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1 Introduction Originally, the concept of a mathematical expectation arose in connection with games
of chance, and in its simplest form it is the product of the amount a player stands to
win and the probability that he or she will win. For instance, if we hold one of 10,000
tickets in a raffle for which the grand prize is a trip worth $4,800, our mathemati-
cal expectation is 4,800 · 1

10,000 = $0.48. This amount will have to be interpreted in

the sense of an average—altogether the 10,000 tickets pay $4,800, or on the average
$4,800
10,000 = $0.48 per ticket.

If there is also a second prize worth $1,200 and a third prize worth $400, we can
argue that altogether the 10,000 tickets pay $4,800+ $1,200+ $400 = $6,400, or on

the average $6,400
10,000 = $0.64 per ticket. Looking at this in a different way, we could

argue that if the raffle is repeated many times, we would lose 99.97 percent of the
time (or with probability 0.9997) and win each of the prizes 0.01 percent of the time
(or with probability 0.0001). On the average we would thus win

0(0.9997)+ 4,800(0.0001)+ 1,200(0.0001)+ 400(0.0001) = $0.64

which is the sum of the products obtained by multiplying each amount by the corre-
sponding probability.

2 The Expected Value of a Random Variable

In the illustration of the preceding section, the amount we won was a random vari-
able, and the mathematical expectation of this random variable was the sum of the
products obtained by multiplying each value of the random variable by the corre-
sponding probability. Referring to the mathematical expectation of a random vari-
able simply as its expected value, and extending the definition to the continuous case
by replacing the operation of summation by integration, we thus have the following
definition.

From Chapter 4 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright  2014 by Pearson Education, Inc.
All rights reserved.
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DEFINITION 1. EXPECTED VALUE. If X is a discrete random variable and f(x) is the

value of its probability distribution at x, the expected value of X is

E(X) =
∑

x

x · f (x)

Correspondingly, if X is a continuous random variable and f(x) is the value of its

probability density at x, the expected value of X is

E(X) =
∫

q

−q
x · f (x)dx

In this definition it is assumed, of course, that the sum or the integral exists; other-
wise, the mathematical expectation is undefined.

EXAMPLE 1

A lot of 12 television sets includes 2 with white cords. If 3 of the sets are chosen
at random for shipment to a hotel, how many sets with white cords can the shipper
expect to send to the hotel?

Solution

Since x of the 2 sets with white cords and 3− x of the 10 other sets can be chosen

in

(

2
x

) (

10
3− x

)

ways, 3 of the 12 sets can be chosen in

(

12
3

)

ways, and these

(

12
3

)

possibilities are presumably equiprobable, we find that the probability distribution
of X, the number of sets with white cords shipped to the hotel, is given by

f (x) =

(

2
x

)(

10
3− x

)

(

12
3

) for x = 0, 1, 2

or, in tabular form,

x 0 1 2

f (x)
6

11

9

22

1

22

Now,

E(X) = 0 ·
6

11
+ 1 ·

9

22
+ 2 ·

1

22
=

1

2

and since half a set cannot possibly be shipped, it should be clear that the term
“expect” is not used in its colloquial sense. Indeed, it should be interpreted as an
average pertaining to repeated shipments made under the given conditions.
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EXAMPLE 2

Certain coded measurements of the pitch diameter of threads of a fitting have the
probability density

f (x) =











4

π(1+ x2)
for 0 < x < 1

0 elsewhere

Find the expected value of this random variable.

Solution

Using Definition 1, we have

E(X) =
∫ 1

0
x ·

4

π(1+ x2)
dx

=
4

π

∫ 1

0

x

1+ x2
dx

=
ln 4

π
= 0.4413

There are many problems in which we are interested not only in the expected
value of a random variable X, but also in the expected values of random variables
related to X. Thus, we might be interested in the random variable Y, whose values
are related to those of X by means of the equation y = g(x); to simplify our notation,
we denote this random variable by g(X). For instance, g(X) might be X3 so that
when X takes on the value 2, g(X) takes on the value 23 = 8. If we want to find
the expected value of such a random variable g(X), we could first determine its
probability distribution or density and then use Definition 1, but generally it is easier
and more straightforward to use the following theorem.

THEOREM 1. If X is a discrete random variable and f (x) is the value of its
probability distribution at x, the expected value of g(X) is given by

E[g(X)] =
∑

x

g(x) · f (x)

Correspondingly, if X is a continuous random variable and f (x) is the
value of its probability density at x, the expected value of g(X) is given by

E[g(X)] =
∫

q

−q
g(x) · f (x) dx

Proof Since a more general proof is beyond the scope of this chapter, we
shall prove this theorem here only for the case where X is discrete and
has a finite range. Since y = g(x) does not necessarily define a one-to-one
correspondence, suppose that g(x) takes on the value gi when x takes on
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the values xi1, xi2, . . . , xini . Then, the probability that g(X) will take on the
value gi is

P[g(X) = gi] =
ni
∑

j=1

f (xij)

and if g(x) takes on the values g1, g2, . . . , gm, it follows that

E[g(X)] =
m
∑

i=1

gi ·P[g(X) = gi]

=
m
∑

i=1

gi ·
ni
∑

j=1

f (xij)

=
m
∑

i=1

ni
∑

j=1

gi · f (xij)

=
∑

x

g(x) · f (x)

where the summation extends over all values of X.

EXAMPLE 3

If X is the number of points rolled with a balanced die, find the expected value of
g(X) = 2X2+ 1.

Solution

Since each possible outcome has the probability 1
6 , we get

E[g(X)] =
6
∑

x=1

(2x2+ 1) ·
1

6

= (2 · 12+ 1) ·
1

6
+ · · ·+ (2 · 62+ 1) ·

1

6

=
94

3

EXAMPLE 4

If X has the probability density

f (x) =

{

ex for x > 0

0 elsewhere

find the expected value of g(X) = e3X/4.
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Solution

According to Theorem 1, we have

E[e3X/4] =
∫

q

0
e3x/4 · e−x dx

=
∫

q

0
e−x/4 dx

= 4

The determination of mathematical expectations can often be simplified by using
the following theorems, which enable us to calculate expected values from other
known or easily computed expectations. Since the steps are essentially the same,
some proofs will be given for either the discrete case or the continuous case; others
are left for the reader as exercises.

THEOREM 2. If a and b are constants, then

E(aX +b) = aE(X)+b

Proof Using Theorem 1 with g(X) = aX +b, we get

E(aX +b) =
∫

q

−q
(ax+b) · f (x) dx

= a

∫

q

−q
x · f (x) dx+b

∫

q

−q
f (x) dx

= aE(X)+b

If we set b = 0 or a = 0, we can state the following corollaries to Theorem 2.

COROLLARY 1. If a is a constant, then

E(aX) = aE(X)

COROLLARY 2. If b is a constant, then

E(b) = b

Observe that if we write E(b), the constant b may be looked upon as a random
variable that always takes on the value b.

THEOREM 3. If c1, c2, . . . , and cn are constants, then

E





n
∑

i=1

cigi(X)



 =
n
∑

i=1

ciE[gi(X)]
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Proof According to Theorem 1 with g(X) =
n
∑

i=1

cigi(X), we get

E





n
∑

i=1

cigi(X)



 =
∑

x





n
∑

i=1

cigi(x)



 f (x)

=
n
∑

i=1

∑

x

cigi(x)f (x)

=
n
∑

i=1

ci

∑

x

gi(x)f (x)

=
n
∑

i=1

ciE[gi(X)]

EXAMPLE 5

Making use of the fact that

E(X2) = (12+ 22+ 32+ 42+ 52+ 62) ·
1

6
=

91

6

for the random variable of Example 3, rework that example.

Solution

E(2X2+ 1) = 2E(X2)+ 1 = 2 ·
91

6
+ 1 =

94

3

EXAMPLE 6

If the probability density of X is given by

f (x) =

{

2(1− x) for 0 < x < 1

0 elsewhere

(a) show that

E(Xr) =
2

(r+ 1)(r+ 2)

(b) and use this result to evaluate
E[(2X + 1)2]

Solution

(a)

E(Xr) =
∫ 1

0
xr · 2(1− x) dx = 2

∫ 1

0
(xr− xr+1) dx

= 2

(

1

r+ 1
−

1

r+ 2

)

=
2

(r+ 1)(r+ 2)
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(b) Since E[(2X + 1)2] = 4E(X2)+ 4E(X)+ 1 and substitution of r = 1 and r = 2
into the preceding formula yields E(X) = 2

2·3 =
1
3 and E(X2) = 2

3·4 =
1
6 , we get

E[(2X + 1)2] = 4 ·
1

6
+ 4 ·

1

3
+ 1 = 3

EXAMPLE 7

Show that

E[(aX +b)n] =
n
∑

i=0

(

n

i

)

an−ibiE(Xn−i)

Solution

Since (ax+b)n =
n
∑

i=0

(

n

i

)

(ax)n−ibi, it follows that

E[(aX +b)n] = E





n
∑

i=0

(

n

i

)

an−ibiXn−i





=
n
∑

i=0

(

n

i

)

an−ibiE(Xn−i)

The concept of a mathematical expectation can easily be extended to situations
involving more than one random variable. For instance, if Z is the random variable
whose values are related to those of the two random variables X and Y by means of
the equation z = g(x, y), we can state the following theorem.

THEOREM 4. If X and Y are discrete random variables and f (x, y) is the
value of their joint probability distribution at (x, y), the expected value of
g(X, Y) is

E[g(X, Y)] =
∑

x

∑

y

g(x, y) · f (x, y)

Correspondingly, if X and Y are continuous random variables and f (x, y)
is the value of their joint probability density at (x, y), the expected value of
g(X, Y) is

E[g(X, Y)] =
∫

q

−q

∫

q

−q
g(x, y)f (x, y) dx dy

Generalization of this theorem to functions of any finite number of random variables
is straightforward.
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EXAMPLE 8

Find the expected value of g(X, Y) = X +Y.

Solution

E(X +Y) =
2
∑

x=0

2
∑

y=0

(x+ y) · f (x, y)

= (0+ 0) ·
1

6
+ (0+ 1) ·

2

9
+ (0+ 2) ·

1

36
+ (1+ 0) ·

1

3

+ (1+ 1) ·
1

6
+ (2+ 0) ·

1

12

=
10

9

EXAMPLE 9

If the joint probability density of X and Y is given by

f (x, y) =

{

2
7 (x+ 2y) for 0 < x < 1, 1 < y < 2

0 elsewhere

find the expected value of g(X, Y) = X/Y3.

Solution

E(X/Y3) =
∫ 2

1

∫ 1

0

2x(x+ 2y)

7y3
dx dy

=
2

7

∫ 2

1

(

1

3y3
+

1

y2

)

dy

=
15

84

The following is another theorem that finds useful applications in subsequent
work. It is a generalization of Theorem 3, and its proof parallels the proof of that
theorem.

THEOREM 5. If c1, c2, . . . , and cn are constants, then

E





n
∑

i=1

cigi(X1, X2, . . . , Xk)



 =
n
∑

i=1

ciE[gi(X1, X2, . . . , Xk)]
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Exercises

1. To illustrate the proof of Theorem 1, consider the ran-
dom variable X, which takes on the values −2, −1, 0, 1,
2, and 3 with probabilities f (−2), f (−1), f (0), f (1), f (2),
and f (3). If g(X) = X2, find
(a) g1, g2, g3, and g4, the four possible values of g(x);

(b) the probabilities P[g(X) = gi] for i = 1, 2, 3, 4;

(c) E[g(X)] =
4
∑

i=1

gi ·P[g(X) = gi], and show that

it equals
∑

x

g(x) · f (x)

2. Prove Theorem 2 for discrete random variables.

3. Prove Theorem 3 for continuous random variables.

4. Prove Theorem 5 for discrete random variables.

5. Given two continuous random variables X and Y, use
Theorem 4 to express E(X) in terms of
(a) the joint density of X and Y;

(b) the marginal density of X.

6. Find the expected value of the discrete random vari-
able X having the probability distribution

f (x) =
|x− 2|

7
for x = −1, 0, 1, 3

7. Find the expected value of the random variable Y
whose probability density is given by

f ( y) =











1

8
( y+ 1) for 2 < y < 4

0 elsewhere

8. Find the expected value of the random variable X
whose probability density is given by

f (x) =















x for 0 < x < 1

2− x for 1 F x < 2

0 elsewhere

9. (a) If X takes on the values 0, 1, 2, and 3 with probabil-
ities 1

125 , 12
125 , 48

125 , and 64
125 , find E(X) and E(X2).

(b) Use the results of part (a) to determine the value of
E[(3X + 2)2].

10. (a) If the probability density of X is given by

f (x) =











1

x(ln 3)
for 1 < x < 3

0 elsewhere

find E(X), E(X2), and E(X3).

(b) Use the results of part (a) to determine E(X3+ 2X2−
3X + 1).

11. If the probability density of X is given by

f (x) =



















































x

2
for 0 < x F 1

1

2
for 1 < x F 2

3− x

2
for 2 < x < 3

0 elsewhere

find the expected value of g(X) = X2− 5X + 3.

12. This has been intentionally omitted for this edition.

13. This has been intentionally omitted for this edition.

14. This has been intentionally omitted for this edition.

15. This has been intentionally omitted for this edition.

16. If the probability distribution of X is given by

f (x) =
(

1

2

)x

for x = 1, 2, 3, . . .

show that E(2X) does not exist. This is the famous
Petersburg paradox, according to which a player’s expec-
tation is infinite (does not exist) if he or she is to receive
2x dollars when, in a series of flips of a balanced coin, the
first head appears on the xth flip.

3 Moments In statistics, the mathematical expectations defined here and in Definition 4, called
the moments of the distribution of a random variable or simply the moments of a
random variable, are of special importance.
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DEFINITION 2. MOMENTS ABOUT THE ORIGIN. The rth moment about the origin of a

random variable X, denoted by m
′
r, is the expected value of X′; symbolically

µ′r = E(Xr) =
∑

x

xr · f (x)

for r = 0, 1, 2, . . . when X is discrete, and

µ′r = E(Xr) =
∫

q

−q
xr · f (x)dx

when X is continuous.

