INTRODUCTION

Molecular dynamics simulations compute the motions of individual molecules
in models of solids, liquids, and gases. The key idea here is motion, which
describes how positions, velocities, and orientations change with time. In
effect, molecular dynamics constitutes a motion picture that follows molecules
as they dart to and fro, twisting, turning, colliding with one another, and,
perhaps, colliding with their container.

This usage is not unique: molecular dynamics may also refer to the
motions of real molecules when studied primarily by molecular beam [1] or
spectroscopic [2] techniques. This terminological confusion is compounded by
lattice dynamics [3), which refers to the study of vibratory motions of atoms in
solids, and by molecular mechanics [4)], also called force field calculations,
which refers to quantum mechanical calculations of the structure of individ-
ual molecules. This book is concerned with molecular dynamics solely in the
sense of simulation.

Molecular dynamics simulation is the modern realization of an old, essen-
tially old-fashioned, idea in science; namely, the behavior of a system can be
computed if we have, for the system’s parts, a set of initial conditions plus
forces of interaction. From the time of Newton to the present day, this
deterministic mechanical interpretation of Nature has dominated science [5].
In 1814, roughly a century after Newton, Laplace wrote [6];

Given for one instant an intelligence which could comprehend all the forces by
which nature is animated and the respective situation of the beings who
compose it—an intelligence sufficiently vast to submit these data to analysis—it
would embrace in the same formula the movements of the greatest bodies of
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the universe and those of the lightest atoms; for it, nothing would be uncertain
and the future, as the past, would be present to its eyes.

If this approach is thwarted by the complexities of reality, then we replace
reality with a model. In one of his Baltimore lectures (Lecture XI), roughly a
century after Laplace, Thomson observed [7]:

It seems to me that the test of “Do we or not understand a particular subject in
physics?” is, “Can we make a mechanical model of it?”

Today, roughly a century after Thomson, we remain undeterred from
Laplace’s dream: the requisite “intelligence” is provided by the digital
computer, the “respective situation” is a set of initial positions and velocities,
“the same formula” though not literally true could be interpreted as the
same algorithmic program, and Laplace’s universe has given way to model
universes. Now, deterministic mathematical models pervade not only the
physical sciences and engineering, but the life and social sciences [8] as well.t

This attitude is old-fashioned in the sense that, while often successful, it is
nevertheless simplistic. In spite of Laplace’s claim, we can still identify
systems that are unpredictable—stock markets and the weather, for example.
Why should this be? If deterministic mathematical models can help us
successfully land Apollo XI on the moon, why can’t they help us predict next
month’s weather on earth?

The resolution of this dilemma is based on the kind of forces acting among
system components: when a system contains objects that interact nonlinearly,
the system’s behavior may be unpredictable. In the past few years studies in
nonlinear dynamics have decoupled deterministic from predictable [9]. Deter-
ministic situations have system outputs causally connected to system inputs.
Calculable situations are those deterministic situations in which an algorithm
allows us to compute system outputs if the inputs were known. Predictable
situations are those calculable situations in which the algorithm can be
numerically implemented to actually compute the outputs. Calculable situa-
tions may be unpredictable because of the large number of inputs needed,
because of an unrealistically high precision with which the inputs must be
known, and /or because the algorithm’s stability is sensitive to intermediate
calculations. In pool, Eight ball in the side pocket is deterministic, calculable,
and predictable; however, whether it will rain in two weeks is deterministic
but unpredictable.

The overriding theme of this book is predicated on the decoupling of
predictability from determinism. Be warned—that you use a machine to

'In fairness, paleontologists, at least, have discovered deterministic unpredictability. Thus,
Stephen Jay Gould [10] posits that if the tape of life were rewound to some previous, sufficiently
removed condition and then replayed, the result would be life unlike life as we know it. For
more technical conjectures on connections between life and deterministic unpredictability, see

Fox [11].
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compute the behavior of a many-body model does not guarantee that the
computed behavior is representative of that model, much less that the model
mimics reality. To my mind it is this deterministic unpredictability that makes
molecular dynamics fascinating and challenging. Is the fun (aka intellectual
stimulation) merely in making a model, writing some differential equations,
and loading it all into a computer? No. The fun, it seems to me, begins when
we have completed a simulation, when we have a number. Now there arise all
the old familiar questions characteristic of science: How good is this number?
How could it be wrong? Is it representative, that is, reproducible? What does
it mean? Do I believe it? How do I test it? If it is right, what must follow?
This book should not only help you learn how to simulate but also make you
aware that questioning the results is part of the procedure.

