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We study the consistent inclusion of ionic size-asymmetry for a wide range of macroparticle charges in

the primitive model of an electrical double layer around a spherical colloid using (1) Monte-Carlo

simulations, (2) the hybrid integral-equation formalism of hypernetted-chain (HNC) and

mean-spherical approximation (MSA), and (3) the Gouy–Chapman theory modified for unequal ionic

radii. In our simulations, for a weakly charged macroion, we observe surface charge amplification from

adsorption of like-charged ions, as well as charge reversal due to overcompensation of the bare

nanoparticle charge by counterions. When the nanoparticle charge increases, we detect both

asymmetric neutralization and asymmetric electrostatic screening that depend on the sign of the

macroion’s valence. Specifically, there exists a higher reduction of the original bare charge and a smaller

electrostatic potential for the case of negative nanoparticles with positive small counterions, versus the

case of positive nanoparticles with negative large counterions. These coarse-grained results are in

agreement with the predictions of asymmetric charge renormalization (P. Gonz�alez-Mozuelos and

M. Olvera de la Cruz, Phys. Rev. E, 2009, 79, 031901), in which the aqueous solvent is explicitly taken

into account. Results from the Gouy–Chapman theory modified for unequal ionic radii differ notably

from our obtained Monte-Carlo data, while good agreement exists between simulation results and

HNC/MSA-treatment findings.
I. Introduction

The study of charged nanoparticles and colloidal solutions is of

great relevance due to the enormous potential of technological

applications in both industry and biological sciences,1–4 such as

diagnostics5–7 and photonics.8–10 Colloidal dispersions can be

readily controlled via osmotic pressure, salt concentration, as

well as pH-variation, in order to generate unique materials11,12

via well defined self-assembly routes.13–17 These applications rely

on effectively controlling the underlying interactions that are

mainly repulsive.18–21 Recent experiments demonstrate clustering

near surfaces of charged colloidal systems of negative particles

and not of the opposite, positive kind.22 This observed charge-

dependent asymmetry suggests that many important physical

quantities should be further analyzed, which will require the

development of more robust models that can include specific

interactions between ions and the solvent, among other details.

Incidentally, such characteristics of colloidal solutions as the

regimes of stability and flocculation and the values of the zeta

potential1,2 are very relevant from a practical viewpoint. For

dilute colloidal systems, these properties depend mainly on the

ionic structure formed around a single charged macroion—the

so-called electrical double layer—that reflects the many-body
aInstituto de Fı́sica, Universidad Aut�onoma de San Luis Potosı́, �Alvaro
Obreg�on 64, 78000 San Luis Potosı́, San Luis Potosı́, M�exico
bDepartment of Chemistry and Department of Materials Science and
Engineering, Northwestern University, Evanston, Illinois 60208, USA

† Present address: Grupo de Fı́sica de Fluidos y Biocoloides,
Departamento de Fı́sica Aplicada, Universidad de Granada, 18071
Granada, Espa~na.

2056 | Soft Matter, 2010, 6, 2056–2065
electrostatic and entropic correlations among the colloids, ions

and solvent particles.

Historically, the Gouy–Chapman model23,24 describes the

charge at the colloidal surface as being balanced by a diffuse

ionic layer of punctual charged ions. In the Poisson–Boltzmann

picture, this representation gives unrealistic values of local ionic

concentration close to the colloidal surface. This theoretical

failure then motivated the development of the Stern model,25 in

which the total ionic charge is separated into two parts: an

adsorbed layer at the locus of the hydrated ions (known as the

Stern or Helmholtz plane) and a diffuse layer (or Gouy–

Chapman layer) beyond it. Additionally, the Stern model

proposed that the ions in the diffuse layer interact with the

charged surface only via electrostatic interactions, while the ions

at the Stern layer can have a chemical affinity for the surface that

allows them to be specifically adsorbed via covalent bonds or van

der Waals forces.

This model was further refined by Grahame26 in the triple-

layer model, wherein a distinction is made between the location

of the Stern layer (localized at the inner Helmholtz plane) and the

location where the Gouy–Chapman layer begins (outer Helm-

holtz plane). The ions that are specifically adsorbed at the inner

Helmholtz plane are known as specific ions, whereas the point-

ions that are in the diffuse layer beyond the outer Helmholtz

plane are called indifferent ions due to their electrostatic-only

interaction with a charged colloid.

For a binary electrolyte, if only indifferent ions are present in

the electrical double layer and one ionic species is allowed to

reach the inner Helmholtz plane, the corresponding Poisson–

Boltzmann equations reduce to the unequal-radius-modified
This journal is ª The Royal Society of Chemistry 2010
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Fig. 1 The model system (snapshot obtained from our MC simulations,

on the left) and schematic representation of the inner Helmholtz plane

(IHP) and outer Helmholtz plane (OHP) around the macroion.
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Gouy–Chapman theory, first proposed by Valleau and Torrie for

planar geometry.27 However, the ionic size asymmetry therein is

included inconsistently, since the size effects of ions are treated

only with respect to the colloid (through the Helmholtz planes),

while they see one another still as point ions.

