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The stability of colloidal suspensions is crucial in a wide variety of
processes, including the fabrication of photonic materials and
scaffolds for biological assemblies. The ionic strength of the
electrolyte that suspends charged colloids is widely used to control
the physical properties of colloidal suspensions. The extensively
used two-body Derjaguin−Landau−Verwey−Overbeek (DLVO) ap-
proach allows for a quantitative analysis of the effective electro-
static forces between colloidal particles. DLVO relates the ionic
double layers, which enclose the particles, to their effective elec-
trostatic repulsion. Nevertheless, the double layer is distorted at
high macroion volume fractions. Therefore, DLVO cannot describe
the many-body effects that arise in concentrated suspensions. We
show that this problem can be largely resolved by identifying
effective point charges for the macroions using cell theory. This
extrapolated point charge (EPC) method assigns effective point
charges in a consistent way, taking into account the excluded vol-
ume of highly charged macroions at any concentration, and thereby
naturally accounting for high volume fractions in both salt-free
and added-salt conditions. We provide an analytical expression
for the effective pair potential and validate the EPC method by
comparing molecular dynamics simulations of macroions and
monovalent microions that interact via Coulombic potentials to
simulations of macroions interacting via the derived EPC effective
potential. The simulations reproduce the macroion−macroion spa-
tial correlation and the virial pressure obtained with the EPC
model. Our findings provide a route to relate the physical proper-
ties such as pressure in systems of screened Coulomb particles to
experimental measurements.
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Coulombic interactions between ionized species affect colloi-
dal suspensions at the microscopic level and have an indirect,

yet crucial, impact on the observable macroscopic characteristics
of the system (1). The Derjaguin–Landau–Verwey–Overbeek
(DLVO) theory (2, 3), proposed in the 1940s, has been crucial
for understanding like-charged colloidal dispersions in a wide
variety of experimental conditions. In this theory, the effective
pair potential between two equally charged macroions immersed
in an electrolyte is expressed as the sum of three terms: a hard-
core potential that takes into account the excluded volume of
macroions (preventing their overlap), an attractive potential due
to short-range (van der Waals) interactions, and an electrostatic
screened Coulomb or Yukawa potential resulting from the lin-
earized Poisson–Boltzmann theory, which is the Debye–Hückel
approximation. Many additions and modifications to the original
theory have been proposed, including polarization effects,
patchiness, or charge regulation, just to mention a few. Special
care should be taken for nonaqueous solvents, divalent ions, or
high salt concentrations, since, in these regimes, ion correlations
are usually important (4–16). Generally speaking, modifications
to the DLVO theory have been pivotal for systems in which the
electrostatics are not well described by the linearized Poisson–
Boltzmann (PB) theory. Although the DLVO theory has been
used extensively to model colloidal dispersions (17), this approach

is not exact within the context of the underlying Debye–Hückel
approximation. In the precise analysis of the force between two
charged spheres in an electrolytic solution, Verwey and Over-
beek encountered additional terms that can be considered cross
terms, resulting from the exclusion of the ionic double layer
surrounding the first sphere by the hard core of the second
sphere (3). Numerical methods exist to quantify such effects (18–
20), yet these approaches explicitly deal with two particles in an
otherwise empty system. While in dilute solutions of macroions
the resulting correction to DLVO is typically small and can
usually be safely neglected, in dense macroion systems, the de-
viation from DLVO can become very significant due to the
overlap between each macroion electrical double layer with the
hard cores of all neighboring particles. As a result, the perfor-
mance of the classical DLVO equation is limited to the de-
scription of dilute systems of macroions (21–25), while many
colloidal processes such as crystallization or glass formation
predominantly occur in dense systems where many-body effects
prevail. Marcelja et al. recognized the importance of many-body
effects at high colloidal densities and low electrolyte concen-
tration, and they described a method that uses cell theory to
project a charged colloidal dispersion to a system of Coulomb
particles (26). This enabled use of Monte Carlo simulations of
the Wigner lattice to study the crystallization of latex suspen-
sions. That method has recently been rediscovered and extended
to charge-regulating particles to describe reentrant melting on
addition of a charging agent to a colloidal suspension (27). Such
an effective Coulomb representation is, however, not suitable to
describe the structure of charged suspensions, particularly in the
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crystalline phase. This is also true of methods comprising the
repulsive forces among macroions via hard-sphere interactions
with effective hard-sphere radii (28–31). Different approaches
such as the (renormalized) Jellium model (32) and methods that
calculate the osmotic pressure within a Wigner–Seitz cell (33, 34)
have been proposed. However, they do not yield information on
the spatial configuration of the macroions and consequently are
limited in describing dense macroion systems.