Computer simulations are performed on models, not on real things, and so
the science of simulation, while distinct from, is necessarily bound to the art
of model building. The purposes of this chapter are to clarify the distinctions
between models and simulations and to discuss how together they contribute
to new understanding.

1.1 SYSTEMS AND ALL THAT

The portion of the physical world on which we focus our attention is called
the system; it is a subset of the universe. The system may be composed of any
number of similar or dissimilar parts and the condition of those parts
identifies the state of the system. For example, the door to my office
constitutes a system to which I can ascribe two states: open or shut. To
analyze and describe the behavior of the system, we need ways for assigning
numerical values either to the state or to functions of the state; such
assignments are called observables. Thus, to my door we can ascribe an
observable called openness, to which I assign the value 1 if the door is open
and O if the door is shut. As another example, let the system be 10%*
molecules of a gas. Its state is specified by the position and momentum of
each molecule, and the state gives rise to such observables as temperature
and pressure.

The state of a system can be manipulated and controlled from the
environment via interactions. For example, I may change the state of my
office door by an interaction, specifically, by exerting a force. Allowed
interactions are constrained by the nature of the boundary that separates the
system from its surroundings. Various kinds of boundaries and interactions
are possible, but in this book we will limit our attention to isolated systems:
systems that can exchange neither matter nor energy with their surroundings.

We cannot usually study a system by directly observing the state; instead,
we probe states indirectly by manipulating, controlling, and measuring ob-
servables. Thus, studies of a gas may involve controlling the system volume,
manipulating its temperature, and measuring how the pressure responds. The
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isolated system is special in the sense that we do not interact with it, and
therefore we can manipulate its observables only before the system is
isolated.

To organize, describe, and perhaps even predict observables, we create
theories. Theories may operate at one of several levels. At the simplest level,
theories merely provide relations among observables. For example, the ideal-
gas law

PV = NKT (1.1)

was originally obtained by organizing results from measurements of the
pressure, volume, and temperature of low-density gases.

At the next level of complexity are theories that relate observables to the
underlying state. For example, at this level we have kinetic theory, which
teaches that the observable temperature is related to the state through the
molecular velocities. Theories at this level provide interpretations or explana-
tions for observables, but if the state itself is unobservable, these theories
cannot be used to compute numerical values for observables.

To overcome this computational dead end, two strategies have been
devised: (1) concoct theories at still higher levels or (2) perform computer
simulations. Higher level theories try to resolve the computational difficulty
by reorganizing and reducing the detailed information about the state needed
to compute values for observables. Such is the objective of statistical mechan-
ics, in which observables are related not to the underlying state itself, but
rather to the probability of the system being in particular states.

The alternative strategy includes molecular dynamics. Molecular dynamics
assigns numerical values to states, thereby making states observable, at least
for model substances. With numerical values assigned to states, theoretical
relations from kinetic theory can be used to compute values for experimen-
tally accessible observables. Thus molecular dynamics is closely tied to kinetic
theory and not as closely related to statistical mechanics.! In particular,
molecular dynamics is less sophisticated, less elegant, but more direct than
statistical mechanics.

1.2 MODELING VERSUS SIMULATION

Whether we study systems theoretically or experimentally, the general proce-
dure is the same: we manipulate and control certain observables (inputs), the

TW. Thomson, Lecture I, p. 1: “...the kinetic theory of gases is a part of molecular dynamics, is
founded upon molecular dynamics, works wholly within molecular dynamics, to it molecular
dynamics is everything, and it must be advanced by molecular dynamics...”
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system responds, and then we measure or compute other observables (out-
puts):

Manipulate and control measure or compute
certain observables — | SYSTEM |[— other observables
(inputs) (outputs)

Since theoretical analyses are now largely done via modeling or simulation or
both, it is instructive to clarify how modeling differs from simulation. For a
discussion more complete than what follows, see Casti [8].

The goal of theoretical work is to establish connections between measur-
able outputs and controlled inputs. In Section 1.1 we discussed how this may
be done at different levels of complexity; in particular, sophisticated theories
use an underlying state to connect outputs to inputs. Part of the theoretical
problem is to define the state in such a way that complicated interactions
among state variables are decoupled, or at least weakened, so that observable
outputs can in fact be computed.