When the ionic size and the size asymmetry are taken into

account consistently, counterintuitive phenomena not predicted

by the unequal-radius-modified Gouy–Chapman theory occur,

such as the local overcompensation of the bare colloidal charge

by counterions (charge reversal), at highly charged surfaces, due

to ionic size correlations, or the non-dominance of the

counterions.28,29 Additionally, for weakly charged macroions, the

inclusion of the ionic size asymmetry predicts attraction of like-

charged ions to the first ionic layer on the colloidal surface

(surface charge amplification).30–32 In surface charge amplifica-

tion, the first layer of adsorbed co-ions amplifies the bare

colloidal charge without the additional inclusion of specific

interactions. Although this phenomenon is also predicted by the

simplistic size-asymmetric Poisson–Boltzmann-like theories,31,33

the unequal-radius-modified Gouy–Chapman approach differs

notably from Monte Carlo simulations in the primitive model.29

On the other hand, it is well known that the extent of the elec-

trical double layer determines the microscopic properties of

a solution, since it provides information on the interaction range

among the colloids. For highly charged like colloids, it is expected

that they repel one another due to long-range interactions, which

then increases the solubility of the underlying solution. However,

if the electrical double layer around each macroparticle is very

compact, short range interactions such as van der Waals forces

between like charges can become important. This behavior can be

understood in terms of charge renormalization as follows:

a stronger reduction of the bare charge implies a lower solubility in

a dilute colloidal suspension. Gonz�alez-Mozuelos and Olvera de

la Cruz34 have recently demonstrated, theoretically, the existence

of asymmetric charge renormalization that explains some of the

aforementioned experimental observations;22 specifically, it has

been found that the negative charged nanoparticles are effectively

less charged than the positive ones of comparable magnitude

when a simplified explicit model of the solvent (water) is

employed, while slight asymmetries are also reported in small

nanoparticles by using the SPC/E explicit solvent water model.35

This behavior could also be explained alternatively, or

complementarily, at the level of a coarse-grained model, wherein

the solvent is a continuous media and different effective hydra-

tion-radii for the ionic species are considered. Indeed, the most

primitive models of ion solubility, such as the Born solubility

model, include the size of these ions as a fundamental parameter.

Therefore, the solvent can be taken into account implicitly by

using different effective radii for the cations and anions of the

salt. In the present work, we precisely explain the physical

consequences of this coarse-grained model for the system of an

electrical double layer around a spherical macroion by employ-

ing (1) Monte-Carlo (MC) simulations, (2) an integral equation-

theory based on the hypernetted-chain formalism and

mean-spherical approximation (HNC/MSA), and (3) a quasi-

point-like Poisson–Boltzmann scheme in the guise of unequal-

radius-modified Gouy–Chapman (URMGC) treatment. In

particular, we show that both the colloidal-charge neutralization

and electrostatic screening of a spherical macroion behave
This journal is ª The Royal Society of Chemistry 2010
unequally as functions of the colloidal-charge sign, due to the

presence of a size-asymmetric electrolyte that is not only in

agreement with the findings of Gonz�alez-Mozuelos et al.34 at

high colloidal-charges, but also consistent with electro-kinetics

experiments near the point of zero charge.36,37

This paper is structured as follows. The model system and the

theoretical and simulation formalisms employed are detailed in

Section II. In Section III, the main results of this work are pre-

sented and discussed. Finally, a summary of relevant findings

and some concluding remarks are given in Section IV.
II. Theoretical formalism

A. Model system

In this work, we consider an infinitely-diluted colloidal solution

that contains a single spherical macroion, of radius and valence

rM and zM, respectively, which is immersed in a continuum

solvent of dielectric constant 3. The colloidal sphere has an

associated constant surface-charge density s0 ¼ zMe/4prM
2,

where e denotes the protonic charge, and is surrounded by

a binary electrolyte. In the primitive model, the colloidal mac-

roion and the ions are modeled as hard spheres of radii ri (i ¼M,

+, �) along with embedded punctual charges, qi ¼ zie, at their

respective centers. For definitiveness, the cations have been

chosen as the smallest species of the binary electrolyte; that is, r+

< r�, with the ratio between the ionic radii r�/r+¼ 2 analogous to

what has been used in prior works.29,38,39 Thus, the interaction

potential for a macroion-ion pair and an ion-ion pair is given by

UijðrÞ ¼
N; for r\ri þ rj ;

qiqj=ð4p 303 rÞ; for r $ ri þ rj ;

(
(1)

where the subscripts {i, j} ¼ M, +, � and r denote the distance

between the centers of two particles of types i and j. A schematic

representation of our model system is shown in Fig. 1.
B. HNC/MSA and URMGC theories

In the past, several theoretical approaches have been used to

study the electrical double layer, such as integral equations,28,40,41

density-functional theories,42–45 and modified Poisson–Boltzmann

schemes.46 Among these theoretical methodologies, integral

equations with the hypernetted-chain closure and mean spherical
Soft Matter, 2010, 6, 2056–2065 | 2057
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Fig. 2 A schematic representation of charge reversal and surface charge

amplification (see explanation in the text).
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approximation (HNC/MSA) have shown good agreement with

simulation results for Coulombic systems of several geome-

tries,47–49 including the case of asymmetric ion-sizes.29 As such,

we use here the HNC/MSA-theory.