It is of interest to note that the term “moment” comes from the field of physics:
If the quantities f (x) in the discrete case were point masses acting perpendicularly
to the x-axis at distances x from the origin, µ′1 would be the x-coordinate of the
center of gravity, that is, the first moment divided by

∑

f (x) = 1, and µ′2 would be
the moment of inertia. This also explains why the moments µ′r are called moments
about the origin: In the analogy to physics, the length of the lever arm is in each
case the distance from the origin. The analogy applies also in the continuous case,
where µ′1 and µ′2 might be the x-coordinate of the center of gravity and the moment
of inertia of a rod of variable density.

When r = 0, we have µ′0 = E(X0) = E(1) = 1 by Corollary 2 of Theorem 2.
When r = 1, we have µ′1 = E(X), which is just the expected value of the random
variable X, and in view of its importance in statistics we give it a special symbol and
a special name.

DEFINITION 3. MEAN OF A DISTRIBUTION. m
′
1 is called the mean of the distribution of

X, or simply the mean of X, and it is denoted simply by m.

The special moments we shall define next are of importance in statistics because
they serve to describe the shape of the distribution of a random variable, that is, the
shape of the graph of its probability distribution or probability density.

DEFINITION 4. MOMENTS ABOUT THE MEAN. The rth moment about the mean of a

random variable X, denoted by mr, is the expected value of (X−m)r, symbolically

µr = E
[

(X −µ)r
]

=
∑

x

(x−µ)r · f (x)

for r = 0, 1, 2, . . . , when X is discrete, and

µr = E
[

(X −µ)r
]

=
∫

q

−q
(x−u)r · f (x)dx

when X is continuous.
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Note that µ0 = 1 and µ1 = 0 for any random variable for which µ exists (see
Exercise 17).

The second moment about the mean is of special importance in statistics because
it is indicative of the spread or dispersion of the distribution of a random variable;
thus, it is given a special symbol and a special name.

DEFINITION 5. VARIANCE. m2 is called the variance of the distribution of X, or sim-

ply the variance of X, and it is denoted by σ 2, σx
2, var(X), or V(X). The positive

square root of the variance, σ , is called the standard deviation of X.

Figure 1 shows how the variance reflects the spread or dispersion of the distribution
of a random variable. Here we show the histograms of the probability distributions
of four random variables with the same mean µ = 5 but variances equaling 5.26,
3.18, 1.66, and 0.88. As can be seen, a small value of σ 2 suggests that we are likely to
get a value close to the mean, and a large value of σ 2 suggests that there is a greater
probability of getting a value that is not close to the mean. This will be discussed
further in Section 4. A brief discussion of how µ3, the third moment about the mean,
describes the symmetry or skewness (lack of symmetry) of a distribution is given in
Exercise 26.

In many instances, moments about the mean are obtained by first calculating
moments about the origin and then expressing the µr in terms of the µ′r. To serve
this purpose, the reader will be asked to verify a general formula in Exercise 25.
Here, let us merely derive the following computing formula for σ 2.

Figure 1. Distributions with different dispersions.
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THEOREM 6.

σ 2 = µ′2−µ2

Proof
σ 2 = E[(X −µ)2]

= E(X2− 2µX +µ2)

= E(X2)− 2µE(X)+E(µ2)

= E(X2)− 2µ ·µ+µ2

= µ′2−µ2

EXAMPLE 10

Use Theorem 6 to calculate the variance of X, representing the number of points
rolled with a balanced die.

Solution

First we compute

µ = E(X) = 1 ·
1

6
+ 2 ·

1

6
+ 3 ·

1

6
+ 4 ·

1

6
+ 5 ·

1

6
+ 6 ·

1

6

=
7

2

Now,

µ′2 = E(X2) = 12 ·
1

6
+ 22 ·

1

6
+ 32 ·

1

6
+ 42 ·

1

6
+ 52 ·

1

6
+ 62 ·

1

6

=
91

6

and it follows that

σ 2 =
91

6
−
(

7

2

)2

=
35

12

EXAMPLE 11

With reference to Example 2, find the standard deviation of the random
variable X.

Solution

In Example 2 we showed that µ = E(X) = 0.4413. Now

µ′2 = E(X2) =
4

π

∫ 1

0

x2

1+ x2
dx

=
4

π

∫ 1

0

(

1−
1

1+ x2

)

dx

 ("
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=
4

π
− 1

= 0.2732

and it follows that

σ 2 = 0.2732− (0.4413)2 = 0.0785

and σ =
√

0.0785 = 0.2802.

The following is another theorem that is of importance in work connected with
standard deviations or variances.

THEOREM 7. If X has the variance σ 2, then

var(aX +b) = a2σ 2

The proof of this theorem will be left to the reader, but let us point out the following
corollaries: For a = 1, we find that the addition of a constant to the values of a
random variable, resulting in a shift of all the values of X to the left or to the right,
in no way affects the spread of its distribution; for b = 0, we find that if the values
of a random variable are multiplied by a constant, the variance is multiplied by the
square of that constant, resulting in a corresponding change in the spread of the
distribution.

4 Chebyshev’s Theorem

To demonstrate how σ or σ 2 is indicative of the spread or dispersion of the distribu-
tion of a random variable, let us now prove the following theorem, called
Chebyshev’s theorem after the nineteenth-century Russian mathematician P. L.
Chebyshev. We shall prove it here only for the continuous case, leaving the discrete
case as an exercise.

THEOREM 8. (Chebyshev’s Theorem) If µ and σ are the mean and the stan-
dard deviation of a random variable X, then for any positive constant
k the probability is at least 1− 1

k2 that X will take on a value within k

standard deviations of the mean; symbolically,

P(|x−µ|< kσ)Ú 1−
1

k2
, σ Z 0

Proof According to Definitions 4 and 5, we write

σ 2 = E[(X −µ)2] =
∫

q

−q
(x−µ)2 · f (x) dx

 (#
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Figure 2. Diagram for proof of Chebyshev’s theorem.

Then, dividing the integral into three parts as shown in Figure 2, we get

σ 2 =
∫ µ−kσ

−q
(x−µ)2 · f (x) dx+

∫ µ+kσ

µ−kσ

(x−µ)2 · f (x) dx

+
∫

q

µ+kσ

(x−µ)2 · f (x) dx

Since the integrand (x−µ)2 · f (x) is nonnegative, we can form the
inequality

σ 2
G

∫ µ−kσ

−q
(x−µ)2 · f (x) dx+

∫

q

µ+kσ

(x−µ)2 · f (x) dx

by deleting the second integral. Therefore, since (x−µ)2
G k2σ 2 for x F

µ−kσ or x G µ+kσ it follows that

σ 2
G

∫ µ−kσ

−q
k2σ 2 · f (x) dx+

∫

q

µ+kσ

k2σ 2 · f (x) dx

and hence that

1

k2
G

∫ µ−kσ

−q
f (x) dx+

∫

q

µ+kσ

f (x) dx

provided σ 2
Z 0. Since the sum of the two integrals on the right-hand side

is the probability that X will take on a value less than or equal to µ−kσ

or greater than or equal to µ+kσ , we have thus shown that

P(|X −µ| G kσ) F
1

k2

and it follows that

P(|X −µ|< kσ) G 1−
1

k2

For instance, the probability is at least 1− 1
22 = 3

4 that a random variable X will
take on a value within two standard deviations of the mean, the probability is at
least 1− 1

32 = 8
9 that it will take on a value within three standard deviations of the

mean, and the probability is at least 1− 1
52 = 24

25 that it will take on a value within

 ($
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five standard deviations of the mean. It is in this sense that σ controls the spread
or dispersion of the distribution of a random variable. Clearly, the probability given
by Chebyshev’s theorem is only a lower bound; whether the probability that a given
random variable will take on a value within k standard deviations of the mean is
actually greater than 1− 1

k2 and, if so, by how much we cannot say, but Chebyshev’s

theorem assures us that this probability cannot be less than 1− 1
k2 . Only when the

distribution of a random variable is known can we calculate the exact probability.

EXAMPLE 12

If the probability density of X is given by

f (x) =

{

630x4(1− x)4 for 0 < x < 1

0 elsewhere

find the probability that it will take on a value within two standard deviations of the
mean and compare this probability with the lower bound provided by Chebyshev’s
theorem.

Solution

Straightforward integration shows that µ = 1
2 and σ 2 = 1

44 , so that σ =
√

1/44
or approximately 0.15. Thus, the probability that X will take on a value within two
standard deviations of the mean is the probability that it will take on a value between
0.20 and 0.80, that is,

P(0.20 < X < 0.80) =
∫ 0.80

0.20
630x4(1− x)4 dx

= 0.96

Observe that the statement “the probability is 0.96” is a much stronger state-
ment than “the probability is at least 0.75,” which is provided by Chebyshev’s
theorem.

5 Moment-Generating Functions

Although the moments of most distributions can be determined directly by evalu-
ating the necessary integrals or sums, an alternative procedure sometimes provides
considerable simplifications. This technique utilizes moment-generating functions.

DEFINITION 6. MOMENT GENERATING FUNCTION. The moment generating function
of a random variable X, where it exists, is given by

MX(t) = E(etX) =
∑

x

etX · f (x)

when X is discrete, and

MX(t) = E(etX) =
∫

q

−q
etx · f (x)dx

when X is continuous.
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The independent variable is t, and we are usually interested in values of t in the
neighborhood of 0.

To explain why we refer to this function as a “moment-generating” function, let
us substitute for etx its Maclaurin’s series expansion, that is,

etx = 1+ tx+
t2x2

2!
+

t3x3

3!
+ · · ·+

trxr

r!
+ · · ·

For the discrete case, we thus get

MX(t) =
∑

x

[

1+ tx+
t2x2

2!
+ · · ·+

trxr

r!
+ · · ·

]

f (x)

=
∑

x

f (x)+ t ·
∑

x

xf (x)+
t2

2!
·
∑

x

x2f (x)+ · · ·+
tr

r!
·
∑

x

xrf (x)+ · · ·

= 1+µ · t+µ′2 ·
t2

2!
+ · · ·+µ′r ·

tr

r!
+ · · ·

and it can be seen that in the Maclaurin’s series of the moment-generating function

of X the coefficient of
tr

r!
is µ′r, the rth moment about the origin. In the continuous

case, the argument is the same.

EXAMPLE 13

Find the moment-generating function of the random variable whose probability den-
sity is given by

f (x) =

{

e−x for x > 0

0 elsewhere

and use it to find an expression for µ′r.

Solution

By definition

MX(t) = E(etX) =
∫

q

0
etx · e−x dx

=
∫

q

0
e−x(1−t) dx

=
1

1− t
for t < 1

As is well known, when |t|< 1 the Maclaurin’s series for this moment-generating
function is

MX(t) = 1+ t+ t2+ t3+ · · ·+ tr+ · · ·

= 1+ 1! ·
t

1!
+ 2! ·

t2

2!
+ 3! ·

t3

3!
+ · · ·+ r! ·

tr

r!
+ · · ·

and hence µ′r = r! for r = 0, 1, 2, . . . .
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The main difficulty in using the Maclaurin’s series of a moment-generating func-
tion to determine the moments of a random variable is usually not that of finding
the moment-generating function, but that of expanding it into a Maclaurin’s series.
If we are interested only in the first few moments of a random variable, say, µ′1 and
µ′2, their determination can usually be simplified by using the following theorem.

THEOREM 9.
drMX(t)

dtr

∣

∣

∣

t=0
= µ′r

This follows from the fact that if a function is expanded as a power series in t, the
coefficient of tr

r! is the rth derivative of the function with respect to t at t = 0.

EXAMPLE 14

Given that X has the probability distribution f (x) =
1

8

(

3
x

)

for x = 0, 1, 2, and 3, find

the moment-generating function of this random variable and use it to determine µ′1
and µ′2.

Solution

In accordance with Definition 6,

MX(t) = E(etX) =
1

8
·

3
∑

x=0

etx

(

3
x

)

=
1

8
(1+ 3et + 3e2t+ e3t)

=
1

8
(1+ et)3

Then, by Theorem 9,

µ′1 = M′
X(0) =

3

8
(1+ et)2et

∣

∣

∣

t=0
=

3

2

and

µ′2 = M′′
X(0) =

3

4
(1+ et)e2t+

3

8
(1+ et)2et

∣

∣

∣

t=0
= 3

Often the work involved in using moment-generating functions can be simplified
by making use of the following theorem.

THEOREM 10. If a and b are constants, then

1. MX+a(t) = E[e(X+a)t] = eat ·MX(t);

2. MbX(t) = E(ebXt) = MX(bt);

3. M X+a
b

(t) = E[e

(

X+a
b

)

t
] = e

a
b

t ·MX

(

t

b

)

.
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The proof of this theorem is left to the reader in Exercise 39. The first part of the
theorem is of special importance when a = −µ, and the third part is of special
importance when a = −µ and b = σ , in which case

M X−µ
σ

(t) = e−
µt
σ ·MX

(

t

σ

)

Exercises

17. With reference to Definition 4, show that µ0 = 1
and that µ1 = 0 for any random variable for which
E(X) exists.

18. Find µ, µ′2, and σ 2 for the random variable X that has

the probability distribution f (x) = 1
2 for x = −2 and

x = 2.

19. Find µ, µ′2, and σ 2 for the random variable X that has
the probability density

f (x) =











x

2
for 0 < x < 2

0 elsewhere

20. Find µ′r and σ 2 for the random variable X that has the
probability density

f (x) =











1

ln 3
·

1

x
for 1 < x < 3

0 elsewhere

21. Prove Theorem 7.

22. With reference to Exercise 8, find the variance of
g(X) = 2X + 3.

23. If the random variable X has the mean µ and the stan-
dard deviation σ , show that the random variable Z whose
values are related to those of X by means of the equation
z = x−µ

σ
has

E(Z) = 0 and var(Z) = 1

A distribution that has the mean 0 and the variance 1 is
said to be in standard form, and when we perform the
above change of variable, we are said to be standardizing
the distribution of X.

24. If the probability density of X is given by

f (x) =

{

2x−3 for x > 1

0 elsewhere

check whether its mean and its variance exist.