A model is an attempt to decouple and remove interactions that have little
or no influence on the observables being studied. Thus, a model is simpler
than the system it mimics: it has access to fewer states. Decoupling interac-
tions means relaxing constraints; hence, a model has access to some states
not available to the original system and vice versa. In other words, a model is
a subset or subsystem of the original system: outputs from a model will be
consistent with those of the original system, but only for a restricted set of
inputs. For those restricted inputs, since the model is a subsystem of the
original, states visited by the model correspond to those visited by the
original system.

In contrast, a simulation is more complicated than the system it simulates:
a simulation generally can reach many more states than can the original
system. A simulation imposes constraints so that the simulated output is
consistent with the output of the original system, at least for a restricted set
of inputs. A simulation will typically bear no structural relation to the
qriginal system; for example, the way constraints are imposed in the simula-
tion may differ from the mechanism that confines the original system to
certain states. Hence, states in the simulation may bear no correspondence to
States of the original system. Although a simulation is more complex than the
O.Iiginal system, it does not follow that the original system is a model of the
Simulation.

. An example should clarify these ideas. As the real system, consider a
simple ball-and-spring arrangement. One end of the spring is attached to the
ball, the other end is fixed to a wall. In response to a displacement from its
€quilibrium position, the ball slides on a floor. The problems are to, in turn,
model and simulate the motion of the ball that results from a displacement.
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Let R represent this real system, that is, the spring as mover plus the ball as
the thing moved.

To study the motion of R, we might construct a device M that is a
one-dimensional harmonic oscillator (ODHO) having spring constant y. The
motion of M is described by the differential equation

d’x
F=—yx(t) (1.2)

where x is the distance of the ball from its equilibrium position and ¢ is time.
Writing this equation presumes several simplifying assumptions: (a) the
motion of the ball is restricted to a line, (b) the spring is perfectly harmonic,
(c) the ball experiences no sliding friction on the floor, and (d) the ball has no
internal states that exchange energy with the spring. These assumptions
imply that M is a simple subsystem of R. For some initial displacements M
will mimic the motion in R; however, M cannot mimic all the behavior
available to R. For example, in R we might initially raise the ball from the
floor, allowing the ball to move in the xz-plane, motion not allowed to M.
The one-dimensional harmonic oscillator M is a model of the real system R.

An alternative scheme S for studying the motion of R would be to remove
the spring and use a person as the mover. This person might be a well-trained
graduate student who has the uncanny ability to move the ball, for many sets
of initial conditions, so as to reproduce the motion of the ball in R. This
situation S is more complex than R because a person is more sophisticated
than a spring. Moreover, S involves imposing constraints on the student’s
arm to make the motion of the ball mimic the motion in R. Otherwise, more
states are possible in S than in R; for example, the student might absent-
mindedly drop the ball in his pocket when he stops for coffee. The situation
S is a simulation of the real system R.

Note that as well as simulating the real system R, we could also simulate
the model M. For example, we might have another mover (a professor or,
equivalently, a robot) that can move the ball through states visited by the
perfect ODHO model M. This simulation of M is more complex than M
itself, but the added complexity does not make the model more realistic, that
is, more like the real system R.

How do these distinctions relate to molecular simulations? Well, what do
we typically do? We identify a substance and its observables that we want to
study, say, thermodynamic properties of argon. Then we construct a model of
the substance, say, the spherically symmetric, pairwise additive Lennard-Jones
potential. This is a true model. The Lennard-Jones potential is simpler than
the argon potential because argon atoms are not perfect spheres and their
interactions are certainly not only pairwise additive. With the model chosen,
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we then perform a simulation—but a simulation of what? It can only be a
simulation of the model, of the Lennard-Jones substance. We do not simu-
late argon. The simulation is more complex than the model, but the added
complexity does not add to the realism of the resulting observable outputs. In
error are those who claim that molecular dynamics simulates argon, or water,
or proteins, or whatever. We simulate molecular models of such substances.

1.3 THEORY VERSUS EXPERIMENT

At a scientific conference in the 1970s there broke out a heated debate as to
whether computer simulations like molecular dynamics are theories or are
experiments. The theory side argued that simulation is clearly not experiment
because no measurements are done on real systems; molecular simulations
are pure calculation. The experiment side countered that simulation results
are used like experiments, namely, to test theories; it isn’t sensible to test one
theory with another theory is it? Moreover, this side noted that simulation
results, like experiments, are prone to problems of reproducibility and
statistical error. Hence, pervading the literature is the interpretation of
molecular simulations as computer experiments.

