe0er
; r � ri þ rj ;

8><
>: (1)

where the subscripts i, j = M, +, �; and r denotes the distance
between the centers of two charged particles of types i and j with
radii ri and rj, respectively.

As mentioned above, the closest approach distance between
the ions of diameter a and the macroion of radius RM is the
so-called Helmholtz plane rH = RM + (a/2), which is shown
schematically in Fig. 1 (note our conventional use of the word
‘‘plane’’ instead of ‘‘surface’’). The planar limit of the electrical
double layer in our theory is obtained when both the valence
and the radius of the macroion tend to infinity but the colloidal
surface charge density remains constant. In this instance,
the Helmholtz plane is located at an ionic radius a/2 from the
colloidal surface.

Monte Carlo simulations of the electrical double layer in the
presence of an infinite charged plate are performed in the
canonical ensemble using a simulation box of volume V = HL2,
and cross section area A = L2. Periodic boundary conditions
along the y- and z-directions, and a finite length H along the
x-axis are considered. The interaction between an ion i and an
ion j is defined as the two-body interaction given by eqn (1).
According to this definition, the hard-sphere interaction between

ions i and j, Sij(r), is zero if both particles do not overlap, and
Sij(r) = N otherwise. The two-body electrostatic interaction
between ions i and j is coulombic. The interaction between an
ion i at the position -

r and the charged plate can also be separated
into two contributions: a one-body hard-sphere interaction and a
one-body electrostatic potential. The one-body hard-sphere inter-
action can be written as Si(x) = 0, if the distance between the
charged plate and the position of the ion i along the x-axis is
such that a/2 o x o H � (a/2), in other words, when there is no
overlapping between the ion i and the two hard planes located at
x0 = 0 and x0 = H. The hard plane located at x0 = 0 has a surface
charge density s0, and the hard plane located at x0 = H is neutral.

The one-body electrostatic energy between an ion i and the
charged plate is given by

U
plate
i ðxÞ ¼ �s0zie

e0e
jxj: (2)

In summary, the one-body and two-body interactions can be
written as

Hone-body
i (x) = Si(x) + Uplate

i (x) (3)

and

Htwo-body
ij (r) = Sij(r) + Uij(r). (4)

The total energy of the system is then defined as

HT ¼
XN
i¼1

H
one-body
i ðxÞ þ 1

2

XN
i¼1

XN
j¼1

H
two-body
ij ðrÞ; (5)

where i a j, and N is the total number of particles. Electro-
statics are properly included via the Torrie and Valleau’s
charged-sheets method39 using Boda’s modification.40

Once the ionic profiles, ri(x), have been determined, it is
possible to calculate the mean electrostatic potential as a func-
tion of the distance to the charged plate. If the reference mean
electrostatic potential is zero in the bulk electrolyte located at
x = H/2, we can define the integrated surface charge density as

sðxÞ ¼
ðhx
0

X
i

riðtÞezidt; (6)

for i = +, �, with hx = (H/2) � x, and 0 o x o (H/2). Applying the
Gauss law, the electric field (perpendicular to the infinite charged
plate) is given by

EðxÞ ¼ sðxÞ
e0e

: (7)

The mean electrostatic potential as a function of the distance
to the plate is then calculated from the electric field as

CðxÞ ¼ �
ðhx
0

EðtÞdt ¼
ð0
hx

EðtÞdt: (8)

The length of H in the simulations is chosen to be large
enough to mimic a bulk electrolyte reservoir. We have monitored
this condition, obtaining the desired bulk electrolyte concentration
with an error of less than 1%. The total number of particles in
the simulation box varied from 2000 for salts with trivalent
coions up to 5000 for electrolytes with monovalent coions.Fig. 1 Schematic representation of the model system.
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In all instances, 5 � 104 Monte Carlo cycles were performed to
equilibrate the system. The canonical average was calculated
using 3 � 105 Monte Carlo cycles for high colloidal charges and
9 � 105 Monte Carlo cycles for low colloidal charges.

On the other hand, Monte Carlo simulations of the spherical
electrical double layer are performed in a cubic simulation box
in the canonical ensemble under periodic boundary conditions.
The spherical charged colloid is placed in the center of the
simulation box and is not allowed to move. Ewald sums with
conducting boundary conditions are used to take into account
correctly the long-range behaviour of Coulomb interactions.
The damping constant is a = 5/L, with L the length of the cubic
simulation box. 725 vectors in the k-space are used to compute
the reciprocal space contribution to the Coulomb energy. If we
denote N+ and N� as the number of cations and anions in the
simulation box, respectively, the electroneutrality condition
imposed in our simulations is given by ZM + N+z+ + N�z� = 0.
The number of particles employed in each run for the spherical
geometry has been around 3500. For the equilibration process
1 � 105 Monte Carlo cycles have been performed. 4 � 105 and
10 � 105 Monte Carlo cycles have been carried out to calculate
the canonical average of systems with high and low colloidal
charges, respectively.

Complementarily, the integral equation description is obtained
by solving numerically the Ornstein–Zernike equations using the
hypernetted-chain/mean spherical approximation (HNC/MSA)
closure. The Ornstein–Zernike equations describing the ionic
cloud around a single macroion can be written as

hMjðrÞ ¼ cMjðrÞ þ
X

k¼�;þ
rk

ð
hMkðtÞckj ~r�~t

�� j
� �

dV ; for j ¼ �;þ;

(9)

where hMj(r) = gMj(r) � 1 are the total ionic correlation func-
tions, and gMj(r) are the ionic radial distribution functions. The
direct correlation functions between ions and the spherical
colloid are specified using the hypernetted-chain (HNC) closure
cMj(r) = � bUMj(r) + hMj(r) � ln[hMj(r) + 1]. Ion–ion direct
correlation functions ckj(|

-
r � -

t|) are approximated by the analytical
mean spherical approximation (MSA) expressions for a bulk electro-
lyte at a concentration rk.