25. Show that

µr = µ′r−
(

r
1

)

µ′r−1 ·µ+ · · ·+ (−1)i

(

r
i

)

µ′r−i ·µ
i

+ · · ·+ (−1)r−1(r− 1) ·µr

for r = 1, 2, 3, . . . , and use this formula to express µ3 and
µ4 in terms of moments about the origin.

26. The symmetry or skewness (lack of symmetry) of a
distribution is often measured by means of the quantity

α3 =
µ3

σ 3

Use the formula for µ3 obtained in Exercise 25 to deter-
mine α3 for each of the following distributions (which
have equal means and standard deviations):
(a) f (1) = 0.05, f (2) = 0.15, f (3) = 0.30, f (4) = 0.30,
f (5) = 0.15, and f (6) = 0.05;

(b) f (1) = 0.05, f (2) = 0.20, f (3) = 0.15, f (4) = 0.45,
f (5) = 0.10, and f (6) = 0.05.

Also draw histograms of the two distributions and note
that whereas the first is symmetrical, the second has a
“tail” on the left-hand side and is said to be negatively
skewed.

27. The extent to which a distribution is peaked or flat,
also called the kurtosis of the distribution, is often mea-
sured by means of the quantity

α4 =
µ4

σ 4

Use the formula for µ4 obtained in Exercise 25 to find
α4 for each of the following symmetrical distributions,
of which the first is more peaked (narrow humped) than
the second:
(a) f (−3) = 0.06, f (−2) = 0.09, f (−1) = 0.10, f (0) =
0.50, f (1) = 0.10, f (2) = 0.09, and f (3) = 0.06;

(b) f (−3) = 0.04, f (−2) = 0.11, f (−1) = 0.20, f (0) =
0.30, f (1) = 0.20, f (2) = 0.11, and f (3) = 0.04.

28. Duplicate the steps used in the proof of Theorem 8 to
prove Chebyshev’s theorem for a discrete random vari-
able X.

29. Show that if X is a random variable with the mean µ

for which f (x) = 0 for x < 0, then for any positive con-
stant a,
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P(X G a) F
µ

a

This inequality is called Markov’s inequality, and we have
given it here mainly because it leads to a relatively simple
alternative proof of Chebyshev’s theorem.

30. Use the inequality of Exercise 29 to prove Cheby-
shev’s theorem. [Hint: Substitute (X −µ)2 for X.]

31. What is the smallest value of k in Chebyshev’s theo-
rem for which the probability that a random variable will
take on a value between µ−kσ and µ+kσ is
(a) at least 0.95;

(b) at least 0.99?

32. If we let kσ = c in Chebyshev’s theorem, what does
this theorem assert about the probability that a random
variable will take on a value between µ− c and µ+ c?

33. Find the moment-generating function of the contin-
uous random variable X whose probability density is
given by

f (x) =

{

1 for 0 < x < 1

0 elsewhere

and use it to find µ′1, µ′2, and σ 2.

34. Find the moment-generating function of the discrete
random variable X that has the probability distribution

f (x) = 2

(

1

3

)x

for x = 1, 2, 3, . . .

and use it to determine the values of µ′1 and µ′2.

35. If we let RX(t) = ln MX(t), show that R′X(0) = µ and

R′′X(0) = σ 2. Also, use these results to find the mean and
the variance of a random variable X having the moment-
generating function

MX(t) = e4(et−1)

36. Explain why there can be no random variable for
which MX(t) = t

1−t
.

37. Show that if a random variable has the probabil-
ity density

f (x) =
1

2
e−|x| for −q< x <q

its moment-generating function is given by

MX(t) =
1

1− t2

38. With reference to Exercise 37, find the variance of the
random variable by
(a) expanding the moment-generating function as an infi-
nite series and reading off the necessary coefficients;

(b) using Theorem 9.

39. Prove the three parts of Theorem 10.

40. Given the moment-generating function MX(t) =
e3t+8t2 , find the moment-generating function of the ran-
dom variable Z = 1

4 (X − 3), and use it to determine the
mean and the variance of Z.

6 Product Moments

To continue the discussion of Section 3, let us now present the product moments of
two random variables.

DEFINITION 7. PRODUCT MOMENTS ABOUT THE ORIGIN. The rth and sth product
moment about the origin of the random variables X and Y, denoted by m

′
r,s, is

the expected value of XrYs; symbolically,

µ′r,s = E(XrYs) =
∑

x

∑

y

xrys · f (x, y)

for r = 0, 1, 2, . . . and s = 0, 1, 2, . . . when X and Y are discrete, and

µ′r,s = E(XrYs) =
∫

q

−q

∫

q

−q
xrys · f (x, y)dxdy

when X and Y are continuous.
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In the discrete case, the double summation extends over the entire joint range of the
two random variables. Note that µ′1,0 = E(X), which we denote here by µX , and that

µ′0,1 = E(Y), which we denote here by µY .
Analogous to Definition 4, let us now state the following definition of product

moments about the respective means.

DEFINITION 8. PRODUCT MOMENTS ABOUT THE MEAN. The rth and sth product
moment about the means of the random variables X and Y, denoted by mr,s,

is the expected value of (X−mX)r(Y−mY)s; symbolically,

µr,s = E[(X −µX)r(Y−µY)s]

=
∑

x

∑

y

(x−µX)r(y−µY)s·f (x, y)

for r = 0, 1, 2, . . . and s = 0, 1, 2, . . . when X and Y are discrete, and

µr,s = E[(X −µX)r(Y−µY)s]

=
∫

q

−q

∫

q

−q
(x−µX)r(y−µY)s · f (x, y)dxdy

when X and Y are continuous.

In statistics, µ1,1 is of special importance because it is indicative of the relation-
ship, if any, between the values of X and Y; thus, it is given a special symbol and a
special name.

DEFINITION 9. COVARIANCE. m1,1 is called the covariance of X and Y, and it is

denoted by sXY, cov(X, Y), or C(X, Y).

Observe that if there is a high probability that large values of X will go with large
values of Y and small values of X with small values of Y, the covariance will be posi-
tive; if there is a high probability that large values of X will go with small values of Y,
and vice versa, the covariance will be negative. It is in this sense that the covariance
measures the relationship, or association, between the values of X and Y.

Let us now prove the following result, analogous to Theorem 6, which is useful
in actually determining covariances.

THEOREM 11.

σXY = µ′1, 1−µXµY

Proof Using the various theorems about expected values, we can write

σXY = E[(X −µX)(Y−µY)]

= E(XY−XµY −YµX +µXµY)

= E(XY)−µYE(X)−µXE(Y)+µXµY

= E(XY)−µYµX −µXµY +µXµY

= µ′1, 1−µXµY
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EXAMPLE 15

The joint and marginal probabilities of X and Y, the numbers of aspirin and sedative
caplets among two caplets drawn at random from a bottle containing three aspirin,
two sedative, and four laxative caplets, are recorded as follows:

x

0 1 2

0
1

6

1

3

1

12

7

12

y 1
2

9

1

6

7

18

2
1

36

1

36

5

12

1

2

1

12

Find the covariance of X and Y.

Solution

Referring to the joint probabilities given here, we get

µ′1, 1 = E(XY)

= 0 · 0 ·
1

6
+ 0 · 1 ·

2

9
+ 0 · 2 ·

1

36
+ 1 · 0 ·

1

3
+ 1 · 1 ·

1

6
+ 2 · 0 ·

1

12

=
1

6

and using the marginal probabilities, we get

µX = E(X) = 0 ·
5

12
+ 1 ·

1

2
+ 2 ·

1

12
=

2

3

and

µY = E(Y) = 0 ·
7

12
+ 1 ·

7

18
+ 2 ·

1

36
=

4

9

It follows that

σXY =
1

6
−

2

3
·

4

9
= −

7

54

The negative result suggests that the more aspirin tablets we get the fewer sedative
tablets we will get, and vice versa, and this, of course, makes sense.

EXAMPLE 16

Find the covariance of the random variables whose joint probability density is
given by

f (x, y) =

{

2 for x > 0, y > 0, x+ y < 1

0 elsewhere
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Solution

Evaluating the necessary integrals, we get

µX =
∫ 1

0

∫ 1−x

0
2x dy dx =

1

3

µY =
∫ 1

0

∫ 1−x

0
2y dy dx =

1

3

and

σ ′1,1 =
∫ 1

0

∫ 1−x

0
2xy dy dx =

1

12

It follows that

σXY =
1

12
−

1

3
·

1

3
= −

1

36

As far as the relationship between X and Y is concerned, observe that if X

and Y are independent, their covariance is zero; symbolically, we have the following
theorem.

THEOREM 12. If X and Y are independent, then E(XY) = E(X) ·E(Y) and
σXY = 0.

Proof For the discrete case we have, by definition,

E(XY) =
∑

x

∑

y

xy · f (x, y)

Since X and Y are independent, we can write f (x, y) = g(x) ·h(y), where
g(x) and h(y) are the values of the marginal distributions of X and Y, and
we get

E(XY) =
∑

x

∑

y

xy · g(x)h(y)

=





∑

x

x · g(x)









∑

y

y ·h(y)





= E(X) ·E(Y)

Hence,
σXY = µ′1,1−µXµY

= E(X) ·E(Y)−E(X) ·E(Y)

= 0

It is of interest to note that the independence of two random variables implies
a zero covariance, but a zero covariance does not necessarily imply their indepen-
dence. This is illustrated by the following example (see also Exercises 46 and 47).
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EXAMPLE 17

If the joint probability distribution of X and Y is given by

x

−1 0 1

−1
1

6

1

3

1

6

2

3

y 0 0 0 0 0

1
1

6
0

1

6

1

3

1

3

1

3

1

3

show that their covariance is zero even though the two random variables are not
independent.

Solution

Using the probabilities shown in the margins, we get

µX = (−1) ·
1

3
+ 0 ·

1

3
+ 1 ·

1

3
= 0

µY = (−1) ·
2

3
+ 0 · 0+ 1 ·

1

3
= −

1

3

and

µ′1,1 = (−1)(−1) ·
1

6
+ 0(−1) ·

1

3
+ 1(−1) ·

1

6
+ (−1)1 ·

1

6
+ 1 · 1 ·

1

6

= 0

Thus, σXY = 0− 0(− 1
3 ) = 0, the covariance is zero, but the two random variables are

not independent. For instance, f (x, y)Z g(x) ·h(y) for x = −1 and y = −1.

Product moments can also be defined for the case where there are more than
two random variables. Here let us merely state the important result, in the following
theorem.

THEOREM 13. If X1, X2, . . . , Xn are independent, then

E(X1X2 · . . . ·Xn) = E(X1) ·E(X2) · . . . ·E(Xn)

This is a generalization of the first part of Theorem 12.
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7 Moments of Linear Combinations of Random Variables

In this section we shall derive expressions for the mean and the variance of a linear
combination of n random variables and the covariance of two linear combinations
of n random variables. Applications of these results will be important in our later
discussion of sampling theory and problems of statistical inference.

THEOREM 14. If X1, X2, . . . , Xn are random variables and

Y =
n
∑

i=1

aiXi

where a1, a2, . . . , an are constants, then

E(Y) =
n
∑

i=1

aiE(Xi)

and

var(Y) =
n
∑

i=1

a2
i · var(Xi)+ 2

∑∑

i<j

aiaj · cov(XiXj)

where the double summation extends over all values of i and j, from 1 to
n, for which i < j.

Proof From Theorem 5 with gi(X1, X2, . . . , Xk) = Xi for i = 0, 1, 2, . . . , n,
it follows immediately that

E(Y) = E





n
∑

i=1

aiXi



 =
n
∑

i=1

aiE(Xi)

and this proves the first part of the theorem. To obtain the expression for
the variance of Y, let us write µi for E(Xi) so that we get

var(Y) = E
(

[Y−E(Y)]2
)

= E















n
∑

i=1

aiXi−
n
∑

i=1

aiE(Xi)





2










= E















n
∑

i=1

ai(Xi−µi)





2










Then, expanding by means of the multinomial theorem, according to which
(a+b+ c+d)2, for example, equals a2+b2+ c2+d2+ 2ab+ 2ac+ 2ad+
2bc+ 2bd+ 2cd, and again referring to Theorem 5, we get

var(Y) =
n
∑

i=1

a2
i E[(Xi−µi)

2]+ 2
∑∑

i<j

aiajE[(Xi−µi)(Xj−µj)]

=
n
∑

i=1

a2
i · var(Xi)+ 2

∑∑

i<j

aiaj · cov(Xi, Xj)

Note that we have tacitly made use of the fact that cov(Xi, Xj) = cov(Xj, Xi).
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Since cov(Xi, Xj) = 0 when Xi and Xj are independent, we obtain the following
corollary.

COROLLARY 3. If the random variables X1, X2, . . . , Xn are independent and

Y =
n
∑

i=1

aiXi, then

var(Y) =
n
∑

i=1

a2
i · var(Xi)

EXAMPLE 18

If the random variables X, Y, and Z have the means µX = 2, µY = −3, and µZ = 4,
the variances σ 2

X = 1, σ 2
Y = 5, and σ 2

Z = 2, and the covariances cov(X, Y) = −2,
cov(X, Z) = −1, and cov(Y, Z) = 1, find the mean and the variance of
W = 3X −Y+ 2Z.

Solution

By Theorem 14, we get

E(W) = E(3X −Y+ 2Z)

= 3E(X)−E(Y)+ 2E(Z)

= 3 · 2− (−3)+ 2 · 4

= 17

and

var(W) = 9 var(X)+ var(Y)+ 4 var(Z)− 6 cov(X, Y)

+ 12 cov(X, Z)− 4 cov(Y, Z)

= 9 · 1+ 5+ 4 · 2− 6(−2)+ 12(−1)− 4 · 1

= 18

The following is another important theorem about linear combinations of ran-
dom variables; it concerns the covariance of two linear combinations of n random
variables.