What’s the resolution of this dilemma? And does it really matter how we
think of simulation? Consider the following example. To perform an experi-
ment, to take a measurement, the observer must interact with the system:
some type of probe necessarily has to cross the system boundary. Thus, truly
isolated systems cannot be studied experimentally: once our probe crosses
the boundary, the system is no longer isolated. However, we can perform
theoretical calculations, such as simulations, on truly isolated systems and
obtain meaningful results. The resolution of our dilemma has to be that
molecular simulations are forms of theory; they do not involve measurements
on real systems.

How we think of simulation is important, indeed crucial, because of the
consequences: if we accept that simulations are experiments, then it follows
that the models simulated are real. Armed with this attitude plus the ease of
actually doing simulations, we may be tempted to abandon laboratory experi-
ment altogether. The danger lies in severing simulation from reality.

Is this only an academic issue? Recently a public presentation was made
by the chief executive officer of a major computer manufacturer. In the talk
Voyager photos of Jupiter were compared with images produced from a
computer simulation of Jovian weather. The speaker’s punch line was that
the simulated images were actually “more real than real life.” But if this
were true, then there would be no need for further explorations by spacecraft
—we would simply perform simulations. Note that, in fact, reality doesn’t
enter this picture at all. The CEO can be faulted on two counts: not only did
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he erroneously claim that a simulation can supplant reality, but he also
confused a photographic image with reality."

To illustrate this point in a more mundane situation, consider: Police have
been summoned to the scene of a domestic quarrel. In the kitchen the
patrolmen find a bewildered wife standing over the prostrate form of her
husband.

“Okay, lady, what happened?”’
“I don’t rightly know. Herb riled me, so I hit’em in the head with a tomato.”
“Sure, lady. There’s no tomato on the body or the floor.”

“Isn’t there? O’course not. T’was a decorative ceramic.”

And lest you feel that this contrived example* is only impractical philosophi-
cal quibbling, consider the intense ethical debates that were prompted by
American television broadcasts of selected news events in the form of
interpolative reenactments (aka simulations).

1.4 REDUCTIONISM VERSUS SIMULATION

Since the time of Newton, scientific theories have nearly all been developed
in a reductionistic mode: a complex system is reduced to one or more simple
subsytems and the subsystems are analyzed. Subsystems ultimately take the
form of models, and today models are almost exclusively mathematical.
Before about 1960 mathematical models had to be simple enough to be
tractable analytically, but now this constraint is relaxed by the availability of
digital computers.

As an example of reductionism, consider the study of matter in simpler
and simpler forms:

Matter — compounds — elements — molecules — atoms

— elementary particles — quarks

Modeling may occur at any stage of such a reduction. Successful modeling
requires a construction that forces the behavior of interest to remain invari-
ant when the subsystem is replaced by the model. The goal of reductionism is

A principal feature of science is the apparently endless disentangling of images from reality.
Well over 800 years ago in his Questiones Naturales, the scholar Adelard of Bath was moved to
write, “Wherefore, if you want to hear anything more from me, give and take reason. For I'm
not the sort of man that can be fed on a picture of a beefsteak” [12].

*This example is a slight modification of a vaudeville routine used by James Thurber [13] to

illustrate confusing the container with the thing contained.
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to explain system behavior by combining explanations for the behaviors of its
subsystem models. Simulation provides an alternative to reductionism be-
cause simulation allows us to study the behaviors of classes of systems or
subsystems. Thus, while reductionism emphasizes structural analysis, simula-
tion emphasizes behavioral classification. As an example, consider study of
the fluid—solid phase transition. One simulation approach to this problem
would be to load marbles into a drum. To force the marbles to move, we
rotate the drum (imagine a cement mixer). As the drum rotates, we add more
and more marbles, until finally enough are added to freeze the motion. From
the number of marbles N and the drum volume V, we obtain the density
N/ V needed for solidification. We then repeat the simulation with balls of
other diameters: golf balls, baseballs, soccer balls, basketballs. By inspecting
the solidification densities for balls of various diameters, we conclude that
one mode of solidification is a geometric packing effect, controlled by the
packing fraction Vi, / Vaum- Note the features of this simulation: the
controlled input observables are the ball diameter, the number of balls, and
the drum volume; the measured output observable is the density at which
motion ceases. During the experiments, the states of the balls—positions and
velocities—bear no relation to states of molecules in any real substance.
Further, the entire study is not just of one substance, but rather a systematic
progression through a class of substances: spheres of increasing diameters.