Model
In this work, we introduce a method to calculate the effective
electrostatic pair interaction between macroions in dense sys-
tems through the identification of their corresponding effective
point charges. We verify the corresponding accuracy by com-
paring the resulting radial distribution functions and pressures to
the primitive model (PM). To begin, we consider spherical and
impenetrable macroions of valence Z and radius a immersed in a
1:1 electrolyte with bulk concentration cs. Traditionally for dilute
macroion systems, the nonlinear PB theory establishes that the
electrostatic potential is described by ∇2ΦðrÞ= κ2res sinhΦðrÞ
outside the macroion, where ΦðrÞ=ΨðrÞe=kBT, ΨðrÞ is the
electrostatic potential, e is the elementary charge, and kBT is the
thermal energy of the solution. The parameter κres =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πλBcs

p
is

an inverse screening length depending on the Bjerrum length
λB ≡ e2=ðkBTeÞ, where e is the relative dielectric permittivity. For
sufficiently small charges, the PB equation can be linearized by
using sinhΦðrÞ≈ΦðrÞ, resulting in the Debye–Hückel approxi-
mation, ∇2ΦðrÞ= κ2resΦðrÞ. The electrostatic potential outside
the macroion is found to be ΦðrÞ= λBQDLVO expð−κresrÞ=r, with
r> a the distance to the center of the particle and QDLVO ≡
Z expðκresaÞ=ð1+ κresaÞ. The electric field, and thus the electro-
static force it exerts on a test charge (35), is the same as that of a
point particle with charge QDLVO. One can therefore identify
QDLVO as the effective point charge in the DLVO theory and
estimate the pair potential between two macroions from the
screened Coulomb interaction of two point charges at a distance D,

UðDÞ
kBT

=Q2λB
expð−κDÞ

D
, [1]

with Q=QDLVO and κ= κres according to DLVO theory.
Apart from being restricted to dilute systems, the DLVO equa-

tion above cannot directly be applied to strongly charged macro-
ions, since the Debye–Hückel approximation no longer holds for
these systems, which, strictly speaking, leads to nonpairwise additive
interaction potentials (36, 37). Alexander et al. (33), however,
showed that nonlinear ion behavior close to the macroion surface
can be embodied in an effective linear screening model by calcu-
lating a renormalized surface charge Z* that, far away from the
charged macroion surface, induces the same electrostatic potential
and electric field as would be obtained within the nonlinear PB
equation (33, 38–42); see Fig. 1F. Regarding a system of macroions
at a concentration ρM and macroion packing fraction η= 4πρMa3=3,
each of the macroions is imagined to be in the center of a charge-
neutral spherical cell with radius R= aη−1=3, such that the summed
volume of all cells matches the system’s volume (21). This is illus-
trated in Fig. 1C. In this spherical geometry, the nonlinear PB
equation and the associated boundary conditions can be written as

Φ″ðrÞ+ 2Φ′ðrÞ
r

= κ2res sinhΦðrÞ [2a]

Φ′ðaÞ=−
ZλB
a2

;Φ′ðRÞ= 0, [2b]

where the prime denotes a derivative with respect to r. The
boundary conditions follow from Gauss’ law and include the global

electroneutrality condition of the whole system. This set of equa-
tions is typically solved numerically, as no general analytical so-
lution is known. Once the numerical solution is determined, one
proceeds by linearizing Eq. 2a around the obtained potential at
the cell boundary, which can be regarded as the Donnan potential,
ΦD ≡ΦðRÞ. This yields the Debye–Hückel approximation Φℓ″ðrÞ+
2Φℓ″ðrÞ=r= κ2Φℓ″ðrÞ for the shifted potential ΦℓðrÞ≡ ðΦðrÞ−ΔΦÞ,
with ΔΦ=ΦD − tanhΦD, and the screening parameter κ=
κres

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshΦD

p
. Analytical solutions to the linearized PB equation

are ΦℓðrÞ≡ a+e+κr=r+ a−e−κr=r. These form an accurate approxi-
mation to the nonlinear profile in the proximity of the cell’s
boundary if one chooses a± = expð∓κRÞtanhΦDðκR± 1Þ=ð2κÞ,
where the latter follows from the constraints ΦℓðRÞ+ΔΦ=ΦD
and Φ′