THEOREM 15. If X1, X2, . . . , Xn are random variables and

Y1 =
n
∑

i=1

aiXi and Y2 =
n
∑

i=1

biXi

where a1, a2, . . . , an, b1, b2, . . . , bn are constants, then

cov(Y1, Y2) =
n
∑

i=1

aibi · var(Xi)+
∑∑

i<j

(aibj+ ajbi) · cov(Xi, Xj)

The proof of this theorem, which is very similar to that of Theorem 14, will be left to
the reader in Exercise 52.

Since cov(Xi, Xj) = 0 when Xi and Xj are independent, we obtain the following
corollary.
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COROLLARY 4. If the random variables X1, X2, . . . , Xn are independent, Y1 =
n
∑

i=1

aiXi and Y2 =
n
∑

i=1

biXi, then

cov(Y1, Y2) =
n
∑

i=1

aibi · var(Xi)

EXAMPLE 19

If the random variables X, Y, and Z have the means µX = 3, µY = 5, and µZ = 2,
the variances σ 2

X = 8, σ 2
Y = 12, and σ 2

Z = 18, and cov(X, Y) = 1, cov(X, Z) = −3,
and cov(Y, Z) = 2, find the covariance of

U = X + 4Y+ 2Z and V = 3X −Y−Z

Solution

By Theorem 15, we get

cov(U, V) = cov(X + 4Y+ 2Z, 3X −Y−Z)

= 3 var(X)− 4 var(Y)− 2 var(Z)+ 11 cov(X, Y)

+ 5 cov(X, Z)− 6 cov(Y, Z)

= 3 · 8− 4 · 12− 2 · 18+ 11 · 1+ 5(−3)− 6 · 2

= −76

8 Conditional Expectations

Conditional probabilities are obtained by adding the values of conditional prob-
ability distributions, or integrating the values of conditional probability densities.
Conditional expectations of random variables are likewise defined in terms of their
conditional distributions.

DEFINITION 10. CONDITIONAL EXPECTATION. If X is a discrete random variable, and

f(x|y) is the value of the conditional probability distribution of X given Y = y at

x, the conditional expectation of u(X) given Y = y is

E[u(X)|y)] =
∑

x

u(x) · f (x|y)

Correspondingly, if X is a continuous variable and f(x|y) is the value of the condi-

tional probability distribution of X given Y = y at x, the conditional expectation
of u(X) given Y = y is

E[(u(X)|y)] =
∫

q

=q
u(x) · f (x|y)dx

Similar expressions based on the conditional probability distribution or density of Y

given X = x define the conditional expectation of υ(Y) given X = x.
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If we let u(X) = X in Definition 10, we obtain the conditional mean of the
random variable X given Y = y, which we denote by

µX|y = E(X|y)

Correspondingly, the conditional variance of X given Y = y is

σ 2
X|y = E[(X −µX|y)

2|y]

= E(X2|y)−µ2
X|y

where E(X2|y) is given by Definition 10 with u(X) = X2. The reader should not find
it difficult to generalize Definition 10 for conditional expectations involving more
than two random variables.

EXAMPLE 20

If the joint probability density of X and Y is given by

f (x, y) =











2

3
(x+ 2y) for 0 < x < 1, 0 < y < 1

0 elsewhere

find the conditional mean and the conditional variance of X given Y = 1
2 .

Solution

For these random variables the conditional density of X given Y = y is

f (x|y) =











2x+ 4y

1+ 4y
for 0 < x < 1

0 elsewhere

so that

f

(

x

∣

∣

∣

∣

1

2

)

=











2

3
(x+ 1) for 0 < x < 1

0 elsewhere

Thus, µ
X| 1

2
is given by

E

(

X

∣

∣

∣

∣

1

2

)

=
∫ 1

0

2

3
x(x+ 1) dx

=
5

9

Next we find

E

(

X2

∣

∣

∣

∣

1

2

)

=
∫ 1

0

2

3
x2(x+ 1) dx

=
7

18

and it follows that

σ 2
X| 1

2

=
7

18
−
(

5

9

)2

=
13

162
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Exercises

41. Prove that cov(X, Y) = cov(Y, X) for both discrete
and continuous random variables X and Y.

42. If X and Y have the joint probability distribution
f (x, y) = 1

4 for x = −3 and y = −5, x = −1 and
y = −1, x = 1 and y = 1, and x = 3 and y = 5, find
cov(X, Y).

43. This has been intentionally omitted for this edition.

44. This has been intentionally omitted for this edition.

45. This has been intentionally omitted for this edition.

46. If X and Y have the joint probability distribution
f (−1, 0) = 0, f (−1, 1) = 1

4 , f (0, 0) = 1
6 , f (0, 1) =

0, f (1, 0) = 1
12 , and f (1, 1) = 1

2 , show that

(a) cov(X, Y) = 0;

(b) the two random variables are not independent.

47. If the probability density of X is given by

f (x) =















1+ x for − 1 < x F 0

1− x for 0 < x < 1

0 elsewhere

and U = X and V = X2, show that
(a) cov(U, V) = 0;

(b) U and V are dependent.

48. For k random variables X1, X2, . . . , Xk, the values of
their joint moment-generating function are given by

E
(

et1X1+t2X2+···+tkXk

)

(a) Show for either the discrete case or the continuous
case that the partial derivative of the joint moment-
generating function with respect to ti at t1 = t2 = · · · =
tk = 0 is E(Xi).

(b) Show for either the discrete case or the continu-
ous case that the second partial derivative of the joint
moment-generating function with respect to ti and tj, iZ j,
at t1 = t2 = · · · = tk = 0 is E(XiXj).

(c) If two random variables have the joint density
given by

f (x, y) =

{

e−x−y for x > 0, y > 0

0 elsewhere

find their joint moment-generating function and use it
to determine the values of E(XY), E(X), E(Y), and
cov(X, Y).

49. If X1, X2, and X3 are independent and have the means
4, 9, and 3 and the variances 3, 7, and 5, find the mean and
the variance of

(a) Y = 2X1− 3X2+ 4X3;

(b) Z = X1+ 2X2−X3.

50. Repeat both parts of Exercise 49, dropping the
assumption of independence and using instead the
information that cov(X1, X2) = 1, cov(X2, X3) = −2,
and cov(X1, X3) = −3.

51. If the joint probability density of X and Y is given by

f (x, y) =











1

3
(x+ y) for 0 < x < 1, 0 < y < 2

0 elsewhere

find the variance of W = 3X + 4Y− 5.

52. Prove Theorem 15.

53. Express var(X +Y), var(X −Y), and cov(X +Y, X −
Y) in terms of the variances and covariance of X
and Y.

54. If var(X1) = 5, var(X2) = 4, var(X3) = 7, cov(X1,
X2) = 3, cov(X1, X3) = −2, and X2 and X3 are indepen-
dent, find the covariance of Y1 = X1− 2X2+ 3X3 and
Y2 = −2X1+ 3X2+ 4X3.

55. With reference to Exercise 49, find cov(Y, Z).

56. This question has been intentionally omitted for this
edition.

57. This question has been intentionally omitted for this
edition.

58. This question has been intentionally omitted for this
edition.

59. This question has been intentionally omitted for this
edition.

60. (a) Show that the conditional distribution function of
the continuous random variable X, given a < X F b, is
given by

F(x|a < X F b) =



















0 for x F a
F(x)−F(a)

F(b)−F(a)
for a < x F b

1 for x > b

(b) Differentiate the result of part (a) with respect to
x to find the conditional probability density of X given
a < X F b, and show that

E[u(X)|a < X F b] =

∫ b

a

u(x)f (x) dx

∫ b

a

f (x) dx
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9 The Theory in Practice

Empirical distributions, those arising from data, can be described by their shape. We
will discuss descriptive measures, calculated from data, that extend the methodology
of describing data. These descriptive measures are based on the ideas of moments,
given in Section 3.

The analog of the first moment, µ′1 = µ, is the sample mean, x, defined as

x =
n
∑

i=1

xi/n

where i = 1, 2, . . . , n and n is the number of observations.
The usefulness of the sample mean as a description of data can be envisioned

by imagining that the histogram of a data distribution has been cut out of a piece
of cardboard and balanced by inserting a fulcrum along the horizontal axis. This
balance point corresponds to the mean of the data. Thus, the mean can be thought
of as the centroid of the data and, as such, it describes its location.

The mean is an excellent measure of location for symmetric or nearly symmetric
distributions. But it can be misleading when used to measure the location of highly
skewed data. To give an example, suppose, in a small company, the annual salaries
of its 10 employees (rounded to the nearest $1,000) are 25, 18, 36, 28, 16, 20, 29, 32,
41, and 150. The mean of these observations is $39,500. One of the salaries, namely
$150,000, is much higher than the others (it’s what the owner pays himself) and only
one other employee earns as much as $39,500. Suppose the owner, in a recruiting
ad, claimed that “Our company pays an average salary of $39,500.” He would be
technically correct, but very misleading.

Other descriptive measures for the location of data should be used in cases like
the one just described. The median describes the center of the data as the middle
point of the observations. If the data are ranked from, say, smallest to largest, the
median becomes observation number n/2 if n is an even integer, and it is defined as

the mean value of observations
(n− 1)

2
and

(n+ 1)

2
if n is an odd integer. The median

of the 10 observations given in the preceding example is $28,000, and it is a much
better description of what an employee of this company can expect to earn. You may
very well have heard the term “median income” for, say, the incomes of American
families. The median is used instead of the mean here because it is well known that
the distribution of family incomes in the United States is highly skewed—the great
majority of families earn low to moderate incomes, but a relatively few have very
high incomes.

The dispersion of data also is important in its description. Give the location
of data, one reasonably wants to know how closely the observations are grouped
around this value. A reasonable measure of dispersion can be based on the square
root of the second moment about the mean, σ . The sample standard deviation, s, is
calculated analogously to the second moment, as follows:

s =

√

√

√

√

√

√

n
∑

i=1

(x− x)2

n− 1

Since this formula requires first the calculation of the mean, then subtraction of the
mean from each observation before squaring and adding, it is much easier to use the
following calculating formula for s:
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s =

√

√

√

√

√

√

√

n

n
∑

i=1

x2
i −





n
∑

i=1

xi





2

n(n− 1)

Note that in both formulas we divide by n− 1 instead of n. Using either formula for
the calculation of s requires tedious calculation, but every statistical computer pro-
gram in common use will calculate both the sample mean and the sample standard
deviation once the data have been inputted.

EXAMPLE 21

The following are the lengths (in feet) of 10 steel beams rolled in a steel mill and cut
to a nominal length of 12 feet:

11.8 12.1 12.5 11.7 11.9 12.0 12.2 11.5 11.9 12.2

Calculate the mean length and its standard deviation. Is the mean a reasonable mea-
sure of the location of the data? Why or why not?

Solution

The mean is given by the sum of the observations, 11.8+ 12.1+ . . . 12.2 = 119.8,
divided by 10, or x = 11.98 feet. To calculate the standard deviation, we first cal-
culate the sum of the squares of the observations, (11.8)2+ (12.1)2+ . . .+ (12.2)2 =
1, 435.94. Then substituting into the formula for s, we obtain s2 = (10)(1435.94)−
(119.8)2/(10)(9) = 0.082 foot. Taking the square root, we obtain s = 0.29. The mean,
11.98 feet, seems to be a reasonable measure of location inasmuch as the data seem
to be approximately symmetrically distributed.

The standard deviation is not the only measure of the dispersion, or variability
of data. The sample range sometimes is used for this purpose. To calculate the range,
we find the largest and the smallest observations, xl and xs, defining the range to be

r = xl− xs

This measure of dispersion is used only for small samples; for larger and larger sam-
ple sizes, the range becomes a poorer and poorer measure of dispersion.

Applied Exercises SECS. 1–2

61. This question has been intentionally omitted for this
edition.

62. The probability that Ms. Brown will sell a piece of
property at a profit of $3,000 is 3

20 , the probability that

she will sell it at a profit of $1,500 is 7
20 , the probability

that she will break even is 7
20 , and the probability that she

will lose $1,500 is 3
20 . What is her expected profit?

63. A game of chance is considered fair, or equitable, if
each player’s expectation is equal to zero. If someone

pays us $10 each time that we roll a 3 or a 4 with a bal-
anced die, how much should we pay that person when we
roll a 1, 2, 5, or 6 to make the game equitable?

64. The manager of a bakery knows that the number of
chocolate cakes he can sell on any given day is a ran-
dom variable having the probability distribution f (x) = 1

6
for x = 0, 1, 2, 3, 4, and 5. He also knows that there is a
profit of $1.00 for each cake that he sells and a loss (due
to spoilage) of $0.40 for each cake that he does not sell.
Assuming that each cake can be sold only on the day it is

 "(
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made, find the baker’s expected profit for a day on which
he bakes
(a) one of the cakes;

(b) two of the cakes;

(c) three of the cakes;

(d) four of the cakes;

(e) five of the cakes.

How many should he bake in order to maximize his
expected profit?

65. If a contractor’s profit on a construction job can be
looked upon as a continuous random variable having the
probability density

f (x) =











1

18
(x+ 1) for −1 < x < 5

0 elsewhere

where the units are in $1,000, what is her expected profit?

66. This question has been intentionally omitted for this
edition.

67. This question has been intentionally omitted for this
edition.

68. This question has been intentionally omitted for this
edition.

69. Mr. Adams and Ms. Smith are betting on repeated
flips of a coin. At the start of the game Mr. Adams has
a dollars and Ms. Smith has b dollars, at each flip the
loser pays the winner one dollar, and the game contin-
ues until either player is “ruined.” Making use of the
fact that in an equitable game each player’s mathematical
expectation is zero, find the probability that Mr. Adams
will win Ms. Smith’s b dollars before he loses his a
dollars.

SECS. 3–5

70. With reference to Example 1, find the variance of the
number of television sets with white cords.

71. The amount of time it takes a person to be served at a
given restaurant is a random variable with the probabil-
ity density

f (x) =











1

4
e−

x
4 for x > 0

0 elsewhere

Find the mean and the variance of this random variable.

72. This question has been intentionally omitted for this
edition.

73. This question has been intentionally omitted for this
edition.

74. The following are some applications of the Markov
inequality of Exercise 29:
(a) The scores that high school juniors get on the verbal
part of the PSAT/NMSQT test may be looked upon as
values of a random variable with the mean µ = 41. Find
an upper bound to the probability that one of the students
will get a score of 65 or more.