41,42 These equations are a complete set of
integral equations that are solved numerically via an efficient finite
element method.38 If ckj(|

-r � -

t|) = �(zkzje
2)/(4pe0e|

-r � -

t|) is used
instead of the interionic MSA direct correlation functions in eqn (9),
the integral equation version of the non-linear Poisson–Boltzmann
theory is obtained. In this last mean field approach, ion correlations
and excluded volume effects are neglected in the description of the
diffuse ionic cloud. In both approaches, i.e., the HNC/MSA integral
equation theory and the non-linear Poisson–Boltzmann formalism,
the planar limit can be obtained numerically by using a macroion
with a diameter of 6000 Å. We have estimated that the error between
the ionic profiles in the planar geometry and around a spherical
colloid with a diameter of 6000 Å is less than 1% in both theoretical
approaches (HNC/MSA integral equations and the non-linear
Poisson–Boltzmann) by calculating the limit of the counterions’
contact value when the diameter of the colloid goes to infinity.

From the ionic profiles obtained from simulations or theory
in spherical geometry, it is possible to calculate several thermo-
dynamic and electrical properties of the charged particles in
solution. Specifically, the integrated charge, the electric field,
and the mean electrostatic potential around a spherical macro-
ion can be written, respectively, as

PðrÞ ¼ zM þ
X
i¼�;þ

ðr
0

zirigiðtÞ4pt2dt; (10)

EðrÞ ¼ e

4pe0e
PðrÞ
r2

; (11)

and

CðrÞ ¼ �
ðr
1
EðtÞdt ¼

ð1
r

EðtÞdt: (12)

Physically, the integrated charge is the net charge (in units
of e) enclosed in a sphere of radius r centered in the macroion,
and is a measure of the neutralization capacity of the surrounding
electrolyte. The electric field is proportional to the electrostatic
component of the mean force that a charged particle experience
due to its coulombic interaction with the colloidal particle and the
ions of the electrolyte. The mean electrostatic potential quantifies
the electrostatic screening of the bare colloidal charge by the
electrolyte. The mean electrostatic potential evaluated close to
the Helmholtz plane has been conventionally associated with
the so-called zeta potential, z. This last quantity is usually defined
as the mean electrostatic potential at the slipping plane in electro-
kinetic phenomena.

3 Results and discussion

In order to introduce the concept of the non-dominance of
counterions, and as a contrast, we would like to exemplify first
the opposite phenomenon, that is, the dominance of counter-
ions according to the non-linear Poisson–Boltzmann theory in
spherical geometry. With this goal in mind, let us consider a
spherical macroion of radius RM = 15 Å in the presence of several
z:1 semi-punctual electrolytes with a unique ionic closest approach
distance a/2 = 2.125 Å regarding the surface of the macroion.
As mentioned in the Introduction, ions have a dual behaviour
in our version of the non-linear Poisson–Boltzmann theory:
they interact among them as point particles but they also have
an ionic size associated with their interaction with the charged
colloid. The closest approach distance between the ions and
the spherical colloid, or the Helmholtz plane, is located at a
distance RM + (a/2) (see Fig. 1). Note that the current description
corresponds to the Stern model in the absence of specific ionic
adsorption in the region located between the colloidal surface
and the onset of the ionic diffuse layer at the Helmholtz plane.
Here and hereinafter, the colloidal surface charge density is
positive and the concentration of the monovalent anions
(counterions) in the z:1 electrolytes is always 1 M, in order to
have electrolytes whose anions (counterions) have the same
properties in both the spherical and planar limits for a given
ionic size. The concentration of multivalent z cations (coions) is
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adjusted to satisfy the electroneutrality condition of the whole
system. The mean electrostatic potential at the Helmholtz
plane, according to the non-linear Poisson–Boltzmann theory,
is then shown in Fig. 2(a) as a function of the colloidal surface
charge density s0 in the presence of different z:1 electrolytes.
Here, we observe that the value of the mean electrostatic
potential at the Helmholtz plane converges to the same curve
for all the different z:1 electrolytes in the limit of large colloidal
charges. Such a convergence occurs not only at the Helmholtz
plane but at all distances from the colloidal surface as shown in
Fig. 2(c), indicating that the corresponding ionic density profiles
(not shown) also converge to the same limit. At low colloidal
charges, the mean electrostatic potential is clearly different for
each z:1 electrolyte as shown in Fig. 2(b). Thus, the convergence
of the ionic density profiles and mean electrostatic potential in
the presence of z:1 semi-punctual electrolytes at large colloidal
charges illustrates the dominance of counterions in the electrical
double layer of equally-sized electrolytes asymmetric in valence.
Such a dominance of counterions is analogous to that shown by
Valleau and Torrie in 1982 using a size-asymmetric electrolyte,
symmetric in valence, near an infinite planar electrode.23 An
important consequence of the dominance of counterions pre-
dicted by the non-linear Poisson–Boltzmann theory is that the
properties of coions (such as their ionic ‘‘size’’, valence, or con-
centration) are certainly irrelevant in the limit of strong electric
fields according to this mean field picture.