The Ornstein–Zernike equation for a dispersion of infinitely

diluted macroions (rM¼ 0) in the HNC/MSA-approximation that

corresponds to our binary-electrolytic system can be written as:28

hMjðrÞ ¼ cMjðrÞ þ
X

k¼þ;�
rk

ð
hMkðtÞckj

���~r�~t ��� dV

for j ¼ þ;� (2)

where the cMj(r) ¼ �bUMj(r) + hMj(r) � ln [hMj(r) + 1] corre-

sponds to the HNC closure and the ckjðj~r�~t jÞ takes on the

analytical expressions from MSA for bulk electrolytes.50,51 As

presented, eqn (2) comprises a complete set of integral equations

for the spherical, electrical double layer that can be solved

numerically using an iterative Picard method.47

On the other hand, if the HNC closure is used for the cMj(r)

and the expression ckjðj~r�~t jÞ ¼ �bqkqj=ð3j~r�~t jÞ is inserted in

eqn (2), the integral-equation version of the unequal-radius-

modified Gouy–Chapman theory in spherical geometry is

obtained. We note that, under this approximation, the ionic-size

correlations between electrolyte ions are neglected.

In order to clearly establish the primitive and quasi-punctual

models employed in our simulation and theoretical approaches,

let us introduce the quantities of macroion-ion contact distances,

denoted by dM+ and dM�, to be given in the following:

dMl ¼

ðrM þ rþÞ; for l ¼ þ; in MC simulations;

HNC=MSA and URMGC;

ðrM þ r�Þ; for l ¼ �; in MC simulations;

HNC=MSA and URMGC

8>>>>><
>>>>>:

(3)

Therefore, in the MC simulations, HNC/MSA and URMGC

theories, the asymmetry in size between the ions and the mac-

roion is always taken into account via a closest-approach

distance that is different for each ionic species. In particular, dM+

corresponds to the inner Helmholtz ‘‘plane’’ (IHP), and dM� to

the outer Helmholtz ‘‘plane’’ (OHP) as is shown schematically in

Fig. 1, and as is discussed in the Introduction (note that in

spherical geometry, the Helmholtz planes correspond to

concentric shells which become flat surfaces when rM / N).

Analogously, the ion-ion contact distances, d+ +, d� �, and

d+ �( ¼ d� +), are respectively given by

dij ¼

2rþ; for i ¼ j ¼ þ; in MC simulations

and HNC=MSA;

2r�; for i ¼ j ¼ �; in MC simulations

and HNC=MSA;

ðrþ þ r�Þ; for i ¼ þ and j ¼ �; in MC

simulations and HNC=MSA;

0; for any value of i and j; in URMGC

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(4)

Here, we observe that in the URMGC theory, the ions interact

among themselves as point charges while they take on a finite size

in both simulations and the integral-equation approach. Thus,
2058 | Soft Matter, 2010, 6, 2056–2065
these macroion-ion and ion-ion closest-approach distances

determine the quasi-point-like nature of these ions associated

with the URMGC scheme and show that the excluded-volume

effect is taken into account consistently only in MC simulations

and in the HNC/MSA-theory.

In addition, very important structural information can be

calculated from the radial distribution functions, such as the

integrated charge, namely,

PðrÞ ¼ zM þ
X

i¼þ;�

ðr

0

zirigiðtÞ4pt2dt (5)

and the mean electrostatic-potential,

jðrÞ ¼ e

4p303

ðN

r

PðtÞ
t2

dt (6)

The integrated charge is a measure of the net charge (in units

of e) inside a sphere of radius r centered at the macroion. At the

colloidal surface, we impose P(rM) ¼ zM, and P(r / N) ¼ 0 due

to the electroneutrality condition. We note that when P(r)zM < 0,

the counterions not only neutralize the native colloidal charge

but also somewhat overcompensate it, resulting in a net charge of

opposite sign to zM. Such behavior represents the so-called

charge reversal28–30 (see Fig. 2). It is possible to observe experi-

mentally the phenomenon of charge reversal52–55 when the inte-

grated charge associated to a sphere of radius r* corresponds to

the effective charge of the macroion and P(r*)zM < 0.