(b) The weight of certain animals may be looked upon
as a random variable with a mean of 212 grams. If none
of the animals weighs less than 165 grams, find an upper
bound to the probability that such an animal will weigh at
least 250 grams.

75. The number of marriage licenses issued in a certain
city during the month of June may be looked upon as a
random variable with µ = 124 and σ = 7.5. Accord-
ing to Chebyshev’s theorem, with what probability can
we assert that between 64 and 184 marriage licenses will
be issued there during the month of June?

76. A study of the nutritional value of a certain kind of
bread shows that the amount of thiamine (vitamin B1)
in a slice may be looked upon as a random variable with
µ = 0.260 milligram and σ = 0.005 milligram. Accord-
ing to Chebyshev’s theorem, between what values must
be the thiamine content of
(a) at least 35

36 of all slices of this bread;

(b) at least 143
144 of all slices of this bread?

77. With reference to Exercise 71, what can we assert
about the amount of time it takes a person to be served at
the given restaurant if we use Chebyshev’s theorem with
k = 1.5? What is the corresponding probability rounded
to four decimals?

SECS. 6–9

78. A quarter is bent so that the probabilities of heads
and tails are 0.40 and 0.60. If it is tossed twice, what is
the covariance of Z, the number of heads obtained on the
first toss, and W, the total number of heads obtained in
the two tosses of the coin?

79. The inside diameter of a cylindrical tube is a random
variable with a mean of 3 inches and a standard devia-
tion of 0.02 inch, the thickness of the tube is a random
variable with a mean of 0.3 inch and a standard deviation
of 0.005 inch, and the two random variables are indepen-
dent. Find the mean and the standard deviation of the
outside diameter of the tube.

80. The length of certain bricks is a random variable
with a mean of 8 inches and a standard deviation of
0.1 inch, and the thickness of the mortar between two
bricks is a random variable with a mean of 0.5 inch
and a standard deviation of 0.03 inch. What is the
mean and the standard deviation of the length of a
wall made of 50 of these bricks laid side by side, if we
can assume that all the random variables involved are
independent?
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81. If heads is a success when we flip a coin, getting a six
is a success when we roll a die, and getting an ace is a suc-
cess when we draw a card from an ordinary deck of 52
playing cards, find the mean and the standard deviation
of the total number of successes when we
(a) flip a balanced coin, roll a balanced die, and then draw
a card from a well-shuffled deck;

(b) flip a balanced coin three times, roll a balanced die
twice, and then draw a card from a well-shuffled deck.

82. If we alternately flip a balanced coin and a coin that
is loaded so that the probability of getting heads is 0.45,
what are the mean and the standard deviation of the num-
ber of heads that we obtain in 10 flips of these coins?

83. This question has been intentionally omitted for this
edition.

84. This question has been intentionally omitted for this
edition.

85. The amount of time (in minutes) that an executive of
a certain firm talks on the telephone is a random variable
having the probability density

f (x) =























x

4
for 0 < x F 2

4

x3
for x > 2

0 elsewhere

With reference to part (b) of Exercise 60, find the
expected length of one of these telephone conversations
that has lasted at least 1 minute.

Answers to Odd-Numbered Exercises

1 (a) g1 = 0, g2 = 1, g3 = 4, and g4 = 9; (b) f (0), f (−1)+
f (1), f (−2)+ f (2), and f (3); (c) 0 · f (0)+ 1 · {f (−1)+ f (1)}
+ 4 · {f (−2)+ f (2)}+ 9 · f (3) = (−2)2 · f (−2)+ (−1)2 · f (−1)

+ 02 · f (0)+ 12 · f (1)+ 22 · f (2)+ 32 · f (3) =
∑

x

g(x) · f (x).

3 Replace
∫

by
∑

in the proof of Theorem 3.

5 (a) E(x) =
∫

q

−q

∫

q

−q
xf (x, y) dy dx;

(b) E(x) =
∫

q

−q
xg(x) dx.

7 E(Y) = 37
12 .

9 (a) 2.4 and 6.24; (b) 88.96.

11 − 11
6 .

13 1
2 .

15 1
12 .

19 µ = 4
3 , µ′2 = 2, and σ 2 = 2

9 .

25 µ3 = µ′3−µµ′2+ 2µ3 and µ4 = µ′4− 4µµ′3+ 6µ2µ′2−
3µ4.

27 (a) 3.2; (b) 2.6.

31 (a) k =
√

20; (b) k = 10.

33 Mx(t) = 2et

3−et , µ′1 =
3
2 , µ′2 = 3, σ 2 = 3

4 .

35 µ = 4, σ 2 = 4.

43 −0.14.

45 1
72 .

49 (a) µY = −7, σ 2
Y
= 155; (b) µZ = 19, σ 2

Z
= 36.

51 805
162 .

53 var(X)+ var(Y)+ 2cov(X, Y), var(X)+ var(Y)− 2cov
(X, Y), var(X)− var(Y).

55 −56.

57 3.

59 5
12 .

61 (a) 98; (b) 29,997.

63 $5.

65 $3,000.

67 6 million liters.

69 a
a+b

.

71 µ = 4, σ 2 = 16.

73 µ = 1, σ 2 = 1.

75 At least 63
64 .

77 0.9179.

79 µ = 3.6, σ = 0.0224.

81 (a) 0.74, 0.68; (b) 1.91, 1.05.

83 0.8.

85 2.95 min.
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1 Introduction In this chapter we shall study some of the probability distributions that figure most
prominently in statistical theory and applications. We shall also study their
parameters, that is, the quantities that are constants for particular distributions but
that can take on different values for different members of families of distributions of
the same kind. The most common parameters are the lower moments, mainly µ and
σ 2, and there are essentially two ways in which they can be obtained: We can eval-
uate the necessary sums directly or we can work with moment-generating functions.
Although it would seem logical to use in each case whichever method is simplest, we
shall sometimes use both. In some instances this will be done because the results are
needed later; in others it will merely serve to provide the reader with experience in
the application of the respective mathematical techniques. Also, to keep the size of
this chapter within bounds, many of the details are left as exercises.

2 The Discrete Uniform Distribution

If a random variable can take on k different values with equal probability, we say that
it has a discrete uniform distribution; symbolically, we have the following definition.

DEFINITION 1. DISCRETE UNIFORM DISTRIBUTION. A random variable X has a discrete
uniform distribution and it is referred to as a discrete uniform random variable

if and only if its probability distribution is given by

f (x) =
1

k
for x = x1, x2, . . . xk

where xi Z xj when iZ j.

From Chapter 5 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright  2014 by Pearson Education, Inc.
All rights reserved.
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In the special case where xi = i, the discrete uniform distribution becomes

f (x) =
1

k
for x = 1, 2, . . . , k, and in this form it applies, for example, to the number

of points we roll with a balanced die. The mean and the variance of this discrete
uniform distribution and its moment-generating function are treated in Exercises 1
and 2.

3 The Bernoulli Distribution

If an experiment has two possible outcomes, “success” and “failure,” and their prob-
abilities are, respectively, θ and 1− θ , then the number of successes, 0 or 1, has a
Bernoulli distribution; symbolically, we have the following definition.

DEFINITION 2. BERNOULLI DISTRIBUTION. A random variable X has a Bernoulli dis-
tribution and it is referred to as a Bernoulli random variable if and only if its

probability distribution is given by

f (x; θ) = θx(1− θ)1−x for x = 0, 1

Thus, f (0; θ) = 1− θ and f (1; θ) = θ are combined into a single formula. Observe
that we used the notation f (x; θ) to indicate explicitly that the Bernoulli distribution
has the one parameter θ .

In connection with the Bernoulli distribution, a success may be getting heads
with a balanced coin, it may be catching pneumonia, it may be passing (or failing) an
examination, and it may be losing a race. This inconsistency is a carryover from the
days when probability theory was applied only to games of chance (and one player’s
failure was the other’s success). Also for this reason, we refer to an experiment to
which the Bernoulli distribution applies as a Bernoulli trial, or simply a trial, and to
sequences of such experiments as repeated trials.

4 The Binomial Distribution

Repeated trials play a very important role in probability and statistics, especially
when the number of trials is fixed, the parameter θ (the probability of a success) is
the same for each trial, and the trials are all independent. As we shall see, several
random variables arise in connection with repeated trials. The one we shall study
here concerns the total number of successes; others will be given in Section 5.

The theory that we shall discuss in this section has many applications; for
instance, it applies if we want to know the probability of getting 5 heads in 12 flips
of a coin, the probability that 7 of 10 persons will recover from a tropical disease, or
the probability that 35 of 80 persons will respond to a mail-order solicitation. How-
ever, this is the case only if each of the 10 persons has the same chance of recovering
from the disease and their recoveries are independent (say, they are treated by dif-
ferent doctors in different hospitals), and if the probability of getting a reply to the
mail-order solicitation is the same for each of the 80 persons and there is indepen-
dence (say, no two of them belong to the same household).

To derive a formula for the probability of getting “x successes in n trials” under
the stated conditions, observe that the probability of getting x successes and n− x

failures in a specific order is θx(1− θ)n−x. There is one factor θ for each success,
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one factor 1− θ for each failure, and the x factors θ and n− x factors 1− θ are all
multiplied together by virtue of the assumption of independence. Since this prob-
ability applies to any sequence of n trials in which there are x successes and n− x

failures, we have only to count how many sequences of this kind there are and then
multiply θx(1− θ)n−x by that number. Clearly, the number of ways in which we can

select the x trials on which there is to be a success is

(

n

x

)

, and it follows that the

desired probability for “x successes in n trials” is

(

n

x

)

θx(1− θ)n−x.

DEFINITION 3. BINOMIAL DISTRIBUTION. A random variable X has a binomial dis-
tribution and it is referred to as a binomial random variable if and only if its

probability distribution is given by

b(x;n, θ) =

(

n

x

)

θx(1− θ)n−x for x = 0, 1, 2, . . . n

Thus, the number of successes in n trials is a random variable having a bino-
mial distribution with the parameters n and θ . The name “binomial distribution”
derives from the fact that the values of b(x;n, θ) for x = 0, 1, 2, . . . , n are the succes-
sive terms of the binomial expansion of [(1− θ)+ θ ]n; this shows also that the sum
of the probabilities equals 1, as it should.

EXAMPLE 1

Find the probability of getting five heads and seven tails in 12 flips of a balanced coin.

Solution

Substituting x = 5, n = 12, and θ = 1
2 into the formula for the binomial distribution,

we get

b

(

5; 12,
1

2

)

=

(

12
5

)

(

1

2

)5 (

1−
1

2

)12−5

and, looking up the value of

(

12
5

)

in Table VII of “Statistical Tables”, we find that

the result is 792
(

1
2

)12
, or approximately 0.19.

EXAMPLE 2

Find the probability that 7 of 10 persons will recover from a tropical disease if we can
assume independence and the probability is 0.80 that any one of them will recover
from the disease.
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Solution

Substituting x = 7, n = 10, and θ = 0.80 into the formula for the binomial distribu-
tion, we get

b(7; 10, 0.80) =

(

10
7

)

(0.80)7(1− 0.80)10−7

and, looking up the value of

(

10
7

)

in Table VII of “Statistical Tables”, we find that

the result is 120(0.80)7(0.20)3, or approximately 0.20.

If we tried to calculate the third probability asked for on the previous page, the
one concerning the responses to the mail-order solicitation, by substituting x = 35,
n = 80, and, say, θ = 0.15, into the formula for the binomial distribution, we would
find that this requires a prohibitive amount of work. In actual practice, binomial
probabilities are rarely calculated directly, for they are tabulated extensively for var-
ious values of θ and n, and there exists an abundance of computer software yielding
binomial probabilities as well as the corresponding cumulative probabilities

B(x;n, θ) =

x
∑

k=0

b(k;n, θ)

upon simple commands. An example of such a printout (with somewhat different
notation) is shown in Figure 1.

In the past, the National Bureau of Standards table and the book by H. G.
Romig have been widely used; they are listed among the references at the end of
this chapter. Also, Table I of “Statistical Tables” gives the values of b(x;n, θ) to four
decimal places for n = 1 to n = 20 and θ = 0.05, 0.10, 0.15, . . . , 0.45, 0.50. To use this
table when θ is greater than 0.50, we refer to the following identity.

Figure 1. Computer printout of binomial probabilities for n = 10 and θ = 0.63.
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THEOREM 1.

b(x;n, θ) = b(n− x;n, 1− θ)

which the reader will be asked to prove in part (a) of Exercise 5. For instance, to find
b(11; 18, 0.70), we look up b(7; 18, 0.30) and get 0.1376. Also, there are several ways
in which binomial probabilities can be approximated when n is large; one of these
will be mentioned in Section 7.

Let us now find formulas for the mean and the variance of the binomial
distribution.

THEOREM 2. The mean and the variance of the binomial distribution are

µ = nθ and σ 2 = nθ(1− θ)

Proof

µ =

n
∑

x=0

x ·

(

n

x

)

θx(1− θ)n−x

=

n
∑

x=1

n!

(x− 1)!(n− x)!
θx(1− θ)n−x

where we omitted the term corresponding to x = 0, which is 0, and can-
celed the x against the first factor of x! = x(x− 1)! in the denominator of
(

n

x

)

. Then, factoring out the factor n in n! = n(n− 1)! and one factor θ ,

we get

µ = nθ ·

n
∑

x=1

(

n− 1
x− 1

)

θx−1(1− θ)n−x

and, letting y = x− 1 and m = n− 1, this becomes

µ = nθ ·

m
∑

y=0

(

m

y

)

θy(1− θ)m−y = nθ

since the last summation is the sum of all the values of a binomial distri-
bution with the parameters m and θ , and hence equal to 1.

To find expressions for µ′2 and σ 2, let us make use of the fact that

E(X2) = E[X(X − 1)]+E(X) and first evaluate E[X(X − 1)]. Duplicat-
ing for all practical purposes the steps used before, we thus get

E[X(X − 1)] =

n
∑

x=0

x(x− 1)

(

n

x

)

θx(1− θ)n−x

=

n
∑

x=2

n!