Two ingredients that are missing in the classical Poisson–
Boltzmann description are ion correlations and ionic excluded

volume effects. Physically, the former include the preference of
ions to be surrounded by ions of opposite charge and not by
ions of the same sign, whereas the latter takes into account the
fact that hydrated finite-sized ions cannot overlap as occurs in
the case of point charges. The result of including ion correla-
tions and ionic excluded volume effects in the description of
the spherical electrical double layer is now displayed in Fig. 3(a)
using theory and simulation. Here, the mean electrostatic
potential at the Helmholtz plane around a spherical macroion
of radius RM = 15 Å is displayed for several z:1 equally-sized
primitive model electrolytes with radius a/2 = 2.125 Å. At low
surface charge densities of the spherical macroion, the Monte
Carlo simulations and integral equation data of Fig. 3(a) show that
the maximum electrostatic screening (or minimum potential) at
the Helmholtz plane is produced by the electrolyte whose coions
have the largest valence z. An analogous behaviour has been
already observed in the non-linear Poisson–Boltzmann picture
(see, e.g., Fig. 2(a)). Note, however, that such a trend observed in
Fig. 3(a) is inverted at high surface charge densities of the
macroion according to simulations and integral equation theory.
In addition, the continuous theoretical curves display a surface
charge density of the macroion, s0

0, with the property that the
mean electrostatic potential at the Helmholtz plane has approxi-
mately the same value for all equally-sized z:1 electrolytes, asym-
metric in valence. At surface charge densities of the macroion
lower than s0

0 it is observed that electrolytes with multivalent
coions screen more effectively the bare colloidal charge of the
macroion at the Helmholtz plane, that is, C(r = RM + (a/2), s0, zA) o
C(r = RM + (a/2), s0, zB) if s0 o s0

0 and zA 4 zB, where zA and
zB are the valences of coions of electrolytes A and B, respec-
tively. Under these conditions, a particular order or precedence
in the electrostatic screening at the Helmholtz plane as a
function of the coion’s valence can be observed. Contrastingly,
if the colloidal surface charge density of the macroion is larger
than s0

0 then the opposite behaviour is observed: in this case
the mean electrostatic potential at the Helmholtz plane is
screened less effectively when the valence of coions augments,
that is, C(r = RM + (a/2), s0, zA) o C(r = RM + (a/2), s0, zB) if
s0 4 s0

0 and zA o zB. Thus, the observed order or precedence in
the electrostatic screening at the Helmholtz plane as a function
of the coion’s valence is inverted depending on the specific
value of the bare colloidal charge. On the other side, simulation
and theoretical data evidence that the maximum difference in
the mean electrostatic potential at the Helmholtz plane among
equally-sized z:1 electrolytes, asymmetric in valence, occurs at
very high surface charge densities of the colloid. This behaviour
confirms precisely one of our main theses, namely that the
non-dominance of counterions can also be promoted by an
asymmetry in the valence of equally-sized electrolytes and
constitutes an outstanding result of this study. In other words,
we are explicitly demonstrating here that, in addition to the
mechanism of the ionic-size asymmetry of z:z electrolytes,
symmetric in valence,3,5 the breaking of the symmetry in the
valence of z:1 equally-sized electrolytes is sufficient to produce
qualitative differences in the properties of the electrical double
layer of highly charged macroions when the monovalent

Fig. 2 The dominance of counterions in non-linear Poisson–Boltzmann
theory for spherical geometry. In all panels the radius of the macroion
is 15 Å, and the closest approach distance between the colloidal surface
and the semi-punctual cations and anions is 2.125 Å. The mean electro-
static potential is plotted for several z:1 electrolytes as follows: (a) at
the Helmholtz plane as a function of the surface charge density of the
macroion, (b) as a function of the distance to the surface of the macroion
for a surface charge density s0 = 0.05 C m�2, and (c) as a function of the
distance to the surface of the macroion for a surface charge density
s0 = 0.45 C m�2. In this figure and hereinafter, the concentration of the
monovalent anions is 1 M and the concentration of multivalent cations is
such that the electroneutrality condition is fulfilled.
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counterions have the same properties in all instances and coions
are multivalent. Given that ion correlations and ionic excluded
volume effects are not included in the Poisson–Boltzmann theory,
the non-dominance of counterions appears as a consequence of
these ingredients, which represents a new insight into the theory
of the electrical double layer.

In order to analyze the role of the macroion’s size in the non-
dominance of counterions when equisized electrolytes asym-
metric in valence are present, the mean electrostatic potential
produced by an infinite planar electrode at the Helmholtz plane
is shown in Fig. 3(b) for the same electrolytes displayed in
Fig. 3(a). In this case, it is observed that the magnitude of the
mean electrostatic potential in planar geometry is larger regarding
the spherical geometry, which is physically due to the augmenta-
tion in the strength of the electric field for the same surface
charge density. Simulation and theoretical results display similar
features to those already observed in Fig. 3(a), that is, (i) the
non-dominance of counterions at large surface charge densities;
(ii) the existence of a surface charge density s0

0 whose magnitude
determines the efficiency of equally-sized z:1 electrolytes, asym-
metric in valence, to screen electrostatically the bare surface
charge of the electrode at the Helmholtz plane; and (iii) a non-
monotonic order or precedence in the magnitude of the mean
electrostatic potential (or screening) at the Helmholtz plane
associated with electrolytes that only differ in the valence and
concentration of multivalent coions. One important difference
between Fig. 3(a) and (b) is that the magnitude of s0

0 is lower for
the infinite planar electrode in comparison with the spherical
macroion. As a result, the inversion of the ordering or pre-
cedence of the electrostatic potential at the Helmholtz plane for
electrolytes with multivalent coions can be observed at lower
surface charge densities in planar geometry with respect to the
spherical geometry.