On the other hand, surface charge amplification can also occur

if P(r)zM > 0 and |P(r)| > |zM|, since in this case, the macroion is

adsorbing ions of the same sign as its bare charge, zM, which

would increase the original bare charge at the surface. We refer

here to this phenomenon as surface charge amplification31

(see Fig. 2). Though this phenomenon has been misleadingly

referred to as ‘‘overcharging’’ in previous works,30,32,33 we term it

here as surface charge amplification to avoid confusions with the

phenomena of charge reversal. In the presence of a 1 : 1 size-

asymmetric electrolyte, surface charge amplification is expected

to have a maximum value at the OHP. This means that even if

surface charge amplification is present, it is not necessary
This journal is ª The Royal Society of Chemistry 2010
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reflected in the overall effective charge of the colloid away from

its surface due to the presence of counterions in the further

layers. Thus, the experimental detection of surface charge

amplification is more difficult than the detection of charge

reversal, since it involves mainly the co-ions being adsorbed

between the Helmholtz planes [see inset in Fig. 5(b)]. Moreover,

surface charge amplification disappears at high surface charge

densities due to the electrostatic repulsion exerted by the mac-

roion over the co-ions. Possible experimental realizations of

surface charge amplification could be obtained through the

technique used by Cuvillier and Rondelez.56 Other possibilities to

observe surface charge amplification are proposed by Messina.31

Regarding the mean electrostatic-potential [eqn (6)], this

quantity provides information on the electrostatic screening of

the colloidal charge as a function of radial distance from the

macroion. In particular, the mean electrostatic-potential in the

neighborhood of the Helmholtz zone is usually identified with

the zeta potential, z, of electrokinetic phenomena (i.e., the

potential at the plane of shear or at the slipping plane1). Exper-

imentally, the zeta-potential can be measured from phenomena

involving a tangential fluid-motion adjacent to a charged surface,

as found in electrophoresis, electro-osmosis and streaming

current. Thus, a knowledge of the zeta-potential becomes very

relevant in physical chemistry because it allows for the charac-

terization of diverse macroscopic features found in charged

colloidal systems, which include stability and flocculation

properties.1–4

Although there exists a conventional and widely accepted

definition of the zeta-potential, it is not theoretically possible to

exactly predict the localization of the slipping plane. Some

experiments suggest that the z-potential is located very close to the

colloidal surface.1,57 Moreover, it has been previously shown,

theoretically and through simulations, that anomalous curvatures

of the mean electrostatic-potential within the restricted primitive

model58 are also present in the case of asymmetric ionic size,29

which could be relevant in the study of differential capacities in

colloidal charged systems.59–61 For this reason, as well as for the

strong relation between the zeta-potential and the mean electro-

static potential near a charged surface, it is very important to

analyze the electrostatic potential at the Helmholtz planes. Thus,

in the following, we focus on the electrostatic potential at the

closest-approach distance of small cations with respect to the

macroparticle (or inner Helmholtz plane), identified by jIHP, and

on the electrostatic-potential associated with the closest-approach

distance of large anions with respect to the macroion (or outer

Helmholtz plane), denoted by jOHP (see Fig. 1).
Fig. 3 The mean electrostatic-potential at the Helmholtz planes, as

functions of the surface charge density for a 1 : 1, 1 M electrolyte around

a macroion of radius rM ¼ 15 �A. The squares, solid lines and dashed lines

correspond to an electrolyte of radii r+ ¼ 2.125 �A and r� ¼ 4.25 �A in the

MC, HNC/MSA, and URMGC approaches, respectively.
C. Monte-Carlo simulations

The Monte-Carlo simulations of the spherical electrical double

layer consider a cubic box with a macroion fixed at the center

under periodic boundary conditions. The electroneutrality of the

system is imposed via the following relation:

N�z� + N+z+ + zM ¼ 0 (7)

where N� and z� denote the number and the valence of the

anions, respectively; analogously, N+ and z+ denote the number
This journal is ª The Royal Society of Chemistry 2010
and the valence of the cations. Lastly, the quantity zM represents

the valence of the macroion.

In order to correctly evaluate the long-range Coulombic

potential, we use an Ewald-sum approach with conducting

boundary-conditions.62,63 The damping constant a is 5/L, and the

vectors in ~k-space, used for calculating the reciprocal-space

contribution to the energy, satisfy the condition k # 5. The

length L of the simulation box is determined by the density and

the total number of ions, Nt ¼ N� + N+, which is between

Nt¼ 1000 and Nt¼ 2000. After Nt attempts to move an arbitrary

ion, a Monte-Carlo cycle is counted. A thermalization process

considers at least 1 � 105 MC cycles, and the canonical average

involves from 2 � 105 (for high zM values) to 1 � 106 (for low

zM values) MC cycles.
III. Results and discussion

In all the calculations reported in this work, we consider a size-

asymmetric monovalent binary electrolyte bathing a charged
Soft Matter, 2010, 6, 2056–2065 | 2059
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Fig. 4 Radial distribution functions, gMj(r), integrated charge, P(r), and

