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The Science of Computing 

Genetic Algorithms 

Peter J. Denning 

Biological 
analogies have been part of the science and the 

lore of computation since the 1940s. The early theory of 
automata, which assumed machines were made of neuron? 
like components, produced the first examples of self-repro? 
ducing machines. Over the years many debates in artificial 

intelligence have centered on biological metaphors?for ex? 

ample, whether machines can think, whether rule-based ex? 

pert systems can be competent when judged by human 
standards, and whether neural networks can give machines 
the ability to see or hear. Recent biocomputational successes 

with robot insects and simulations of population dynamics 
have encouraged a growing number of adherents to a new 
field called artificial life. Computer scientists and molecular 

biologists have begun to explore collaborative research (1). 
And the metaphor has even wider application: Computer 
viruses are routinely discussed as if they were a form of par? 
asitic life inside a computer. 

Analogies between computing and biology are more than 
coincidence: Both genes and computers record, copy, and 
disseminate information. Douglas Hofstadter of Indiana 

University showed this clearly by demonstrating that the 
action of DNA and RNA during the reproduction of the liv? 

ing cell can be interpreted as an example of a self-reproduc 
ing Turing machine (2). 
Nowhere have these analogies produced greater successes 

than with genetic algorithms, a family of methods that search 
for optimal solutions of difficult problems. The story begins 
in the late 1960s at the University of Michigan, where John 

Holland and his students investigated how to build machines 
that can learn. Holland noted that learning can occur not only 
by adaptation in a single organism but also by evolutionary 
adaptation over many generations of a species. He was in? 

spired by a Darwinian notion of evolution in which only the 
fittest survive. He proposed that a learning machine's search 
for a good learning strategy be organized as the breeding of 

many strategies in a population of candidates, rather than as 
the construction and refinement of a single strategy. Holland 
and his students called their searches reproductive plans, but 
the name genetic algorithms became popular after Holland 

published a seminal book in 1975 (3). 

By the early 1980s genetic algorithms were showing 
broad promise. The leaders of the field began holding regu? 
lar conferences every other year. In 1989 David Goldberg of 
the University of Alabama published a book that demon? 
strated a solid scientific basis for the field and cited no fewer 
than 73 successful applications (4). In 1991 Lawrence Davis 
of Tica Associates published a handbook of genetic algo? 
rithms (5). The field has turned into a gold mine of opportu 
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nity for exploring biological analogies in computing and in? 
formation analogies in biology. 

Exploring Parameter Space 
For many practical problems in engineering and science the 

only sure way to find an optimal solution is to search 

through the entire set of all possible solutions. Such an ex? 
haustive search is described as exploring the total "parame? 
ter space" of the problem. In many cases the parameter 
space is so large that only a minute fraction of it can be ex? 

plored. The question then becomes: How can one organize 
the search so that there is a high likelihood of locating a 

near-optimal solution? 
The usual approach is to iteratively refine a trial solution 

until the refinement heuristic produces no further improve? 
ments. Genetic search algorithms take a different approach. 
Inspired by biological evolution, they cross-breed trial solu? 
tions and allow only the "fittest" solutions (those accorded 
the highest value) to survive after several generations. 

In its simplest form, a genetic search works as follows. 
First, the problem is formulated in such a way that any solu? 
tion can be encoded in a string of binary digits. Each such 

string can be assigned a fitness value, based on how well the 

corresponding problem solution meets some stated goal. 
Starting with a population of strings, a new population of 
the same size is generated in two stages, called reproduction 
and mating. In the reproduction stage, each individual's 

probability of being reproduced is proportional to the 

string's fitness. One way to arrange for such proportional re? 

production is to create a roulette wheel whose circumfer? 
ence is divided into as many segments as there are binary 
strings in the population. The length of each segment is 

made proportional to the fitness of the corresponding string. 
Reproduction proceeds by spinning the wheel many times, 
and each time selecting a string to carry forward into the 
next generation. In this way the reproduction step generates 
a list of copies of a subset of the starting population. The 
fittest individuals tend to produce the most copies. 

The mating stage simulates the recombination of genetic 
elements made possible by sexual modes of reproduction. 