With the aim of evaluating the role of the ionic volume
fraction associated with a given ionic size (due, e.g., to a different
degree of hydration) in the non-dominance of counterions, we
study now the electrical double layer of a spherical macroion of
radius RM = 15 Å immersed in several equally-sized z:1 electro-
lytes, asymmetric in valence, with an ionic radius of a/2 = 3.3 Å.
The mean electrostatic potential at the Helmholtz plane obtained
via simulations and integral equation theory as a function of s0 is
portrayed in Fig. 4(a). Here, a behaviour similar to that displayed
in Fig. 3(a) is observed, i.e., (i) the mean electrostatic potential at
the Helmholtz plane is different among several equally-sized z:1
electrolytes surrounding a highly charged macroion when the
properties of counterions are the same; (ii) there is a surface
charge density s0

0 for which the mean elecrostatic potential is
approximately the same; and (iii) the order or precedence of the
electrostatic screening of the colloidal charge at the Helmholtz
plane is not monotonic but inverts. On the other hand, some
noticeable differences between Fig. 3(a) and 4(a) are that (i) the
magnitude of s0

0 decreases when the ionic volume fraction
increases and (ii) the global curvature of the mean electrostatic
potential in Fig. 4(a) is inverted regarding the curvarture dis-
played in Fig. 3(a).

The effect of increasing the size of the macroion and the
ionic volume fraction simultaneously is analyzed in Fig. 4(b).
Here, the mean electrostatic potential at the Helmholtz plane is
plotted for different z:1 equally-sized electrolytes next to an
infinite charged plate of varying s0. The ionic radius of all electro-
lytes is a/2 = 3.3 Å. In this instance, simulation and theoretical
results also confirm the non-dominance of counterions at large

Fig. 3 Mean electrostatic potential at the Helmholtz plane as a function
of the surface charge density, s0, of a macroion for several z:1 electrolytes.
In all instances, the radius of cations and anions is 2.125 Å. In the integral
equation theory (IE), the radius of the colloid is 15 Å and 3000 Å in panels
(a) and (b), respectively. In the Monte Carlo simulations (MC), the radius of
the colloid is 15 Å in panel (a), and the colloid is an infinite planar electrode
in panel (b). Solid symbols and lines correspond to Monte Carlo simulations
and integral equation results, respectively. The mean electrostatic potential
in the presence of a +3:�1 electrolyte displayed in Fig. 2 for non-linear
Poisson–Boltzmann (NLPB) theory has been included in panel (a) as a
dotted line for comparison purposes.
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electric fields. Even though the electrostatic potential seems to
converge for electrolytes 1:2 and 1:3 according to integral
equation theory data, these curves actually diverge at larger
colloidal charges (not shown). In addition, Monte Carlo simu-
lations and integral equation theory show that augmentation of
the ionic volume fraction is able to reduce the magnitude of the
surface charge density s0

0 at which the order or precedence in
the electrostatic screening at the Helmholtz plane inverts.

We now proceed to discuss in more fundamental terms the
non-dominance of counterions and the order or precedence in
the mean electrostatic potential, which can be rationalized in

terms of the associated electric field. According to eqn (8)
and (12), the mean electrostatic potential at the Helmholtz plane
is an integral, or functional, of the spatial electric field in planar
and spherical geometries. In the planar instance, the electric field
is stronger regarding the spherical geometry for the same surface
charge density and, accordingly, the electrostatic effects are
more conspicuous. Another advantageous feature of the planar
geometry is that, in this instance, the electric field is directly
proportional to the integrated surface charge density (see, e.g.,
eqn (7)), which is a measure of the neutralization capacity of
the bathing electrolyte. Thus, now we analyze our Monte Carlo
simulations of the electric field in the planar limit as a function
of the ionic size (or the ionic volume fraction), the valence of
coions, and the charge of the electrode. The electric field
surrounding an infinite planar electrode immersed in different
size-symmetric z:1 electrolytes asymmetric in valence is displayed in
Fig. 5 for two different surface charge densities. In both instances,
the ionic radius of cations and anions is a/2 = 2.125 Å. The electric
field associated with a surface charge density s0 = 0.05 C m�2 of
the electrode is plotted in Fig. 5(a). In this figure, we observe
that the electric field as a function of the distance to the
electrode’s surface is overall lower for electrolytes with larger
coion’s valences, that is, E(x,zA) o E(x,zB) if zA 4 zB. Here and
hereinafter, zA and zB denote the valences of coions of cases A
and B, respectively. More importantly, we observe that the sign of
the electric field inverts locally even in the presence of monovalent
counterions if multivalent coions are present. In the past, a local
inversion of the electric field around a charged colloid has been
associated with the phenomena of charge inversion and local
charge reversal.43–45 Charge inversion is the interchange of roles
between counterions and coions at some distance from the
electrified surface, whereas local charge reversal is the local over-
compensation of the bare colloidal charge by counterions.43 Such
phenomena have been observed experimentally, e.g., in aqueous
dispersions of charged colloids with strong electrostatic correla-
tions due to the presence of multivalent counterions.46–49 Then, to
our best knowledge, this is the first time in which a local inversion
of both the electric field and the integrated charge of a colloid is
predicted in aqueous primitive model electrolytes containing
solely monovalent counterions and multivalent coions. As a result,
a new insight into the occurrence of charge inversion and local
charge reversal in the absence of multivalent counterions and
specific ionic short-range attractions is provided. On the other
hand, note that the magnitude of the inverted electric field
increases as a function of the coion’s valence as is shown in the
inset of Fig. 5(a). This effect and the faster decay of the electric
field near the electrode’s surface for coions with a larger
valence explains the order or precedence displayed by the mean
electrostatic potential at the Helmholtz plane in Fig. 3(b) for
low/moderate colloidal surface charge densities.