(x− 2)!(n− x)!
θx(1− θ)n−x

= n(n− 1)θ2 ·

n
∑

x=2

(

n− 2
x− 2

)

θx−2(1− θ)n−x
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and, letting y = x− 2 and m = n− 2, this becomes

E[X(X − 1)] = n(n− 1)θ2 ·

m
∑

y=0

(

m

y

)

θy(1− θ)m−y

= n(n− 1)θ2

Therefore,

µ′2 = E[X(X − 1)]+E(X) = n(n− 1)θ2+nθ

and, finally,

σ 2 = µ′2−µ2

= n(n− 1)θ2+nθ −n2θ2

= nθ(1− θ)

An alternative proof of this theorem, requiring much less algebraic detail, is sug-
gested in Exercise 6.

It should not have come as a surprise that the mean of the binomial distribution
is given by the product nθ . After all, if a balanced coin is flipped 200 times, we expect
(in the sense of a mathematical expectation) 200 · 1

2 = 100 heads and 100 tails; sim-

ilarly, if a balanced die is rolled 240 times, we expect 240 · 1
6 = 40 sixes, and if the

probability is 0.80 that a person shopping at a department store will make a pur-
chase, we would expect 400(0.80) = 320 of 400 persons shopping at the department
store to make a purchase.

The formula for the variance of the binomial distribution, being a measure of
variation, has many important applications; but, to emphasize its significance, let

us consider the random variable Y =
X

n
, where X is a random variable having a

binomial distribution with the parameters n and θ . This random variable is the pro-
portion of successes in n trials, and in Exercise 6 the reader will be asked to prove
the following result.

THEOREM 3. If X has a binomial distribution with the parameters n and θ

and Y =
X

n
, then

E(Y) = θ and σ 2
Y =

θ(1− θ)

n

Now, if we apply Chebyshev’s theorem with kσ = c, we can assert that for any

positive constant c the probability is at least

1−
θ(1− θ)

nc2

that the proportion of successes in n trials falls between u− c and u+ c. Hence, when

n →q, the probability approaches 1 that the proportion of successes will differ from

u by less than any arbitrary constant c. This result is called a law of large numbers,
and it should be observed that it applies to the proportion of successes, not to their
actual number. It is a fallacy to suppose that when n is large the number of successes
must necessarily be close to nθ .
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Figure 2. Computer simulation of 100 flips of a balanced coin.

An easy illustration of this law of large numbers can be obtained through a
computer simulation of the repeated flipping of a balanced coin. This is shown in
Figure 2, where the 1’s and 0’s denote heads and tails.

Reading across successive rows, we find that among the first five simulated flips
there are 3 heads, among the first ten there are 6 heads, among the first fifteen there
are 8 heads, among the first twenty there are 12 heads, among the first twenty-five
there are 14 heads, . . ., and among all hundred there are 51 heads. The corresponding
proportions, plotted in Figure 3, are 3

5 = 0.60, 6
10 = 0.60, 8

15 = 0.53, 12
20 = 0.60,

14
25 = 0.56, . . ., and 51

100 = 0.51. Observe that the proportion of heads fluctuates but
comes closer and closer to 0.50, the probability of heads for each flip of the coin.

Since the moment-generating function of the binomial distribution is easy to
obtain, let us find it and use it to verify the results of Theorem 2.

1.000

0.500

5 10 15 20 25

Number of simulated flips of a coin

P
ro
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o

rt
io

n
 o
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d
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30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Figure 3. Graph illustrating the law of large numbers.
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THEOREM 4. The moment-generating function of the binomial distribution
is given by

MX(t) = [1+ θ(et− 1)]n

If we differentiate MX(t) twice with respect to t, we get

M′
X(t) = nθet[1+ θ(et− 1)]n−1

M′′
X(t) = nθet[1+ θ(et− 1)]n−1+n(n− 1)θ2e2t[1+ θ(et− 1)]n−2

= nθet(1− θ +nθet)[1+ θ(et− 1)]n−2

and, upon substituting t = 0, we get µ′1 = nθ and µ′2 = nθ(1− θ +nθ). Thus, µ = nθ

and σ 2 = µ′2−µ2 = nθ(1− θ +nθ)− (nθ)2 = nθ(1− θ), which agrees with the
formulas given in Theorem 2.

From the work of this section it may seem easier to find the moments of the
binomial distribution with the moment-generating function than to evaluate them
directly, but it should be apparent that the differentiation becomes fairly involved
if we want to determine, say, µ′3 or µ′4. Actually, there exists yet an easier way of
determining the moments of the binomial distribution; it is based on its factorial

moment-generating function, which is explained in Exercise 12.

Exercises

1. If X has the discrete uniform distribution f (x) =
1

k
for

x = 1, 2, . . . , k, show that

(a) its mean is µ =
k+ 1

2
;

(b) its variance is σ 2 =
k2− 1

12
.

2. If X has the discrete uniform distribution f (x) =
1

k
for

x = 1, 2, . . . , k, show that its moment-generating function
is given by

MX(t) =
et(1− ekt)

k(1− et)

Also find the mean of this distribution by evaluating
lim
t→0

M′
X(t), and compare the result with that obtained in

Exercise 1.

3. We did not study the Bernoulli distribution in any
detail in Section 3, because it can be looked upon as
a binomial distribution with n = 1. Show that for the
Bernoulli distribution, µ′r = θ for r = 1, 2, 3, . . ., by

(a) evaluating the sum

1
∑

x=0

xr · f (x; θ);

(b) letting n = 1 in the moment-generating function of
the binomial distribution and examining its Maclaurin’s
series.

4. This question has been intentionally omitted for this
edition.

5. Verify that
(a) b(x;n, θ) = b(n− x;n, 1− θ).

Also show that if B(x;n, θ) =
x
∑

k=0

b(k;n, θ) for x =

0, 1, 2, . . . , n, then

(b) b(x;n, θ) = B(x;n, θ)−B(x− 1;n, θ);

(c) b(x;n, θ) = B(n− x;n, 1− θ)−B(n− x− 1;n, 1− θ);

(d) B(x;n, θ) = 1−B(n− x− 1;n, 1− θ).

6. An alternative proof of Theorem 2 may be based on
the fact that if X1, X2, . . ., and Xn are independent ran-
dom variables having the same Bernoulli distribution
with the parameter θ , then Y = X1+X2+ · · ·+Xn is
a random variable having the binomial distribution with
the parameters n and θ .

Verify directly (that is, without making use of the fact
that the Bernoulli distribution is a special case of the
binomial distribution) that the mean and the variance of
the Bernoulli distribution are µ = θ and σ 2 = θ(1− θ).

7. Prove Theorem 3.

8. When calculating all the values of a binomial distribu-
tion, the work can usually be simplified by first calculating
b(0;n, θ) and then using the recursion formula

b(x+ 1;n, θ) =
θ(n− x)

(x+ 1)(1− θ)
·b(x;n, θ)
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Verify this formula and use it to calculate the values of
the binomial distribution with n = 7 and θ = 0.25.

9. Use the recursion formula of Exercise 8 to show that
for θ = 1

2 the binomial distribution has

(a) a maximum at x =
n

2
when n is even;

(b) maxima at x =
n− 1

2
and x =

n+ 1

2
when n is odd.

10. If X is a binomial random variable, for what value of
θ is the probability b(x;n, θ) a maximum?

11. In the proof of Theorem 2 we determined the quan-
tity E[X(X − 1)], called the second factorial moment. In
general, the rth factorial moment of X is given by

µ′(r) = E[X(X − 1)(X − 2) · . . . · (X − r+ 1)]

Express µ′2, µ′3, and µ′4 in terms of factorial moments.

12. The factorial moment-generating function of a dis-
crete random variable X is given by

FX(t) = E(tX) =
∑

x

tx · f (x)

Show that the rth derivative of FX(t) with respect to t
at t = 1 is µ′

(r), the rth factorial moment defined in

Exercise 11.

13. With reference to Exercise 12, find the factorial
moment-generating function of
(a) the Bernoulli distribution and show that µ′

(1)
= θ and

µ′
(r) = 0 for r > 1;

(b) the binomial distribution and use it to find µ and σ 2.

14. This question has been intentionally omitted for this
edition.

15. This question has been intentionally omitted for this
edition.

5 The Negative Binomial and Geometric Distributions

In connection with repeated Bernoulli trials, we are sometimes interested in the
number of the trial on which the kth success occurs. For instance, we may be inter-
ested in the probability that the tenth child exposed to a contagious disease will be
the third to catch it, the probability that the fifth person to hear a rumor will be the
first one to believe it, or the probability that a burglar will be caught for the second
time on his or her eighth job.

If the kth success is to occur on the xth trial, there must be k− 1 successes on
the first x− 1 trials, and the probability for this is

b(k− 1; x− 1, θ) =

(

x− 1
k− 1

)

θk−1(1− θ)x−k

The probability of a success on the xth trial is θ , and the probability that the kth
success occurs on the xth trial is, therefore,

θ ·b(k− 1; x− 1, θ) =

(

x− 1
k− 1

)

θk(1− θ)x−k

DEFINITION 4. NEGATIVE BINOMIAL DISTRIBUTION. A random variable X has a

negative binomial distribution and it is referred to as a negative binomial ran-

dom variable if and only if

b∗(x;k, θ) =

(

x− 1
k− 1

)

θk(1− θ)x−k for x = k, k+ 1, k+ 2, . . . .

Thus, the number of the trial on which the kth success occurs is a random vari-
able having a negative binomial distribution with the parameters k and θ . The name
“negative binomial distribution” derives from the fact that the values of b∗(x;k, θ)

for x = k, k+ 1, k+ 2, . . . are the successive terms of the binomial expansion of
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(

1

θ
−

1− θ

θ

)−k

.† In the literature of statistics, negative binomial distributions are

also referred to as binomial waiting-time distributions or as Pascal distributions.

EXAMPLE 3

If the probability is 0.40 that a child exposed to a certain contagious disease will
catch it, what is the probability that the tenth child exposed to the disease will be the
third to catch it?

Solution

Substituting x = 10, k = 3, and θ = 0.40 into the formula for the negative binomial
distribution, we get

b∗(10; 3, 0.40) =

(

9
2

)

(0.40)3(0.60)7

= 0.0645

When a table of binomial probabilities is available, the determination of nega-
tive binomial probabilities can generally be simplified by making use of the following
identity.

THEOREM 5.

b∗(x;k, θ) =
k

x
·b(k; x, θ)

The reader will be asked to verify this theorem in Exercise 18.

EXAMPLE 4

Use Theorem 5 and Table I of “Statistical Tables” to rework Example 3.

Solution

Substituting x = 10, k = 3, and θ = 0.40 into the formula of Theorem 5, we get

b∗(10; 3, 0.40) =
3

10
·b(3; 10, 0.40)

=
3

10
(0.2150)

= 0.0645

Moments of the negative binomial distribution may be obtained by proceeding
as in the proof of Theorem 2; for the mean and the variance we obtain the following
theorem.

THEOREM 6. The mean and the variance of the negative binomial distribu-
tion are

µ =
k

θ
and σ 2 =

k

θ

(

1

θ
− 1

)

as the reader will be asked to verify in Exercise 19.

†Binomial expansions with negative exponents are explained in Feller, W., An Introduction to Probability Theory

and Its Applications, Vol. I, 3rd ed. New York: John Wiley & Sons, Inc., 1968.
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Since the negative binomial distribution with k = 1 has many important appli-
cations, it is given a special name; it is called the geometric distribution.

DEFINITION 5. GEOMETRIC DISTRIBUTION. A random variable X has a geometric dis-
tribution and it is referred to as a geometric random variable if and only if its

probability distribution is given by

g(x; θ) = θ(1− θ)x−1 for x = 1, 2, 3, . . .

EXAMPLE 5

If the probability is 0.75 that an applicant for a driver’s license will pass the road test
on any given try, what is the probability that an applicant will finally pass the test on
the fourth try?

Solution

Substituting x = 4 and θ = 0.75 into the formula for the geometric distribution,
we get

g(4; 0.75) = 0.75(1− 0.75)4−1

= 0.75(0.25)3

= 0.0117

Of course, this result is based on the assumption that the trials are all independent,
and there may be some question here about its validity.

6 The Hypergeometric Distribution

To obtain a formula analogous to that of the binomial distribution that applies to
sampling without replacement, in which case the trials are not independent, let us
consider a set of N elements of which M are looked upon as successes and the other
N−M as failures. As in connection with the binomial distribution, we are interested
in the probability of getting x successes in n trials, but now we are choosing, without
replacement, n of the N elements contained in the set.

There are

(

M

x

)

ways of choosing x of the M successes and

(

N−M

n− x

)

ways of

choosing n− x of the N−M failures, and, hence,

(

M

x

)(

N−M

n− x

)

ways of choosing

x successes and n− x failures. Since there are

(

N

n

)

ways of choosing n of the N

elements in the set, and we shall assume that they are all equally likely (which is what
we mean when we say that the selection is random), the probability of “x successes

in n trials” is

(

M

x

)(

N−M

n− x

)

/

(

N

n

)

.
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DEFINITION 6. HYPERGEOMETRIC DISTRIBUTION. A random variable X has a hyperge-
ometric distribution and it is referred to as a hypergeometric random variable if

and only if its probability distribution is given by

h(x;n, N, M) =

(

M

x

)(

N−M

n− x

)

(

N

n

)

for x = 0, 1, 2, . . . , n

x … M and n− x … N−M

Thus, for sampling without replacement, the number of successes in n trials is a ran-
dom variable having a hypergeometric distribution with the parameters n, N, and M.

EXAMPLE 6

As part of an air-pollution survey, an inspector decides to examine the exhaust of
6 of a company’s 24 trucks. If 4 of the company’s trucks emit excessive amounts of
pollutants, what is the probability that none of them will be included in the inspec-
tor’s sample?