ℓðRÞ= 0. The effective surface charge can now be ex-
tracted from the derivative of the analytical approximation at
r= a, i.e., Z*≡−Φℓ′ðaÞa2=λB(see Fig. 1F), and one finds Z*=
a+=λBðκa− 1Þe+κa − a−=λBðκa+ 1Þe−κa (43). Then, using κ and Z*
as parameters, the effective interactions between the macroions can
be estimated by using the DLVO theory again.
The accuracy and simplicity of the previous cell model ap-

proach can, however, be improved by calculating an effective
point charge Q directly through identification of a point charge
at r= 0 by extrapolating the analytical approximation (see Fig.
1G), yielding the form Q≡ limr→0−Φℓ′ðrÞr2=λB = ða+ + a−Þ=λB.
The latter can also be expressed as

Q=
tanhΦD

κλB
½κR cosh κR− sinh κR�. [3]

The parameters κ and Q can then be used to approximate the
effective electrostatic interactions in the original macroion sys-
tem by those of point charges, using Eq. 1 to find the pairwise
interaction energy. Although high macroion volume fractions

Fig. 1. The various paths (B–D) from the PM (A) of monovalent microions
and macroions of valency Z to the effective model (E) where interactions are
hard-core Yukawa with effective point charges Q. (F and G) PB cell calcula-
tions for the electric field (or charge within radius r) around a macroion
following from nonlinear calculations (full line) and the Debye–Hückel fit
(dashed line); F illustrates how surface charge renormalization yields a
charge Z* that can be inserted into DLVO theory. In the EPC approach, the
effective point charge Q is calculated directly from the extrapolation dis-
played in G.
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render DLVO-based approaches inaccurate (21–25), the effec-
tive system of point charges has no hard-core volumes that will
overlap with ionic double layers. We therefore expect that Eq. 3
in combination with Eq. 1 will remain accurate even in dense
macroion systems. Note that the hard-core repulsions for D< 2a
should be maintained for the nonelectrostatic part of the pair
interactions. Hereafter, we refer to the latter approach as the
extrapolated point charge (EPC) method. The theoretical moti-
vation for this approach is that screened Coulomb or Yukawa
potentials solve the screened Poisson equation without consid-
ering the hard-core contribution of macroions at finite concen-
tration. Thus, the main advantage of the EPC method is that it
defines effective point charges in a consistent way, taking into
account the excluded volume of highly charged macroions at
any concentration.
In the regime where Z is small and the resulting potential

profile is sufficiently flat throughout the cell, jΦðRÞ−ΦðaÞj � 1,
the analytical approximations to Eq. 3 will become exact on the
entire space between the cell boundary and the macroion sur-
face. As a consequence, a± can be calculated from Φℓ′ðaÞ=
−ZλB=a2 and Φℓ′ðRÞ= 0, and a direct analytical relation between
Z andQ follows (Fig. 1D). Tantalizingly, inserting thisQ into Eq. 1
yields a pair potential similar to the DLVO equation,

UðDÞ
kBT

=
Z2λBe−κD

�
2e−κðR−aÞðκR cosh κR  −   sinh κRÞ�2

D½ð1+ κaÞðκR− 1Þ  +  ð1− κaÞðκR+ 1Þe−2κðR−aÞ�2
, [4]

for D≥ 2a, and V ðDÞ=∞ for D< 2a. The screening parameter κ
that enters Eq. 4 reduces to the reservoir value κres for systems
with a sufficient amount of added salt, for which jΦDj � 1. Re-
call that R= aη−1=3 and that classical (η-independent) DLVO
theory is reobtained for dilute suspensions, which is the limit
R→∞. For completeness, we confirm that in the limit of large
double-layer size, κ−1 � D, Eq. 4 reduces to the Coulombic form
UðDÞ=kBT = ðZ=ð1− ηÞÞ2λB=D, with an effective charge Z=ð1− ηÞ
that is larger than the bare charge Z due to the expulsion of the
ionic background from the hard core (26, 27, 44–46).