mean electrostatic-potential, j(r), as functions of the distance to

a spherical uncharged colloid of radius 15 �A. The squares, solid lines and

dot-dashed lines correspond to the MC, HNC/MSA and URMGC

results, respectively, associated to a 1 : 1, 1 M, size-asymmetric electrolyte

of radii r+ ¼ 2.125 �A and r� ¼ 4.25 �A. The circles and dashed lines (main

panel) correspond to the gMj(r) of a 1 M hard spheres mixture of radii

r1 ¼ 2.125 �A and r2 ¼ 4.25 �A, obtained via MC simulations and

HNC/MSA calculations. Here and in the rest of the figures, the distance

r0 is measured from the colloid surface.
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macroparticle of radius rM ¼ 15 �A and of valence zM, in an

aqueous continuum media of dielectric constant and temperature

3 ¼ 78.5 and T ¼ 298 K, respectively. In the primitive model, the

radii of the positive and negative species are r+ ¼ 2.125 �A and

r� ¼ 4.25 �A, respectively.

Due to their relevance, in Fig. 3, we plot the mean electro-

static-potential at the inner Helmholtz plane, jIHP, and at the

outer Helmholtz plane, jOHP, as functions of the colloidal

surface-charge density, s0, obtained via MC simulations, and the

HNC/MSA and URMGC theories, for a 1 : 1, 1 M size-asym-

metric electrolyte around a spherical macroion. In Fig. 3(a), it is

observed that, at the point of zero charge (s0 ¼ 0), there exists

a non-vanishing electrostatic potential due to the adsorption of

small positive cations. This behavior is consistent with the exis-

tence of the so-called zero surface-charge double layer originally

predicted by Dukhin and coworkers64,65 more than two decades

ago. In fact, this concept has been reviewed recently in an

experimental work on the electro-kinetics of uncharged

colloids,37 where the author establishes that ‘‘.a double layer

might in fact exist, even when there is no electric surface charge at

all (on the colloid), solely because of the difference in cation and

anion concentrations within the interfacial water layer.’’ and

also provides experimental results supporting this phenomenon.

Such difference in cation and anion concentrations (with the

corresponding charge separation near the surface of an

uncharged colloidal particle) can be ascribed to the difference in

the distances of the closest-approach from cations or anions to

the colloidal particle, as Dukhin and other authors have

proposed.36,66–70 On the other hand, far from the point of zero

charge, it is found that the magnitude of jIHP is larger for

positively charged macroparticles than for negative ones. This

would suggest that the small counterions (zM < 0) neutralize and

screen the bare colloidal charge more effectively than big coun-

terions (zM > 0). Interestingly, the HNC/MSA results display

a good agreement with simulation data, in contrast to the poor

concordance of the URMGC results, especially for systems far

from the point of zero charge.

In Fig. 3(b), the jOHP as a function of s0 is illustrated. In this

case, the MC simulations and HNC/MSA results show that the

jOHP is not only smaller in magnitude for the negative values of

the macroion’s charge, with respect to the positive ones, but also

that it can have a positive sign in the region around the point of

zero charge [even for negative values of s0, see inset of Fig. 3(b)].

This behavior resembles what is observed in the a-alumina zeta-

potential measurements by Johnson et al.,36 in the presence of 1

M LiNO3, for varying pH [see Fig. 2(b) of ref. 36]. In that work,

it is proved that the zeta-potential is positive in a wide region of

pH. Assuming that there is a sign change in the bare colloidal

charge within that pH region—as occurs with other monovalent

electrolytes in the same work— the Smoluchowski approxima-

tion that relates the electrophoretic mobility to the zeta-potential

through m ¼ 3z/h, where h denotes the viscosity, suggests that

such positive values in zeta-potential, even for negative charges,

are due to a preferential adsorption of the positive (Li+) ions,

which could be explained partially if the ionic-size asymmetry is

taken into account in a consistent manner, as has been done here.

To further elucidate how the aforementioned potential-charge

behavior arises naturally from our model, let us first consider an

uncharged colloidal particle of radius rM ¼ 15 �A surrounded by
2060 | Soft Matter, 2010, 6, 2056–2065
a 1 : 1, 1 M size-asymmetric binary electrolyte of radii r+¼ 2.125 �A

and r� ¼ 4.25 �A. The corresponding profiles of radial distribu-

tion functions, gMj(r), integrated charge P(r), and mean electro-

static-potential j(r), are plotted in Fig. 4 [gMj(r) in the main

panel, and P(r) and j(r) in the insets]. In this figure, we observe

from the gMj(r) of MC and HNC/MSA that the small cations are

adsorbed in a region between the Helmholtz planes that is

inaccessible to the anions. This asymmetric behavior results in

a mean electrostatic-potential taking on a value different from

zero at the IHP, as well as in the adsorption of finite charge at the

OHP in the case of a charge-neutral colloidal particle.