Solution

Substituting x = 0, n = 6, N = 24, and M = 4 into the formula for the hypergeomet-
ric distribution, we get

h(0; 6, 24, 4) =

(

4
0

)(

20
6

)

(

24
6

)

= 0.2880

The method by which we find the mean and the variance of the hypergeometric
distribution is very similar to that employed in the proof of Theorem 2.

THEOREM 7. The mean and the variance of the hypergeometric distribu-
tion are

µ =
nM

N
and σ 2 =

nM(N−M)(N−n)

N2(N− 1)

Proof To determine the mean, let us directly evaluate the sum

µ =

n
∑

x=0

x ·

(

M

x

)

(

N−Mn− x
)

(

N

n

)

=

n
∑

x=1

M!

(x− 1)!(M− x)!
·

(

N−M

n− x

)

(

N

n

)
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where we omitted the term corresponding to x = 0, which is 0, and canceled

the x against the first factor of x! = x(x− 1)! in the denominator of

(

M

x

)

.

Then, factoring out M

/

(

N

n

)

, we get

µ =
M
(

N

n

) ·

n
∑

x=1

(

M− 1
x− 1

)(

N−M

n− x

)

and, letting y = x− 1 and m = n− 1, this becomes

µ =
M
(

N

n

) ·

m
∑

y=0

(

M− 1
y

)(

N−M

m− y

)

Finally, using

k
∑

r=0

(

m

r

)(

n

k− r

)

=

(

m+n

k

)

, we get

µ =
M
(

N

n

) ·

(

N− 1
m

)

=
M
(

N

n

) ·

(

N− 1
n− 1

)

=
nM

N

To obtain the formula for σ 2, we proceed as in the proof of Theorem 2
by first evaluating E[X(X − 1)] and then making use of the fact that
E(X2) = E[X(X − 1)]+E(X). Leaving it to the reader to show that

E[X(X − 1)] =
M(M− 1)n(n− 1)

N(N− 1)

in Exercise 27, we thus get

σ 2 =
M(M− 1)n(n− 1)

N(N− 1)
+

nM

N
−

(

nM

N

)2

=
nM(N−M)(N−n)

N2(N− 1)

The moment-generating function of the hypergeometric distribution is fairly
complicated. Details of this may be found in the book The Advanced Theory of

Statistics by M. G. Kendall and A. Stuart.
When N is large and n is relatively small compared to N (the usual rule of thumb

is that n should not exceed 5 percent of N), there is not much difference between
sampling with replacement and sampling without replacement, and the formula for

the binomial distribution with the parameters n and θ =
M

N
may be used to approx-

imate hypergeometric probabilities.
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EXAMPLE 7

Among the 120 applicants for a job, only 80 are actually qualified. If 5 of the appli-
cants are randomly selected for an in-depth interview, find the probability that only
2 of the 5 will be qualified for the job by using

(a) the formula for the hypergeometric distribution;

(b) the formula for the binomial distribution with θ = 80
120 as an approximation.

Solution

(a) Substituting x = 2, n = 5, N = 120, and M = 80 into the formula for the
hypergeometric distribution, we get

h(2; 5, 120, 80) =

(

80
2

)(

40
3

)

(

120
5

)

= 0.164

rounded to three decimals;

(b) substituting x = 2, n = 5, and θ = 80
120 =

2
3 into the formula for the binomial

distribution, we get

b

(

2; 5,
2

3

)

=

(

5
2

)

(

2

3

)2 (

1−
2

3

)3

= 0.165

rounded to three decimals. As can be seen from these results, the approxima-
tion is very close.

7 The Poisson Distribution

When n is large, the calculation of binomial probabilities with the formula of Defi-
nition 3 will usually involve a prohibitive amount of work. For instance, to calculate
the probability that 18 of 3,000 persons watching a parade on a very hot summer

day will suffer from heat exhaustion, we first have to determine

(

3,000
18

)

, and if the

probability is 0.005 that any one of the 3,000 persons watching the parade will suffer
from heat exhaustion, we also have to calculate the value of (0.005)18(0.995)2,982.

In this section we shall present a probability distribution that can be used to
approximate binomial probabilities of this kind. Specifically, we shall investigate the
limiting form of the binomial distribution when n→q, θ→ 0, while nθ remains con-

stant. Letting this constant be λ, that is, nθ = λ and, hence, θ =
λ

n
, we can write
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b(x;n, θ) =

(

n

x

)

(

λ

n

)x (

1−
λ

n

)n−x

=
n(n− 1)(n− 2) · . . . · (n− x+ 1)

x!

(

λ

n

)x (

1−
λ

n

)n−x

Then, if we divide one of the x factors n in

(

λ

n

)x

into each factor of the product

n(n− 1)(n− 2) · . . . · (n− x+ 1) and write

(

1−
λ

n

)n−x

as

[

(

1−
λ

n

)−n/λ
]−λ

(

1−
λ

n

)−x

we obtain

1
(

1− 1
n

) (

1− 2
n

)

· . . . ·

(

1− x−1
n

)

x!
(λ)x

[

(

1−
λ

n

)−n/λ
]−λ

(

1−
λ

n

)−x

Finally, if we let n→q while x and λ remain fixed, we find that

1

(

1−
1

n

)(

1−
2

n

)

· . . . ·

(

1−
x− 1

n

)

→ 1

(

1−
λ

n

)−x

→ 1

(

1−
λ

n

)−n/λ

→ e

and, hence, that the limiting distribution becomes

p(x; λ) =
λxe−λ

x!
for x = 0, 1, 2, . . .

DEFINITION 7. POISSON DISTRIBUTION. A random variable has a Poisson distribu-
tion and it is referred to as a Poisson random variable if and only if its probability

distribution is given by

p(x; λ) =
λxe−λ

x!
for x = 0, 1, 2, . . .

Thus, in the limit when n→q, θ→ 0, and nθ = λ remains constant, the number
of successes is a random variable having a Poisson distribution with the parame-
ter λ. This distribution is named after the French mathematician Simeon Poisson
(1781–1840). In general, the Poisson distribution will provide a good approximation
to binomial probabilities when n G 20 and θ F 0.05. When n G 100 and nθ < 10, the
approximation will generally be excellent.

To get some idea about the closeness of the Poisson approximation to the bino-
mial distribution, consider the computer printout of Figure 4, which shows, one above
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the other, the binomial distribution with n = 150 and θ = 0.05 and the Poisson
distribution with λ = 150(0.05) = 7.5.

EXAMPLE 8

Use Figure 4 to determine the value of x (from 5 to 15) for which the error is greatest
when we use the Poisson distribution with λ = 7.5 to approximate the binomial
distribution with n = 150 and θ = 0.05.

Solution

Calculating the differences corresponding to x = 5, x = 6, . . ., x = 15, we get 0.0006,
−0.0017, −0.0034, −0.0037, −0.0027, −0.0011, 0.0003, 0.0011, 0.0013, 0.0011, and
0.0008. Thus, the maximum error (numerically) is −0.0037, and it corresponds to
x = 8.

The examples that follow illustrate the Poisson approximation to the binomial
distribution.

EXAMPLE 9

If 2 percent of the books bound at a certain bindery have defective bindings, use
the Poisson approximation to the binomial distribution to determine the probability
that 5 of 400 books bound by this bindery will have defective bindings.

Solution

Substituting x = 5, λ = 400(0.02) = 8, and e−8 = 0.00034 (from Table VIII of
“Statistical Tables”) into the formula of Definition 7, we get

p(5; 8) =
85 · e−8

5!
=

(32,768)(0.00034)

120
= 0.093

In actual practice, Poisson probabilities are seldom obtained by direct substi-
tution into the formula of Definition 7. Sometimes we refer to tables of Poisson
probabilities, such as Table II of “Statistical Tables”, or more extensive tables in
handbooks of statistical tables, but more often than not, nowadays, we refer to suit-
able computer software. The use of tables or computers is of special importance
when we are concerned with probabilities relating to several values of x.

EXAMPLE 10

Records show that the probability is 0.00005 that a car will have a flat tire while
crossing a certain bridge. Use the Poisson distribution to approximate the binomial
probabilities that, among 10,000 cars crossing this bridge,

(a) exactly two will have a flat tire;

(b) at most two will have a flat tire.

Solution

(a) Referring to Table II of “Statistical Tables”, we find that for x = 2 and
λ = 10, 000(0.00005) = 0.5, the Poisson probability is 0.0758.

(b) Referring to Table II of “Statistical Tables”, we find that for x = 0, 1, and 2,
and λ = 0.5, the Poisson probabilities are 0.6065, 0.3033, and 0.0758. Thus, the
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Figure 4. Computer printout of the binomial distribution with n = 150 and θ = 0.05 and
the Poisson distribution with λ = 7.5.
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probability that at most 2 of 10,000 cars crossing the bridge will have a flat
tire is

0.6065+ 0.3033+ 0.0758 = 0.9856

EXAMPLE 11

Use Figure 5 to rework the preceding example.

Solution

(a) Reading off the value for K = 2 in the P(X = K) column, we get 0.0758.

(b) Here we could add the values for K = 0, K = 1, and K = 2 in the P(X = K)

column, or we could read the value for K = 2 in the P(X LESS OR = K)

column, getting 0.9856.

Having derived the Poisson distribution as a limiting form of the binomial dis-
tribution, we can obtain formulas for its mean and its variance by applying the same
limiting conditions (n→q, θ→ 0, and nθ = λ remains constant) to the mean and
the variance of the binomial distribution. For the mean we get µ = nθ = λ and for
the variance we get σ 2 = nθ(1− θ) = λ(1− θ), which approaches λ when θ→0.

THEOREM 8. The mean and the variance of the Poisson distribution are
given by

µ = λ and σ 2 = λ

These results can also be obtained by directly evaluating the necessary summa-
tions (see Exercise 33) or by working with the moment-generating function given in
the following theorem.

THEOREM 9. The moment-generating function of the Poisson distribution
is given by

MX(t) = eλ(et−1)

Proof By Definition 7 and the definition of moment-generating function—
The moment generating function of a random variable X, where it exists,

is given by MX(t) = E(etX) =
∑

x
etX · f (x) when X is discrete, and

Figure 5. Computer printout of the Poisson distribution with λ = 0.5.
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MX(t) = E(etX) =
∫

q

−q
etx · f (x)dx when X is continuous—we get

MX(t) =

q
∑

x=0

ext ·
λxe−λ

x!
= e−λ ·

q
∑

x=0

(λet)x

x!

where

q
∑

x=0

(λet)x

x!
can be recognized as the Maclaurin’s series of ez with

z = λet. Thus,

MX(t) = e−λ · eλet
= eλ(et−1)

Then, if we differentiate MX(t) twice with respect to t, we get

M′
X(t) = λeteλ(et−1)

M′′
X(t) = λeteλ(et−1)+ λ2e2teλ(et−1)

so that µ′1 = M′
X(0) = λ and µ′2 = M′′

X(0) = λ+ λ2. Thus, µ = λ and σ 2 = µ′2−µ2 =

(λ+ λ2)− λ2 = λ, which agrees with Theorem 8.
Although the Poisson distribution has been derived as a limiting form of the

binomial distribution, it has many applications that have no direct connection with
binomial distributions. For example, the Poisson distribution can serve as a model
for the number of successes that occur during a given time interval or in a specified
region when (1) the numbers of successes occurring in nonoverlapping time intervals
or regions are independent, (2) the probability of a single success occurring in a very
short time interval or in a very small region is proportional to the length of the
time interval or the size of the region, and (3) the probability of more than one
success occurring in such a short time interval or falling in such a small region is
negligible. Hence, a Poisson distribution might describe the number of telephone
calls per hour received by an office, the number of typing errors per page, or the
number of bacteria in a given culture when the average number of successes, λ, for
the given time interval or specified region is known.

EXAMPLE 12

The average number of trucks arriving on any one day at a truck depot in a certain
city is known to be 12. What is the probability that on a given day fewer than 9 trucks
will arrive at this depot?

Solution

Let X be the number of trucks arriving on a given day. Then, using Table II of “Sta-
tistical Tables” with λ = 12, we get

P(X < 9) =

8
∑

x=0

p(x; 12) = 0.1550

If, in a situation where the preceding conditions apply, successes occur at a mean
rate of α per unit time or per unit region, then the number of successes in an interval
of t units of time or t units of the specified region is a Poisson random variable with
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the mean λ = αt (see Exercise 31). Therefore, the number of successes, X, in a time
interval of length t units or a region of size t units has the Poisson distribution

p(x;αt) =
e−αt(αt)x

x!
for x = 0, 1, 2, . . .

EXAMPLE 13

A certain kind of sheet metal has, on the average, five defects per 10 square feet. If
we assume a Poisson distribution, what is the probability that a 15-square-foot sheet
of the metal will have at least six defects?

Solution

Let X denote the number of defects in a 15-square-foot sheet of the metal. Then,
since the unit of area is 10 square feet, we have

λ = αt = (5)(1.5) = 7.5

and
P(X G 6) = 1−P(X F 5) = 1− 0.2414 = 0.7586

according to the computer printout shown in Figure 4.

Exercises

16. The negative binomial distribution is sometimes
defined in a different way as the distribution of the num-
ber of failures that precede the kth success. If the kth
success occurs on the xth trial, it must be preceded by
x−k failures. Thus, find the distribution of Y = X −k,
where X has the distribution of Definition 4.

17. With reference to Exercise 16, find expressions for µY

and σ 2
Y .

18. Prove Theorem 5.

19. Prove Theorem 6 by first determining E(X) and
E[X(X + 1)].

20. Show that the moment-generating function of the
geometric distribution is given by

MX(t) =
θet

1− et(1− θ)

21. Use the moment-generating function derived in Exer-

cise 20 to show that for the geometric distribution, µ =
1

θ

and σ 2 =
1− θ

θ2
.

22. Differentiating with respect to θ the expressions on
both sides of the equation

q
∑

x=1

θ(1− θ)x−1 = 1

show that the mean of the geometric distribution is given

by µ =
1

θ
. Then, differentiating again with respect to θ ,

show that µ′2 =
2− θ

θ2
and hence that σ 2 =

1− θ

θ2
.