The electric field as a function of the distance to the surface
of the charged electrode is shown in Fig. 5(b) under the same
conditions used in Fig. 5(a), except that this time the surface
charge density has a value s0 = 0.3 C m�2. In this instance, we
observe that the decay of the electric field near the electrode’s
surface displays the opposite behaviour previously observed at

Fig. 4 Mean electrostatic potential at the Helmholtz plane as a function
of the surface charge density, s0, of a macroion for several z:1 electrolytes.
In all instances, the radius of cations and anions is 3.3 Å. Panels (a) and (b)
correspond to the spherical and planar geometries, respectively, as described
in Fig. 3. Symbols and lines in both panels follow the same conventions
defined in Fig. 3.
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the lower surface charge density s0 = 0.05 C m�2. This time, the
electric field is lower for electrolytes with smaller coion’s
valences, that is E(x,zA) o E(x,zB) if zA o zB and x o x0, where
x0 E 10.5 Å. Here and hereinafter, x0 and x00 are distances from
the electrode’s surface where the electric field is approximately
the same for all electrolytes and x0 o x00. In Fig. 5(b), it is
observed that the local inversion of the electric field previously
observed in Fig. 5(a) is still present when the surface charge

density increases. However, the location of the maximum
inversion of the electric field is shifted to the right (far away
from the electrode’s surface). More importantly, the magnitude
of the maximum inversion of the electric field in this case is
significantly lower regarding the magnitude of the maximum
inversion of the electric field previously observed at a lower
surface charge density (compare, e.g., the insets of Fig. 5(a)
and (b)). As a result, the contribution of the electric field in the
region x 4 x0 to the integral, or functional, that defines the
mean electrostatic potential at the Helmholtz plane (see, e.g.,
eqn (8)) is smaller with regard to the contribution of the electric
field in the region x o x0. Thus, the decay of the electric field close
to the electrode’s surface as a function of the coion’s valence in
Fig. 5(b) mainly determines the order or precedence in the mean
electrostatic potential at the Helmholtz plane displayed in Fig. 3(b)
for high colloidal surface charge densities.

The effect of increasing the ionic volume fraction on the
behaviour of the electric field is studied in Fig. 6. In Fig. 6(a),
the electric field as a function of the distance to the electrode’s
surface is displayed under the same conditions used in
Fig. 5(a), except that the ionic radius of cations and anions is
a/2 = 3.3 Å. In this case, we notice again that the electric field is
overall lower for electrolytes with larger coion’s valence close to
the electrode’s surface, that is E(x,zA) o E(x,zB) if zA 4 zB and
x o x0, where x0 E 15 Å. The location of the maximum
inversion of the electric field (around 10 Å) is approximately
the same for the ionic volume fractions used in Fig. 5 and 6,
which correspond to electrolytes with ionic radius a/2 = 2.125 Å
and a/2 = 3.3 Å, respectively. Notice, however, that the magni-
tude of the maximum inversion of the electric field is signifi-
cantly larger for the electrolytes with the largest ionic size or
highest ionic volume fraction. In the case of trivalent coions, we
observe that the magnitude of the maximum inversion of the
electric field can be as large as one quarter of the electric field at
the electrode’s surface (see, e.g., the inset of Fig. 6(a)). The order
or precedence of the electric field observed for x o x0 is now
inverted in the region x0 o x o x00, that is this time E(x,zA) o
E(x,zB), if zA o zB, where x00 E 25 Å. The electric field displays a
maximum in the region x0 o x o x00, whose magnitude is,
however, significantly smaller regarding the magnitude of the
maximum inversion of the electric field observed for x o x0.
Additional inversions in the order or precedence of the electric
field are observed for x 4 x00. Notwithstanding, their maximum
magnitudes are very small and decrease very rapidly far away
from the electrode’s surface. The contribution of the electric field
in the region x 4 x0 to the functional, or integral, corresponding
to the mean electrostatic potential at the Helmholtz plane (see,
e.g., eqn (8)) is then significantly smaller than the contribution of
the electric field in the region x o x0. As a result, the order or
precedence displayed by the electric field as a function of the
coion’s valence in the region x o x0 mainly determines the
behaviour of the mean electrostatic potential curves displayed
in Fig. 4(b) for low colloidal surface charge densities.