Mating begins with the selection of a random integer larger 
than zero and less than the string length, defining thereby a 
crossover point. Two strings are mated by joining the prefix 
of one string with the suffix of the other string relative to the 
crossover point. For example, suppose the prefix length is 3 
and the two individuals selected for mating are: 

010 I 110 
110 I Oil 

(the vertical line marks the crossover point). Then the 

binary strings resulting from the crossover operation are: 
010011 
110110 
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Figure 1. Genetic algorithms employ the mechanisms of evolution to solve optimization problems. Each candidate solution is encoded in a 

string of binary digits and assigned a "fitness," which is represented here by the length of the red bar superimposed on the string. A 

population of strings evolves through selective reproduction, recombination and mutation. 

Avoiding Local Optima 
With any sparse search through a large parameter space 
there is a danger of converging on a solution that is only lo? 

cally rather than globally optimal. To avoid such traps, mu? 
tations are introduced during the mating stage: Each binary 
digit has some small probability of being reversed during 
the genetic recombination. 

Kenneth Dejong of George Mason University performed 
extensive experimental studies of genetic algorithms begin? 
ning in the late 1970s. He reports that populations of 50 to 
100 individuals taken through 10 to 20 generations have a 

high probability of including optimal or near-optimal indi? 
viduals (6). This finding holds for a wide variety of problem 
spaces. Dejong says that a mutation probability on the order 
of 0.001 per bit is enough to prevent the search from locking 
onto a local optimum. 

The type of search outlined above works when the encod? 

ings of solutions are all the same length and when any bina? 

ry string defines a valid solution of the problem. However, 
there are many situations in which some binary strings do 
not define valid solutions. In such cases, a crossover opera? 
tion could produce meaningless strings. 

As an example, consider the problem of mapping the 

points of a grid to the nodes of a massively parallel comput? 
er so as to minimize the average communication distance 
between neighboring grid points. This distance is important 
because in many programs?such as weather simula? 

tions?calculating a new value at each grid point requires 
communication with nearby points. Suppose there are K 

computing nodes in the machine. An assignment of grid 
points to machine nodes is encoded as a long vector of inte? 

gers (nv n^, in which n. is the machine node to which 

grid point i is assigned; this vector is a permutation of the 

integers 1 through K; in other words each integer from 1 

through K appears in the vector exactly once. Most 
crossover operations are likely to produce vectors that are 
not permutations of 1 through K. 

Cases of this kind can be brought into the paradigm of ge? 
netic search by defining crossover operators that preserve 
the validity of the encoding. Here the need is for a crossover 

procedure that permutes elements of a vector rather than re? 

placing them. One such operator was proposed and used 

successfully by Ophir Frieder of George Mason University 
and Hava Tova Siegelmann of Rutgers University (7) for as? 

signing documents to the nodes of a multimachine data? 
base, a problem similar to the grid assignment problem. 

Suppose these two vectors are possible assignments: 

1532 I 704 I 968 
7409 I 651 I 328 

The standard crossover procedure might suggest, say, ex? 

changing the central segments of the vectors (between the 
vertical lines); this transformation would not be legal, how? 
ever, since neither vector would then be a permutation of 
the integers 0 through 9. But there is a method of making 
the exchange while preserving the permutations. The idea is 
to use the corresponding pairs of integers within the select? 
ed segments of the two vectors to define a series of ex? 

changes that can then be carried out separately within each 
vector. In this case the pairs are 7:6,0:5 and 4:1. When these 

exchanges are carried out in both vectors, the desired 
crossover is achieved without sacrificing the essential char? 
acter of the vectors as permutations: 

4032 I 651 I 978 
6159 I 704 I 328 

values 
2 4 1 6 3 3 

inventory of objects to be packed 

candidate packings 

a be I 9 

Figure 2. Knapsack problem is an example of an optimization task 

that can be undertaken by genetic search algorithms. The problem 
is to pack a knapsack of limited volume with a selection of items 

that maximizes some measure of value. In this one-dimensional 

version of the problem the knapsack has a length of seven units, 
and there are six objects with lengths ranging from one to three. 

Some possible packings are shown, including one that yields the 

optimal value of 14. 