To verify our proposed prescription, molecular dynamic (MD)
simulations of macroion/microion mixtures with particle diameters
dM = 2a= 750 Å and d+ = d− = 3 Å, respectively, were performed in
the constant number, volume, and temperature (NVT) ensemble
using the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) package (47). This extreme size asymmetry be-
tween macroions and microions is selected to mimic realistic
experimental colloidal systems. Macroions and monovalent micro-
ions, fulfilling the electroneutral condition, were placed inside a
cubic simulation box of length L under periodic boundary condi-
tions. In the PM representation that we applied here, ionic species
are represented by repulsive-core spheres with point charges in
their centers immersed in a continuous solvent (48–51). The pair-
wise forces among all particles have a short-range repulsive-
core potential component, urcij ðDÞ, and a long-range Coulombic
pair potential contribution, uelij ðDÞ=kBT = λBzizj=D, where zi and
zj are the valences associated to particles i and j, respectively.
These interactions are handled properly, using the particle
mesh Ewald technique (52). We model the repulsive-core pair
potential between a particle of species i and a particle of spe-
cies j, separated by a distance D, as an impenetrable hard-
core urcij ðDÞ=∞ for D≤Δij, a shifted–truncated Lennard–Jones
potential urcij ðDÞ=kBT = 4½ðσ=ðD−ΔijÞÞ12 − ðσ=ðD−ΔijÞÞ6�+ 1 for
Δij <D<Δij + 21=6σ, and by a potential urcij ðDÞ= 0 for
D≥Δij + 21=6σ, where Δij = ðdi + djÞ=2− σ is the hard-core diam-
eter. The parameter σ regulates the hardness of the repulsive-core
interactions. To mimic the hard-core interaction characteristic of
the PM, σ is set equal to 0.1 nm. We use λB = 7.143 Å throughout
the text for theoretical and simulation calculations. Additional
details of the simulation setup can be found in refs. 49–51.

Results
In Fig. 2, we compare radial distributions from computationally
expensive PM MD simulations (circles) to much faster and more
economic effective-model descriptions using MD simulations
(solid lines), and integral equations (Fig. 2B, dashed lines). In
the PM approach, we use a cubic simulation box of length
L= 8dM = 6,000 Å, containing 360 macroions of valence Z= 80,
31,680 small monovalent counterions (-e), and 2,880 small

A B

Fig. 2. Comparison of the pair correlation between macroions resulting
from the full-ion PM MD simulations (circles) with those obtained by using
repulsive-core effective screened Coulomb models (lines), relying on the the
EPC approach (green) and surface charge renormalization approach (black).
The solid lines in A represent MD simulations results, whereas the dashed
lines in B were obtained from the Ornstein–Zernike equation within the RY
closure; both A and B correspond to the same system in which the valence
and packing fraction of the macroions in the PM are Z = 80 and η= 0.3682,
respectively.

A

B

Fig. 3. The total pressure in the macroion/microion mixture as a function of
(A) Z for a fixed macroion volume fraction η= 0.3682, and as a function of (B)
η and for Z = 80. Both graphs show data for both the salt-free (solid, lower
set of lines and circles) and the added-salt case (dashed, upper set of lines
and circles), in which 2,880 extra cations and 2,880 extra anions were added.
The lines result from RY calculations using the effective model parameters
following from the EPC approach (green) or surface charge renormalization
approach (black). The circles show the results of PM simulations, and error bars
are included for those cases where the error is larger than the circle size.
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monovalent coions (+e). In the effective-model approach, micro-
ions are included implicitly in the Yukawa interactions between
macroions with an effective charge Q and inverse screening length κ.
The charges associated to the macroion profiles shown in Fig. 2
are Q= 204 following the EPC approach and Q= 167 following
the surface charge renormalization approach in combination with
the DLVO theory. An excellent agreement between the heavy-duty
PM results, in which microions are included explicitly, and the
computationally inexpensive MD Yukawa simulations using the
EPC prescription can be observed in Fig. 2A. In contrast, surface
charge renormalization in combination with the DLVO theory de-
viates significantly from PM simulation results, as expected at this
volume fraction. The use of integral equations theory allows for an
even faster numerical calculation of the radial distribution functions
within the effective model. The Rogers–Young (RY) closure (53),
which is known for its superb accuracy for hard-core Yukawa sys-
tems (46, 54–56), has good qualitative agreement compared with
PM results, as seen in Fig. 2B. Note that PB techniques are grand
canonical and therefore require a reservoir ion density cs or
screening parameter κres, while the number of ions in the PM system
is fixed, as there is no particle exchange with a reservoir. Therefore,
we add an additional step to our PB method to obtain canonical
results: for any choice of cs, we integrate the resulting ion profiles in
the cell, which yields the total number of ions per macroion. The
latter can be compared with the number of ions per macroion in the
simulation box. Subsequently, the right value for cs is determined by
a root-finding procedure with respect to their difference.
The total microion/macroion pressure resulting from the PM,