In contrast, a reductionist would study this problem by combining a model
with a theory to predict the solidification of a particular substance. The
theory might involve only relations among observables, such as PVT equa-
tions of state, or the theory might include underlying system states, such as is
done in statistical mechanics. In any case, the validity of the model and the
theory would be tested by comparing predictions with experimental measure-
ments on a real substance. However, the connection between input and
output observables would remain implicit in the mathematical apparatus
used to make the prediction.

But the goal of the simulations is not so much to predict solidification as
to make explicit how input and output observables are connected. In other
words, rather than predictions, the goal is more in the nature of providing
explanations: idealized models “explain nature even while they do not de-
scribe it” [14]. Both reductionism and simulation contribute to science;
however, for a specific problem one or the other may be more appropriate. In
particular, simulation is not always the best method.

As shown in Figure 1.1, we identify two distinct roles that simulation can
play in scientific investigation. At the higher level, simulation, including
Ccomputer simulation, serves as an alternative to reductionism. At this level,
as popularly claimed, simulation is a new way of doing science. In addition,
Computer simulation can be used at a lower level, as a tool in reductionism. It
15 this second use of simulation that is implied by the more familiar triangular
diagram shown in Figure 1.2 [15]. That diagram suggests two reductionistic
uses for simulation: (a) simulation data on models can be used to test



10 INTRODUCTION

System of
Interest

/\

Theory Experiment

O\

Reductionism Simulation

l

Mathematical
Models

O\

Analytically Computer
Solvable Simulation

FIGURE 1.1 Hierarchy of scientific modes of investigation. Note that the system of
interest may be real, or it may itself be a model.

theories and (b) simulation data can be compared with experimental data to
test the realism of simulated models.

In Figure 1.1, the dual use—as an alternative to reductionism or as a
reductionistic tool—explains, perhaps, early debates over whether computer
simulation is theory or experiment. If you identify all theory as reductionism
and sense that simulation is something different, then you may interpret
simulation as experiment. Conversely, if you see computer simulation as a
tool for studying reductionistic models, then you may interpret simulation as
theory.

The theme of this section is that computer simulation offers possibilities
more instructive and more far-reaching if it is used as an alternative to
reductionism rather than as merely a servant to reductionism. To make this

Computer
Simulation

FIGURE 1.2 Conventional represen-
tation of the interplay among theory, Theory |e »| Experiment
experiment, and computer simulation.
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statement concrete: using computer simulation to map out a phase diagram
for a model of methane (or whatever), merely to test how realistic the mode]
may be, is to misunderstand and underutilize the power of simulation.

1.5 MODELS FOR MOLECULAR SIMULATIONS

A computer simulation is valuable because it is applied to a precisely defined
model for the material of interest. The model is actually a composite of two:
one for interactions among the molecules making up the system and another
for interactions between the molecules and their environment:

Simulated model | = | model for molecular interactions

+ | model for system—environment interactions

Note the decoupling implied by this schematic—intermolecular interactions
are presumed to be independent of interactions with the environment.

The model for molecular interactions is contained in an intermolecular
force law or, equivalently, an intermolecular potential energy function. This
potential function implicitly describes the geometric shapes of individual
molecules or, more precisely, their electron clouds. Thus when we specify the
potential function, we establish the symmetry of the molecules, whether they
are rigid or flexible, how many interaction sites occupy each molecule, and so
on. A detailed characterization of intermolecular potential functions may be
given analytically or numerically; in any case, a quantitative form for the
potential function defines a molecular model and hence the form must be
chosen before a simulation can be performed.

In this book we consider only spherically symmetric molecules (atoms).
For N such atoms the intermolecular potential function is represented by
#Z(x™N). The notation r" represents the set of vectors that locate the atomic
centers of mass, rV={r,,r,,r5,...,ry}. When we establish values for the set

, we define the conﬁguratton of a system. Macroscopic properties that are
averages over only the set r" are called configurational properties.

In most simulations the intermolecular potential energy is taken to be a
sum of isolated pair interactions; this assumption is called pairwise additivity.
Hence,

# =32 u(ry) (1.3)

i<j

where u(r, ;) is a pair potential energy function whose form is known and r;;
is the scalar distance between molecules i and j. Since no dissipative forces