In Fig. 6(b), the electric field as a function of the distance to
the electrode’s surface is displayed under the same conditions
used in Fig. 6(a), except that the surface charge density of the

Fig. 5 Monte Carlo simulations of the electric field as a function of the
distance to the surface of an infinite charged planar electrode for several
z:1 electrolytes. Solid, dashed, and dotted-dashed lines correspond to coions
with valences z = 1, 2, and 3, respectively. E0 = s0/(e0e) denotes the electric
field at the surface of the charged electrode located at x = 0. The surface
charge density, s0, of the electrode is 0.05 C m�2 in panel (a) and 0.3 C m�2

in panel (b). Insets display magnifications for comparison purposes. In all
instances, the radius of cations and anions is 2.125 Å.
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electrode is now s0 = 0.3 C m�2. In this case, we observe that the
decay of the electric field near the electrode’s surface displays
the opposite behaviour previously observed at the lower surface
charge density s0 = 0.05 C m�2, that is in this instance E(x,zA) o
E(x,zB) if zA o zB and x o x0, where x0 E 14.5 Å. For x 4 x0, we
observe consecutive inversions in the order or precedence of
the electric field. Again, the maximum local absolute values
of the oscillating electric field decrease very rapidly far away
from the electrode’s surface. As the contribution of the electric

field in the region x 4 x0 to the integral, or functional, defining
the mean electrostatic potential at the Helmholtz plane is
smaller than the contribution of the electric field in the region
x o x0, the order or precedence displayed by the electric field as
a function of the coion’s valence in the region x o x0 deter-
mines the order or precedence in the electrostatic screening
displayed in Fig. 4(b) at moderate/high colloidal surface charge
densities.

In order to gain further physical insight into the local inver-
sion of the electric field in the presence of monovalent counter-
ions and multivalent coions, in Fig. 7 we plot the simulation and
theoretical ionic distribution functions (or reduced densities)
associated with the electric field curves displayed in Fig. 6(a). In
Fig. 7(a), Monte Carlo simulations show that anions (counter-
ions) are significantly more adsorbed than cations (coions) at the
surface of the positive planar electrode. The ionic concentrations
of anions and cations follow the previous behaviour in a spatial
region close to the surface of the planar electrode (x o 10 Å).
However, in the region located between 10 and 17.5 Å it is
observed that the previous precedence in the ionic concentration
of anions and cations is slightly inverted, that is in this zone the
ionic concentration of coions is slightly larger than the concen-
tration of counterions. The inversion of roles of counterions and
coions is precisely the so-called phenomenon of charge inver-
sion, which is mainly promoted in this instance by ion correla-
tions and ionic excluded volume effects associated with 1:1
hydrated electrolytes at large ionic volume fractions. Since the
classical Poisson–Boltzmann description neglects these effects,
the phenomenon of charge inversion is absent in such a descrip-
tion of semi-punctual ions. The effects of increasing the valence
of coions, when the surface charge density of the electrode and
the properties of the monovalent counterions are fixed, are
illustrated in Fig. 7(b). Here, Monte Carlo simulations display
that the ionic concentrations of cations and anions very near the
colloidal surface are notably lower in the presence of divalent
coions regarding the instance in which coions are monovalent
(compare this figure with Fig. 7(a)). The phenomenon of charge
inversion is also more conspicuous, and now it is possible to
observe clearly the formation of a layer of divalent coions whose
maximum is located around 12 Å approximately. The effects of
further increasing the valence of coions is exemplified in Fig. 7(c).
In this case, Monte Carlo simulations display that trivalent coions
promote a larger depletion of the binary electrolyte very close to
the colloidal surface with respect to the instance in which coions
are monovalent or divalent (compare this figure with Fig. 7(a)
and (b)). The height of the layer of coions is larger and its maxi-
mum is shifted far away from the colloidal surface (at around
12.6 Å approximately). Another interesting feature for trivalent
coions is the appearance of an additional charge inversion,
which is consistent with the small local oscillations in the
electric field displayed in Fig. 6(a) far away from the colloidal
surface. In addition, integral equation theory displays a good
overall agreement regarding the Monte Carlo simulation data.
The best quantitative agreement is observed in the presence of
the 1:1 electroyte. In this instance, it is observed that HNC/MSA
overestimates the contact values of both ionic profiles, which is

Fig. 6 Monte Carlo simulations of the electric field as a function of the
distance to the surface of an infinite charged planar electrode for several
z:1 electrolytes. Solid, dashed, and dotted-dashed lines correspond to
coions with valences z = 1, 2, and 3, respectively. E0 = s0/(e0e) denotes the
electric field at the surface of the charged electrode located at x = 0. The
surface charge density, s0, of the electrode is 0.05 C m�2 in panel (a) and
0.3 C m�2 in panel (b). Insets display magnifications for comparison purposes.
The radius of cations and anions is 3.3 Å in all cases.
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a well-known limitation of the HNC closure. When the valence
of coions increases, the contact values of the binary electrolyte
are further overestimated. Interestingly, the maximum height
of the layer of multivalent coions and its location are approxi-
mately well described by the integral equation theory.