pPM, as well as the macroion pressure in the effective model, pEM,
can be calculated via the virial equation p= ðN=V ÞkBT +
ð1=3V ÞhPN

i<jDij ·Uij′ðDijÞi, where N sums all particles, in the PM,
or only the macroions, in the effective model, and Uij′ðDijÞ is the
derivative with respect to the distance Dij of the (un)screened
Coulomb pair interaction between particles i and j. However, to
relate pEM to pPM, it is essential to include a correction term that
can be regarded as the pressure of a homogeneous background
of counterions and coions,

pPM ≈ pEM + kBT
κ2

8πλB

�
1+

κ4res
κ4

�
. [5]

Density functional theory (21, 22, 25, 57) may be applied for a
rigorous derivation of this pressure difference, which shows up as
a volume term in the free energy of the effective system (22, 58–
60). We refer to SI Text for this. Note that Eq. 5 implies that the
macroion osmotic pressure, which is the pressure with respect to
the ion reservoir, Π= pPM − 2cskBT (34), does not equal pEM in
general; only if κ approaches κres does the pressure difference in
Eq. 5 reduce to kBTκ2res=ð4πλBÞ= 2cskBT.
Fig. 3 shows the PM pressure pPM resulting from PM simula-

tions, as well as the effective-model approximations following
from Eq. 5 applying the RY closure. Even though the agreement
between the radial distribution functions obtained from the EPC
method using the RY closure and the PM simulations is not as
accurate as that obtained from the EPC effective screened
Coulomb simulations (see, e.g., Fig. 2), we have observed that
the virial pressure obtained from the RY closure and the

effective screened Coulomb simulations using the EPC approach
agreed with the pressure pPM obtained from the PM simulations
within the corresponding numerical uncertainty. One observes
superior accuracy of EPC with respect to the surface charge
renormalization approach for a wide range in Z (Fig. 3A), and in
particular for high η (Fig. 3B). While the dashed lines in Fig. 3
represent added salt cases, the full lines correspond to a system
without coions, i.e., a salt-free “reservoir”: cs = κ2res=ð8πλBÞ= 0
(61, 62), for which Eqs. 2a and 2b in principle cannot be solved.
Our cell calculations, however, show that the salt-free limit
κres → 0 is perfectly well defined and can be characterized by the
condition that the number of coions is negligible with respect to
the counterions. For small κres, all relevant physical quantities
such as the number of ions per macroion, Q, and κ converge to
their values in a salt-free environment. Salt-free cases therefore
do not require a root-finding procedure with respect to κres, but
instead can be considered by choosing κres sufficiently small such
that κres=κ � 1, i.e., ΦD � 1. For small macroion charges,
ZλB=a< 1, we find that the resulting physical κ is in accordance
with a homogeneous distribution of neutralizing counterions,
κ2 = 3ZλBη=ða3   ð1− ηÞÞ (21, 44, 45, 62). This, in combination with
Eq. 4, yields a description at any density of the pair interactions in
salt-free systems depending on Z, λB, a, and η only. The pressure
correction in Eq. 5 reduces to kBTκ2=8πλB. The strong dependence
of κ on η, is particularly important in other geometries, such as the
charged two-plate system, from what we study here. In the latter,
the distance between the plates also sets the system’s volume and
therefore κ, yielding a nonexponential form for the pair potential
(63). However, for macroion suspensions this is not the case, as η is
a fixed parameter independent of the configuration.

Conclusions
In this work, we have introduced a method that extends the
capabilities of the DLVO theory to high valences and volume
fractions of colloidal macroions using no additional assumptions
besides the underlying PB theory. Akin to the original theory,
this approach is mainly applicable to systems with monovalent
microions for which ion correlations are unimportant, although
approximate extensions to systems with correlated multivalent
counterions might be obtainable. We also propose a route to relate
the pressure in the effective system of macroions to the osmotic
pressure that can be measured experimentally in colloidal systems,
for example, in sedimentation profiles (64, 65). Our method
demonstrates accuracy with respect to acquiring the measurable
properties of charged colloidal suspensions, and can therefore be
applied to guide and interpret experiments on related systems.
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