1992 January-February 13 

This content downloaded from 132.174.255.116 on Sat, 24 Oct 2015 14:40:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


011011 

00101 1 

101100 

011001 

001100 

111000 

011011 

011001 

0110 0 

011001 

01 1011 

101100 

011011 

101011 

111001 

011100 

01 

01 

1011 

1 100 

011011 

101011 

1 1 1 000 

011101 

011100 

101011 

Figure 3. Optimum knapsack packing emerges after a few iterations of a genetic algorithm. Each selection of objects is represented by a binary 

string; for example, 011011 designates the choices of b, c, e and /. Total population fitness rises from 49 to 63, and an optimum solution appears. 

The simple operations of reproduction, crossover and mu? 
tation on populations are the essence of genetic algorithms. 
Traditional methods for locating optimal solutions use heuris? 
tics that explore the neighborhood around a single trial solu? 

tion; even when augmented with occasional jumps to distant 

parts of the solution space, these heuristics tend to get 
snagged on local optima. By mamtaining a multipoint per? 
spective on many regions of the space, genetic algorithms 
have a much higher chance of locating a global optimum. 
They do this even when the function defining fitness is dis? 
continuous, irregular or noisy. David Goldberg and Lawrence 
Davis document these claims empirically (4,5). 

Machines That Learn 
Genetic algorithms have an impressive record of progress as 
a heuristic search method. Their progress in the domain that 

originally inspired their development, machine learning, is 

equally impressive. 
The objective of machine learning is easily stated: to build 

a machine capable of performing certain actions even 

though the builders do not know algorithms for those ac? 
tions. Examples of behaviors such a machine might learn 
are walking toward darkness, grasping objects, and recog? 
nizing images. Internally, the machine is organized around a 
controller that receives sensory inputs from one or more de? 
tectors and generates actions through one or more output 
devices. After each action the machine receives feedback 
about the effectiveness of the action; this feedback is called 
the payoff. The controller uses the payoff to adjust its inter? 
nal program and database so that future actions are more 

likely to produce high payoffs. The payoff function is not 
known to the machine. 

The simplest type of learning machine is an associator be? 
tween input patterns (from sensors) and output patterns 
(driving motors). The machine is shown a series of exam? 

ples, each consisting of an input and a corresponding ideal 

output. On the basis of the examples the machine adjusts in? 
ternal parameters of an associative memory so that it mini? 

mizes its errors in generating outputs for a given series of 

inputs. After the training session, the machine is judged by 
its ability to "predict" outputs in real time. An example of 
such a machine is an optical character recognizer whose in? 

puts are images of handwritten characters and whose out? 

puts are ASCII codes (the standard numeric representations 
of alphanumeric data). Genetic searches have been used 

successfully to identify internal parameters of the associa? 
tive memory that minimize error during training. 

Learning machines of this kind employ a payoff function 
that is known in advance; the payoff is determined by the 
difference between the output for a given setting of the pa 

rameters and the correct output. A more advanced form of 

learning machine is needed for the case when payoffs are 
not known in advance but are received in real time as the 
machine performs actions. Now the machine's internal 
structure can be represented by a set of rules telling it how 
to respond to given inputs. After each action, the machine 
uses the resulting payoff feedback to modify its rule set so 
that either an effective behavior is reinforced or an ineffec? 
tive behavior is dropped. Machines of this type include the 
robot insects under study at the Massachusetts Institute of 

Technology and elsewhere, which can learn to walk, hide 
from light, locate doorways, and hunt for simple targets (8). 

Although not used in the MIT insectoids, genetic search is 
under study as a new method of modifying the rule set of 
such machines when new payoff information is provided. 

The power of genetic algorithms derives from their emu? 
lation of nature's principle of evolution over generations of 
a species. In the case of searches for optima, a population of 
candidates is allowed to evolve over several generations, 
with the fittest individuals having the best chances of sur? 
vival. In the case of learning machines, a population of rules 
evolves over time, and the rules producing the highest pay? 
offs come to dominate the population. 

Through most of their history, genetic algorithms were 
used as optimizers and searchers. They are now well under? 
stood in this role. A major shift is under way: Genetic algo? 
rithms are being used as the builders of programs inside 

learning machines. One might speculate about using such 
machines to design organisms whose genetic codes endow 
them with desirable characteristics. This is a development 

worth watching closely. 
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