An experimental realization of the phenomenology dis-
cussed above is very appealing. In this regard, there are metallic

oxide particles that are able to reach positive and negative
surface charge densities as large as 0.6 C m�2 under appropriate
pH conditions.50,51 These extremely high colloidal charges corre-
spond, in principle, to the physical limit where the non-dominance
of counterions should be experimentally observed. Note, however,
that our theoretical calculations and computer simulations suggest
more modest surface charge densities, of the order of or less than
0.05 C m�2, at which the phenomena of charge inversion, local
charge reversal, and a local inversion of the electric field should be
observed experimentally when they are promoted by multivalent
coions and monovalent counterions in concentrated electrolytes.
In fact, latex and silica particles with surface charge densities in
this regime have been used in the past in several electrophoretic
mobility experiments involving multivalent electrolytes.48,52,53

On the other hand, surface charge densities larger than 0.2 C m�2

are required, in principle, to observe experimentally the non-
dominance of counterions and an inversion in the order or
precedence of the mean electrostatic potential at the Helmholtz
plane near the colloid. Regarding the selection of electrolytes,
ions usually do not have exactly the same ionic size in nature.
In order to overcome this problem in the validation of our
theoretical and simulation predictions, the same monovalent
counterion should be chosen in all instances. Then, indifferent
coions with approximately the same ionic size can be selected
even if there is a slight size asymmetry regarding the ionic size of
the monovalent counterion. The main idea is to have electrolytes
that are almost identical and only differ in the valence and
concentration of coions when the electroneutrality condition is
fulfilled. For cationic colloids, Cl�, NO3

�, and ClO4
� anions

could be used as counterions. As Na+, Ca2+, La3+, and Th4+ cations
have approximately the same ionic size,54 they could be used as
coions in the presence of positive colloidal particles. For anionic
colloids, Na+ cations could be used as counterions. Mono-, di-,
and tri-basic phosphate anions (H2PO4

�, HPO4
�2, and PO4

�3)
also have approximately the same ionic size and could be used as
coions in the presence of negative colloidal particles. In fact, the
electrophoretic mobility of iron oxide particles has been recently
measured as a function of Na+:z electrolytes, in which several
mono- and divalent anions taken from the representative
Hofmeister series were used.55 Moreover, the disjoining pressure
of foam films stabilized by an anionic surfactant in the presence
of NaCl, Na2SO4, and Na3 citrate has also been measured.56 The
results reported therein confirm that the ionic correlation effects
are really significant in the cases of divalent and trivalent coions.
The effect of multivalent coions on the electrical double layer of
charged colloids has also been addressed in other experimental
works.57–59 In those studies, it has been shown that the valence
of multivalent coions has a profound influence on the shape of
the force curves between colloidal charged particles, and it has
been proposed that the aggregation of equally charged particles
in the presence of multivalent coions can be described by an
inverse Schulze–Hardy rule. On the other hand, two additional
conditions that should be considered in the selection of electro-
lytes are the following: ions should be soluble at high salt
concentrations and they should be indifferent or inert regard-
ing the colloidal surface. The first condition is related to the

Fig. 7 Reduced ionic densities as a function of the distance to the surface
of an infinite charged planar electrode for several z:1 electrolytes. In all
instances, the surface charge density, s0, of the electrode is 0.05 C m�2,
the concentration of monovalent counterions (anions) is 1 M, and the
radius of cations and anions is 3.3 Å. Panels (a)–(c) correspond to electro-
lytes whose coions (cations) have valences z = 1, 2, and 3, respectively. In
the integral equation theory (IE), a spherical colloid of radius 3000 Å is used
to represent theoretically a charged plane. In the Monte Carlo simulations
(MC) the colloidal particle is an infinite charged planar electrode. Solid and
dashed lines correspond to Monte Carlo simulations and integral equation
results, respectively.
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experimental fact that the solubility of multivalent electrolytes
usually decreases when the valence of ions augments. The
second condition is motivated by the experimental observation
that there are certain electrolytes and colloidal materials with
the property that ions can be adsorbed at the colloidal surface
even at the so-called point of zero charge, that is, when the
colloids are neutral or uncharged. In general, this ionic adsorp-
tion is also dependent on the salt concentration. Ions that are
adsorbed onto neutral or uncharged surfaces are said to be
‘‘specifically’’ adsorbed. In the past, this non-coulombic or non-
electrostatic interaction has been used in the literature to
explain, for example, the sign inversion of the effective colloidal
charge that has been detected experimentally as an inversion of
the electrophoretic mobility at high salt concentrations of multi-
valent electrolytes.60 On the other hand, an inversion of the
electrophoretic mobility has also been observed in the presence
of indifferent or inert electrolytes (i.e., when short-range ‘‘specific’’
interactions between ions and the colloidal surface can be
neglected) via electrophoretic mobility experiments.53 These obser-
vations have been explained without the necessity of ‘‘specific’’
short-range interactions via theoretical calculations that go beyond
the classical Poisson–Boltzmann theory by taking into account ion-
correlations, ionic excluded volume effects, and retardation and
relaxation contributions.61,62 We foresee that even if monovalent
counterions display some degree of ‘‘specific’’ adsorption onto the
colloidal surface, the phenomena of non-dominance of counter-
ions and the non-monotonic order or precedence in the mean
electrostatic potential at the Helmholtz plane predicted in this
work should be sufficiently robust to be experimentally observable
using an appropriate selection of multivalent coions and highly
charged colloids. This should be facilitated if (i) the same counter-
ion is used in all electrolytes, (ii) the coions are indifferent
regarding the colloidal surface and (iii) they have, approximately,
the same ionic size. Also, if the salt is sufficiently concentrated, an
order or precedence in the mean electrostatic potential at the
Helmholtz plane, the phenomena of charge inversion, local charge
reversal, and a local inversion of the electric field near the colloidal
surface should be experimentally detectable at low or moderate
colloidal surface charge densities as predicted by our theory and
simulations.