In order to explain the origin of this adsorption, we now

consider two limiting cases: (i) when the electrolyte has a non-

zero size while interacting with the uncharged colloid but is

considered punctual when interacting with other ions (URMGC

theory) and (ii) when the electrolyte is uncharged (that is, in the

limit when it is simply a size-asymmetric hard sphere mixture; see

main panel of Fig. 4). When the ionic-size asymmetry is partially

taken into account [case (i)], the degree of adsorption of cations

and anions occur asymmetrically near the Helmholtz planes,

resulting in a non-vanishing mean electrostatic-potential at the

IHP as well as a non-zero colloidal net charge being adsorbed

(see insets) at the OHP at the zero-charge point. However, these

URMGC quantities decay monotonically as functions of the

distance beyond the OHP.
This journal is ª The Royal Society of Chemistry 2010
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Fig. 5 The radial distribution functions, integrated charge, and mean

electrostatic-potential as functions of the distance to a spherical, charged

colloid of radius 15 �A. The squares, solid lines and dot-dashed lines are

associated to a 1 : 1, 1 M, size-asymmetric electrolyte of radii r+ ¼ 2.125 �A

and r� ¼ 4.25 �A for MC, HNC/MSA and URMGC, respectively. In

panel (a) the valence of the macroion is zM ¼ �12, whereas in panel

(b) zM ¼ 12.
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In contrast, the radial distribution functions corresponding to

the size-asymmetric electrolyte in the primitive model and the

size-asymmetric hard-spheres mixture [case (ii)] are very similar.

This means that the main contribution to the electrolytic

adsorption comes from the hard-sphere depletion forces. These

depletion forces are responsible for the incremental intensity-

difference in ionic adsorption already seen in the URMGC-

theory and as well for the oscillations in the radial distribution

functions, integrated charge, and mean electrostatic-potential

away from the OHP, as observed in the MC simulations and

HNC/MSA results.

Additionally, we note that the adsorption of anions is slightly

higher at the OHP when compared with the hard-sphere case,

whereas the opposite happens for the cations at the IHP. This

behavior can be rationalized when we realize that at the OHP, in

addition to the depletion forces attracting the anions towards the

uncharged colloidal particle, there are two net competing elec-

trostatic forces: one pushing the aforementioned anions towards

the macroparticle, due to the adsorbed small cations in-between

the Helmholtz planes, as well as another net electrostatic force

pulling the ions away from the colloidal particle, as exerted by

the electrolyte in bulk. In this case, the electrostatic attraction

due to the layer of adsorbed cations overcomes the electrostatic

bulk attraction, and consequently, the adsorption of anions

increases with respect to the hard-sphere case. A similar argu-

ment can be given for the decrease of the cations near the IHP.

We note that, however, when the valence of the ions is increased,

the electrostatic bulk attraction over the cations and anions at

the point of zero charge can be notably augmented, then

resulting in a ‘‘drying’’ of both species at the Helmholtz planes

(see e.g., refs 32 and 71).

Let us now consider the same system of electrolyte, but with

a charged colloidal particle. In Fig. 5, the radial distribution

functions, integrated charges, and mean electrostatic-potentials

are presented for zM ¼ �12 [Fig. 5(a)] and zM ¼ 12 [Fig. 5(b)],

based on results from MC simulations and the HNC/MSA and

URMGC theories. Here, it is seen that for zM ¼ �12, the

adsorption of the cations increases at the IHP, while that of the

anions decreases at the OHP, when compared to the uncharged

case displayed in Fig. 4, given that, for zM < 0, the cations are the

counterions and the anions are the co-ions in relation to the

macroparticle. We note that the agreement in the mean electro-

static-potential between the URMGC and MC data at the

Helmholtz planes deteriorates when compared with the case of

the uncharged colloidal particle, while HNC/MSA data display

an overall good agreement and exhibit charge reversal (or the

overcompensation of the bare colloidal charge by counterions),

with a maximum at the OHP, as seen in the inset of the integrated

charge in Fig. 5(a). On the other hand, for zM ¼ 12, the opposite

behavior in the adsorption of cations (co-ions) and anions

(counterions) is observed, as expected. In addition, we note that

the magnitude of j(r) in the insets of Fig. 5 is higher for

URMGC than for MC and HNC/MSA, which would suggest

that URMGC could be used as a bound of the electrostatic

potential in the primitive model. Nevertheless, although the

magnitude of the electrostatic potential at the Helmholtz planes

is higher for URMGC than for MC (|jURMGC| > |jMC|) and

HNC/MSA (|jURMGC| > |jHNC/MSA|) at highly negative charge

values of the macroion, and up to zM ¼ 54 (0.3 C m�2
This journal is ª The Royal Society of Chemistry 2010
approximately, see Fig. 3), this situation is reversed for highly

positively-charged colloidal particles, where surprisingly, the

electrostatic screening of point-ions is higher than the MC

(|jURMGC| < |jMC|) and HNC/MSA (|jURMGC| < |jHNC/MSA|)

results at the Helmholtz planes.