4 Concluding remarks

The mean electrostatic potential at the Helmoltz plane and the
electric field around charged surfaces have been studied here
in the presence of monovalent counterions and multivalent
coions, when the properties of counterions are the same in all
instances. The behaviour of the electrostatic screening at the
Helmholtz plane has been analyzed as a function of several
parameters such as the valence of coions, the ionic volume
fraction, the colloidal surface charge density, and the colloidal
geometry. A very important outcome of our simulations and
integral equation calculations is that, for equisized z:1 primi-
tive model electrolytes, the properties of the electric double
layer do not converge in the limit of very large colloidal surface

charge densities (as the classical Poisson–Boltzmann approach
predicts). In other words, it is shown explicitly that, for equally-
sized z:1 primitive model electrolytes, counterions do not domi-
nate the properties of the ionic cloud around highly charged
colloids when ion correlations and ionic excluded effects are
taken into account consistently. These ingredients are missing in
classical mean field descriptions, such as the non-linear Pois-
son–Boltzmann theory, in which counterions determine or dom-
inate asymptotically the behaviour of the electrical double layer
in the limit of very high colloidal charges. The present study
complements the prior report of the non-dominance of counter-
ions for z:z electrolytes, symmetric in valence and asymmetric in
size,3,5 proving that the non-dominance of counterions is, by no
means, an exclusive or direct effect of the ionic size-symmetry. In
addition, this survey substantiates the relevance of coions in
aqueous electrolyte dispersions of strongly charged colloids at
high salt concentrations since, in the classical description of the
electric double layer, the size and the valence of coions are
irrelevant at high surface charges.

On the other hand, we have shown that the electrostatic
screening, measured via the mean electrostatic potential at the
Helmholtz plane, displays a non-monotonical order or precedence
for equally-sized electrolytes that are identical except for the
valence and concentration of coions. This order or precedence
depends on several parameters such as the valence of coions, the
ionic volume fraction of the electrolyte, and the size and charge of
the colloid. Based on the planar case, it has been evinced that the
occurrence of this phenomenon can be explained in terms of the
decay rate of the electric field near the colloidal surface, and by
the appearance of a local inversion of the electric field promoted
by multivalent coions in the presence of monovalent counterions.
In the past, a local inversion of the electric field around charged
colloids has been associated with the phenomena of charge
inversion and local charge reversal of the bare charge of electrodes
or nanoparticles.43–45 These phenomena have been observed
experimentally, for example, in different aqueous colloidal
systems containing multivalent counterions.46–49 To our best
knowledge, this is the first time simulations and theoretical
calculations predict the occurrence of charge inversion, local
charge reversal, and a local inversion of the electric field
around charged colloids immersed in aqueous primitive model
electrolytes containing only monovalent counterions and multi-
valent coions, that is in the absence of multivalent counterions
and specific ionic short-range attractions. Thus, this new rever-
sible physical mechanism is relevant to promote charge inver-
sion in a manner that is complementary to the widely studied
mechanism of charge inversion driven by multivalent counter-
ions or by specific ion adsorption. Notice that the presence of a
local charge reversal or charge inversion does not imply neces-
sarily an inversion of the effective charge of a charged colloid,63

which can be indeed observed experimentally via a change of
sign in the associated electrophoretic mobility. If the shear plane
(where the zeta potential is defined) is located very close to the
Helmholtz plane, it could be possible to corroborate the non-
monotonic behaviour of the mean electrostatic potential as
follows: at very low colloidal surfaces an order or precedence in
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the electrophoretic mobility, analogous to the Hofmeister
series, should be observed in fine resolution experiments
when concentrated salts containing multivalent coions and
monovalent counterions are present; under the same electro-
lyte conditions this order or precedence in the electro-
phoretic mobility as a function of the coion’s valence should be
inverted at high colloidal surface charge densities but accesible
experimentally.

In terms of possible applications, we would like to mention
that the phenomenon of charge inversion promoted by multi-
valent coions could be useful to promote the self-assembly
and trapping/release of small charged nanoparticles, globular
proteins, dendrimers or polyelectrolytes at the interface or
frontier of highly charged colloidal surfaces with the same
sign. These processes can be controlled and fine-tuned by
varying the salt concentration and are fully reversible. Given
the well-known scarcity of multivalent anions in nature, another
appealing application could be to use multivalent cations,
instead of multivalent anions, to induce or promote the
phenomenon of charge inversion in the presence of positively
charged electrodes or cationic colloidal particles. The current
mechanism of charge inversion, local charge reversal, and
local inversion of the electric field promoted by multivalent
coions is general, robust, and probably measurable experi-
mentally. As a result, these phenomena are not restricted to
appear only in the spherical and planar geometries studied
here, but they should be observed in other geometries (such as
the cylindrical geometry) and/or in more complex soft matter
systems. We foresee that, under appropriate conditions, the
ionic size asymmetry (due to hydration effects) and image
charge effects (due to dielectric discontinuities) could enhance
significantly the phenomena reported in this study. Such
effects could facilitate the experimental observation of the
non-dominance of counterions and the non-monotonic order
or precedence in the electrostatic screening at the Helmholtz
plane, and they could be very useful to ease the implementation
of practical applications based on the phenomenon of charge
inversion promoted by multivalent coions in concentrated
electrolytes with monovalent counterions. Theoretical and
simulation work along these lines is currently in progress and
will be reported elsewhere.
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48 M. Quesada-Pérez, E. González-Tovar, A. Martı́n-Molina,
M. Lozada-Cassou and R. Hidalgo-Álvarez, Colloids Surf.,
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