Another interesting observation regarding the integrated-

charge profiles for zM ¼ 12 is that co-ions can amplify the

magnitude of the native colloidal charge with a maximum surface

charge amplification occurring at the OHP, as observed in the

inset of Fig. 5(b). Also visible in this graph, is that although

URMGC can display maximum surface charge amplification at

the OHP, as seen in the corresponding P(r)-profile, it also pres-

ents an incorrect monotonic behavior away from the OHP that is

in contrast with the good agreement found for the integral-

equation and MC results.
Soft Matter, 2010, 6, 2056–2065 | 2061
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Fig. 6 Adsorbed charge amplification as a function of zM for a charged

macroion of radius rM ¼ 15 �A in the presence of a 1 : 1, 1 M size-

asymmetric electrolyte of radii r+ ¼ 2.125 �A and r� ¼ 4.25 �A. The circles,

solid line, and dot-dashed line correspond to MC, HNC/MSA, and

URMGC results, respectively.

Fig. 7 Integrated charge and mean electrostatic-potential as functions of

the distance for a charged macroion of radius rM ¼ 15 �A in presence of

a 1 : 1, 1 M, size-asymmetric electrolyte with maximum approach

distances r+¼ 2.125 �A and r� ¼ 4.25 �A, around a macroion of valence zM

in the URMGC theory. The solid lines correspond to �P(r) (in the main

panel) and �j(r) (in the inset) for zM ¼ �36, �54, and �72. The dashed

lines correspond to P(r) (in the main panel) and j(r) (in the inset) for

zM ¼ 36, 54, and 72.
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Previously, simulation evidences of surface charge amplifica-

tion in the size-asymmetric, spherical electrical double layer have

been reported for a smaller macroion-size at similar conditions.32

Therein, it is mentioned that the surface charge amplification

decreases when the macroion’s charge gets augmented, due to the

increase of the electrostatic repulsion over the small co-ions.

Here, we quantify this decrease, as well as the accuracy of the

theories when compared with MC simulations. As such, let us

define the quantity of adsorbed charge amplification as the

difference between the maximum adsorbed P(r) minus the bare

colloidal charge: DzM ¼ P(r)max � zM. Thus, in Fig. 6, the

adsorbed charge amplification corresponding to the case of

monovalent ions is plotted as a function of the colloidal charge.

In this figure, the MC data show a monotonic decay with respect

to the macroion valence, which is well described by HNC/MSA;

on the other hand, URMGC only agrees qualitatively.

In order to analyze the colloidal-charge neutralization and

screening for highly positive- and negative-macroion charges of

the same magnitudes, let us first consider the case in which the

ionic-size asymmetry is only partially taken into account, as in

URMGC. In Fig. 7, the profiles of integrated charge and of mean

electrostatic-potential are plotted as functions of the radial

distance for a 1 : 1, 1 M size-asymmetric electrolyte with closest-

approach distances r+ ¼ 2.125 �A and r� ¼ 4.25 �A, around

a macroion of radius and valence rM ¼ 15 �A and |zM| ¼ 36, 54

and 72, respectively. We observe that the URMGC profiles of

integrated charge and the mean electrostatic-potential are

monotonic in all cases and that the negative macroion charges
Fig. 8 The integrated charge and mean electrostatic-potential as func-

tions of the distance for a charged macroion of radius rM ¼ 15 �A in the

presence of a 1 : 1, 1 M, size-asymmetric electrolyte of radii r+ ¼ 2.125 �A

and r� ¼ 4.25 �A. The squares and solid lines correspond to MC and

HNC/MSA results, respectively, of �P(r) (in the main panel) and �j(r)

(in the inset), for zM ¼ �36. The circles and dashed lines correspond to

MC and HNC/MSA data, respectively, associated to P(r) (in the main

panel) and j(r) (in the inset), for zM ¼ 36.

This journal is ª The Royal Society of Chemistry 2010
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(small counterions) have lower magnitudes of P(r) and j(r) when

compared with the positive macroion charges (compare solid and

dashed lines).

On the other hand, we expect that the ionic-size asymmetry,

when taken into account consistently, enhances the behavior

already displayed by URMGC, as it can be corroborated in

Fig. 8 from the profiles of P(r) and j(r) for a 1 : 1, 1 M size-

asymmetric electrolyte of radii r+ ¼ 2.125 �A, and r� ¼ 4.25 �A,

around a macroion of radius and valence rM ¼ 15 �A and |zM| ¼
36, respectively. In the integrated-charge profiles (main panel),

we observe that the small counterions more efficiently neutralize

the colloidal charge, even exhibiting charge reversal. Consis-

tently, in the inset of Fig. 8, it is seen that the mean electrostatic-

potential is lower in magnitude for small counterions than for big

counterions, not only at the Helmholtz planes (as shown in

Fig. 3) but for all values of r plotted. We would like to mention

that the last results are in agreement with theoretical and simu-

lation observations of a preferential adsorption of counterions,

in size-asymmetric, monovalent electrolytes around a charged

cylinder (see Fig. 1 of ref. 72).
IV. Concluding remarks

In this work, we have studied the charge neutralization and

electrostatic screening for a size-asymmetric binary electrolyte

around a spherical colloid, with special emphasis on the

comparison regarding the unequal behaviors for positively and

negatively charged colloids. Firstly, at the point of zero charge, it

is shown that, in the primitive model, the adsorption process of

the size-asymmetric, monovalent electrolytes is mainly due to

depletion forces. This mechanism induces a preferential

adsorption of the smallest species (irrespective of its sign) to

a neutral colloid without the necessity of including additional

specific interactions with the colloidal surface if the ionic size-

asymmetry and the electrolyte concentration are significant.

Complementarily, when the colloidal charge departs from zero,

phenomena, such as charge reversal and surface charge amplifi-

cation occur as consequences of the consistent inclusion of the

ionic-size asymmetry in our simulations and theoretical

HNC/MSA-integral equation description. In particular, it has

been evident that, due to the electrostatic repulsion between the

small co-ions and the electrified macroparticle, the surface charge

amplification decreases when the colloidal bare charge is

increased. This means that, if the co-ions are smaller than the

counterions, surface charge amplification is expected to occur at

very low colloidal charges and high electrolyte concentrations, as

has been shown in this study and in another recent simulation

work.73 The experimental observation of surface charge ampli-

fication and the above tendencies could be realized through the

technique used by Cuvillier and Rondelez,56 although other

possibilities have been proposed by Messina.31

Regarding the results of electro-kinetic experiments in the

vicinity of the zero-charge point,36,37 we mention that although

other complex mechanisms could indeed be present, our coarse-

grained, ionic-size-asymmetric model has the ability to properly

capture notable phenomenology, such as the local adsorption of

net charge next to the neutral colloidal surface, as well as the

existence of a non-zero mean electrostatic-potential for an

uncharged macroparticle. As such, the model used here could act
This journal is ª The Royal Society of Chemistry 2010
as a starting point, capable of further improvement by the

addition of short-range interactions and/or more sophisticated

chemical mechanisms.74

As a main result of the present study, it is observed that for

large s0 values, higher charge neutralization and electrostatic

screening are associated with negative colloidal charges (i.e., for

small counterions) versus positive colloidal charges (i.e., for big

counterions). This trend is reflected in the behavior of the mean

electrostatic-potential profiles at the Helmholtz planes as func-

tions of s0. The unequal (or asymmetric) charge neutralization

and electrostatic screening observed here are similar to those

predicted by Gonz�alez-Mozuelos and Olvera de la Cruz,34 who

found that these phenomena result from the asymmetric

adsorption of water over the colloidal surface. In our coarse-

grained model, this solvent effect is embodied implicitly by using

different effective hydration-radii for the ions. The correspon-

dence between the unequal behavior of negatively and positively

charged colloids detected in both approaches is remarkable,

considering that our coarse-grained model does not take into

account the electrostatic contributions due to the water mole-

cules’ ordering around ions and colloid, which could be assumed

at first to be more important (for low electrolyte concentrations)

than the ionic hydration effects coming from excluded volume.

However, for those conditions in which ionic size correlations

could be presumed to be dominant, it is expected that the

consistent inclusion of ionic size asymmetry (through the use of

different effective hydrated ionic radii) could provide a simpler

and more economical qualitative description of the electrical

double layer, in agreement with (and complementing) the more

sophisticated and resource-expensive explicit solvent models.

It is also worthwhile to mention that the ionic hydration has

been taken into account in our model in an effective way, such

that there is no restriction on the selection of small and big ions

for the ionic species. In particular, we have proposed here small

cations and big anions based on the experimental observations of

electrophoresis mobilities near the point of zero charge, as cited

in ref. 36. In addition, we note that the above theoretical

predictions are not restricted to very small nanoparticles or very

high surface charge densities, and a similar behavior is indeed

expected in cylindrical or planar geometries under similar

conditions. Thus, the above unequal charge neutralization and

electrostatic screening could also be verified experimentally by

using well-established protocols55,75,76 to determine electropho-

resis mobilities of a charged colloidal macroparticle in the pres-

ence of a size-asymmetric salt at high electrolyte concentrations.

On the other hand, an analogous, strong, asymmetric behavior

with respect to the surface potential of silica particles in a two-

dimensional experimental system has been reported recently.22

Although the spatial lengths involved in that work and those in

our model are different, we believe that our results can be useful

in shedding light on the intriguing mechanism behind the

attractive interactions observed experimentally among nega-

tively charged colloidal particles that is absent for positive ones.

Finally, in order to apply our coarse-grained model to make

more realistic theoretical predictions for these colloidal disper-

sions, it is necessary to have estimations of the values of effective

hydrated radii, which could be obtained from the more detailed

and sophisticated molecular models that take solvent,77–83 as well

as image-charge contributions84,85 explicitly into account.
Soft Matter, 2010, 6, 2056–2065 | 2063
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