23. If X is a random variable having a geometric distribu-
tion, show that

P(X = x+n|X > n) = P(X = x)

24. If the probability is f (x) that a product fails the xth
time it is being used, that is, on the xth trial, then its fail-
ure rate at the xth trial is the probability that it will fail on
the xth trial given that it has not failed on the first x− 1
trials; symbolically, it is given by

Z(x) =
f (x)

1−F(x− 1)

where F(x) is the value of the corresponding distribution
function at x. Show that if X is a geometric random vari-
able, its failure rate is constant and equal to θ .

25. A variation of the binomial distribution arises when
the n trials are all independent, but the probability of a
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success on the ith trial is θi, and these probabilities are
not all equal. If X is the number of successes obtained
under these conditions in n trials, show that

(a) µX = nθ , where θ =
1

n
·

n
∑

i=1

θi;

(b) σ 2
X = nθ(1− θ)−nσ 2

θ , where θ is as defined in part

(a) and σ 2
θ =

1

n
·

n
∑

i=1

(θi− θ)2.

26. When calculating all the values of a hypergeomet-
ric distribution, the work can often be simplified by
first calculating h(0;n, N, M) and then using the recur-
sion formula

h(x+ 1;n, N, M) =
(n− x)(M− x)

(x+ 1)(N−M−n+ x+ 1)

· h(x;n, N, M)

Verify this formula and use it to calculate the values of
the hypergeometric distribution with n = 4, N = 9, and
M = 5.

27. Verify the expression given for E[X(X − 1)] in the
proof of Theorem 7.

28. Show that if we let θ =
M

N
in Theorem 7, the mean

and the variance of the hypergeometric distribution can

be written as µ = nθ and σ 2 = nθ(1− θ) ·
N−n

N− 1
. How do

these results tie in with the discussion in the theorem?

29. When calculating all the values of a Poisson distribu-
tion, the work can often be simplified by first calculating
p(0; λ) and then using the recursion formula

p(x+ 1; λ) =
λ

x+ 1
·p(x; λ)

Verify this formula and use it and e−2 = 0.1353 to ver-
ify the values given in Table II of “Statistical Tables” for
λ = 2.

30. Approximate the binomial probability b(3; 100, 0.10)
by using
(a) the formula for the binomial distribution and loga-
rithms;

(b) Table II of “Statistical Tables.”

31. Suppose that f (x, t) is the probability of getting x suc-
cesses during a time interval of length t when (i) the
probability of a success during a very small time interval
from t to t+1t is α ·1t, (ii) the probability of more than
one success during such a time interval is negligible, and
(iii) the probability of a success during such a time inter-
val does not depend on what happened prior to time t.
(a) Show that under these conditions

f (x, t+1t) = f (x, t)[1−α ·1t]+ f (x− 1, t)α ·1t

and hence that

d[f (x, t)]

dt
= α[f (x− 1, t)− f (x, t)]

(b) Show by direct substitution that a solution of this
infinite system of differential equations (there is one for
each value of x) is given by the Poisson distribution with
λ = αt.

32. Use repeated integration by parts to show that

x
∑

y=0

λye−λ

y!
=

1

x!
·

∫

q

λ

txe−t dt

This result is important because values of the dis-
tribution function of a Poisson random variable may
thus be obtained by referring to a table of incomplete
gamma functions.

33. Derive the formulas for the mean and the variance
of the Poisson distribution by first evaluating E(X) and
E[X(X − 1)].

34. Show that if the limiting conditions n→q, θ→ 0,
while nθ remains constant, are applied to the moment-
generating function of the binomial distribution, we
get the moment-generating function of the Poisson
distribution.

[Hint: Make use of the fact that lim
n→q

(

1+
z

n

)n

= ez.]

35. This question has been intentionally omitted for this
edition.

36. Differentiating with respect to λ the expressions on
both sides of the equation

µr =

q
∑

x=0

(x− λ)r ·
λxe−λ

x!

derive the following recursion formula for the moments
about the mean of the Poisson distribution:

µr+1 = λ

[

rµr−1+
dµr

dλ

]

for r = 1, 2, 3, . . .. Also, use this recursion formula and the
fact that µ0 = 1 and µ1 = 0 to find µ2, µ3, and µ4, and
verify the formula given for α3 in Exercise 35.

37. Use Theorem 9 to find the moment-generating func-
tion of Y = X − λ, where X is a random variable having
the Poisson distribution with the parameter λ, and use it
to verify that σ 2

Y = λ.
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8 The Multinomial Distribution

An immediate generalization of the binomial distribution arises when each trial has
more than two possible outcomes, the probabilities of the respective outcomes are
the same for each trial, and the trials are all independent. This would be the case,
for instance, when persons interviewed by an opinion poll are asked whether they
are for a candidate, against her, or undecided or when samples of manufactured
products are rated excellent, above average, average, or inferior.

To treat this kind of problem in general, let us consider the case where there
are n independent trials permitting k mutually exclusive outcomes whose respective

probabilities are θ1, θ2, . . . , θk



with

k
∑

i=1

θi = 1



. Referring to the outcomes as being

of the first kind, the second kind, . . ., and the kth kind, we shall be interested in the
probability of getting x1 outcomes of the first kind, x2 outcomes of the second kind,

. . ., and xk outcomes of the kth kind



with

k
∑

i=1

xi = n



.

Proceeding as in the derivation of the formula for the binomial distribution,
we first find that the probability of getting x1 outcomes of the first kind, x2 out-
comes of the second kind, . . ., and xk outcomes of the kth kind in a specific order

is θ
x1
1 · θ

x2
2 · . . . · θ

xk

k . To get the corresponding probability for that many outcomes of
each kind in any order, we shall have to multiply the probability for any specific
order by

(

n
x1, x2, . . . , xk

)

=
n!

x1! · x2! · . . . · xk!

DEFINITION 8. MULTINOMIAL DISTRIBUTION. The random variables X1, X2, . . . , Xn

have a multinomial distribution and they are referred to as multinomial random

variables if and only if their joint probability distribution is given by

f (x1, x2, . . . , xk;n, θ1, θ2, . . . , θk) =

(

n
x1, x2, . . . , xk

)

· θ
x1
1 · θ

x2
2 · . . . · θ

xk

k

for xi = 0, 1, . . . n for each i, where
k
∑

i=1

xi = n and
k
∑

i=1

θi = 1.

Thus, the numbers of outcomes of the different kinds are random variables hav-
ing the multinomial distribution with the parameters n, θ1, θ2, . . ., and θk. The name
“multinomial” derives from the fact that for various values of the xi, the probabilities
equal corresponding terms of the multinomial expansion of (θ1+ θ2+ · · ·+ θk)n.

EXAMPLE 14

A certain city has 3 newspapers, A, B, and C. Newspaper A has 50 percent of the
readers in that city. Newspaper B, has 30 percent of the readers, and newspaper C
has the remaining 20 percent. Find the probability that, among 8 randomly-chosen
readers in that city, 5 will read newspaper A, 2 will read newspaper B, and 1 will read
newspaper C. (For the purpose of this example, assume that no one reads more than
one newspaper.)
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Solution

Substituting x1 = 5, x2 = 2, x3 = 1, θ1 = 0.50, θ2 = 0.30, θ3 = 0.20, and n = 8 into
the formula of Definition 8, we get

f (5, 2, 1; 8, 0.50, 0.30, 0.20) =
8!

5! · 2! · 1!
(0.50)5(0.30)2(0.20)

= 0.0945

9 The Multivariate Hypergeometric Distribution

Just as the hypergeometric distribution takes the place of the binomial distribution
for sampling without replacement, there also exists a multivariate distribution anal-
ogous to the multinomial distribution that applies to sampling without replacement.
To derive its formula, let us consider a set of N elements, of which M1 are elements
of the first kind, M2 are elements of the second kind, . . ., and Mk are elements of the

kth kind, such that

k
∑

i=1

Mi = N. As in connection with the multinomial distribution,

we are interested in the probability of getting x1 elements (outcomes) of the first
kind, x2 elements of the second kind, . . ., and xk elements of the kth kind, but now
we are choosing, without replacement, n of the N elements of the set.

There are

(

M1

x1

)

ways of choosing x1 of the M1 elements of the first kind,

(

M2

x2

)

ways of choosing x2 of the M2 elements of the second kind, . . ., and

(

Mk

xk

)

ways of

choosing xk of the Mk elements of the kth kind, and, hence,

(

M1

x1

)(

M2

x2

)

· . . . ·

(

Mk

xk

)

ways of choosing the required

k
∑

i=1

xi = n elements. Since there are

(

N

n

)

ways of

choosing n of the N elements in the set and we assume that they are all equally
likely (which is what we mean when we say that the selection is random), it follows

that the desired probability is given by

(

M1

x1

)(

M2

x2

)

· . . . ·

(

Mk

xk

)

/

(

N

n

)

.

DEFINITION 9. MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION. The random variables

X1, X2, . . . , Xk have a multivariate hypergeometric distribution and they are

referred to as multivariate hypergeometric random variables if and only if their

joint probability distribution is given by

f (x1, x2, . . . , xk;n, M1, M2, . . . , Mk) =

(

M1

x1

)(

M2

x2

)

· . . . ·

(

Mk

xk

)

(

N

n

)

for xi = 0, 1, . . . n and xi …Mi for each i, where
k
∑

i=1

xi = n and
k
∑

i=1

Mi = N.
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Thus, the joint distribution of the random variables under consideration, that is, the
distribution of the numbers of outcomes of the different kinds, is a multivariate
hypergeometric distribution with the parameters n, M1, M2, . . ., and Mk.

EXAMPLE 15

A panel of prospective jurors includes six married men, three single men, seven
married women, and four single women. If the selection is random, what is the prob-
ability that a jury will consist of four married men, one single man, five married
women, and two single women?

Solution

Substituting x1 = 4, x2 = 1, x3 = 5, x4 = 2, M1 = 6, M2 = 3, M3 = 7, M4 = 4,
N = 20, and n = 12 into the formula of Definition 9, we get

f (4, 1, 5, 2; 12, 6, 3, 7, 4) =

(

6
4

)(

3
1

)(

7
5

)(

4
2

)

(

20
12

)

= 0.0450

Exercises

38. If X1, X2, . . . , Xk have the multinomial distribution of
Definition 8, show that the mean of the marginal distribu-
tion of Xi is nθi for i = 1, 2, . . . , k.

39. If X1, X2, . . . , Xk have the multinomial distribution of
Definition 8, show that the covariance of Xi and Xj is
−nθiθj for i = 1, 2, . . . , k, j = 1, 2, . . . , k, and iZ j.

10 The Theory in Practice

In this section we shall discuss an important application of the binomial distribution,
namely sampling inspection.

In sampling inspection, a specified sample of a lot of manufactured product is
inspected under controlled, supervised conditions. If the number of defectives found
in the sample exceeds a given acceptance number, the lot is rejected. (A rejected lot
may be subjected to closer inspection, but it is rarely scrapped.) A sampling plan

consists of a specification of the number of items to be included in the sample taken
from each lot, and a statement about the maximum number of defectives allowed
before rejection takes place.

The probability that a lot will be accepted by a given sampling plan, of course,
will depend upon p, the actual proportion of defectives in the lot. Since the value of
p is unknown, we calculate the probability of accepting a lot for several different val-
ues of p. Suppose a sampling plan requires samples of size n from each lot, and that
the lot size is large with respect to n. Suppose, further, that the acceptance number is
c; that is, the lot will be accepted if c defectives or fewer are found in the sample. The
probability of acceptance, the probability of finding c or fewer defectives in a sample
of size n, is given by the binomial distribution to a close approximation. (Since sam-
pling inspection is done without replacement, the assumption of equal probabilities
from trial to trial, underlying the binomial distribution, is violated. But if the sample
size is small relative to the lot size, this assumption is nearly satisfied.) Thus, for large
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lots, the probability of accepting a lot having the proportion of defectives p is closely
approximated by the following definition.

DEFINITION 10. PROBABILITY OF ACCEPTANCE. If n is the size of the sample taken from

each large lot and c is the acceptance number, the probability of acceptance is

closely approximated by

L(p) =

c
∑

k=0

b(k;n, p) = B(c;n, p)

where p is the actual proportion of defectives in the lot.

This equation simply states that the probability of c or fewer defectives in the
sample is given by the probability of 0 defectives, plus the probability of 1 defec-
tive, . . . , up to the probability of c defectives, with each probability being approxi-
mated by the binomial distribution having the parameters n and θ = p. Definition 10
is closely related to the power function.

It can be seen from this definition that, for a given sampling plan (sample size,
n, and acceptance number, c), the probability of acceptance depends upon p, the
actual (unknown) proportion of defectives in the lot. Thus a curve can be drawn that
gives the probability of accepting a lot as a function of the lot proportion defective,
p. This curve, called the operating characteristic curve, or OC curve, defines the
characteristics of the sampling plan.

To illustrate the construction of an OC curve, let us consider the sampling plan
having n = 20 and c = 3. That is, samples of size 20 are drawn from each lot, and a
lot is accepted if the sample contains 3 or fewer defectives. Referring to the line in
Table I of “Statistical Tables” corresponding to n = 20 and x = 3, the probabilities
that a random variable having the binomial distribution b(x; 20, p) will assume a
value less than or equal to 3 for various values of p are as follows:

p 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

L(p) 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049

A graph of L(p) versus p is shown in Figure 6.
Inspection of the OC curve given in Figure 6 shows that the probability of accep-

tance is quite high (greater than 0.9) for small values of p, say values less than about
0.10. Also, the probability of acceptance is low (less than 0.10) for values of p greater
than about 0.30. If the actual proportion of defectives in the lot lies between 0.10 and
0.30, however, it is somewhat of a tossup whether the lot will be accepted or rejected.

An “ideal” OC curve would be like the one shown in Figure 7. In this figure,
there is no “gray area”; that is, it is certain that a lot with a given small value of p

or less will be accepted, and it is certain that a lot with a value of p greater than the
given value will be rejected. By comparison, the OC curve of Figure 6 seems to do
a poor job of discriminating between “good” and “bad” lots. In such cases, a better
OC curve can be obtained by increasing the sample size, n.

The OC curve of a sampling plan never can be like the ideal curve of Figure 7
with finite sample sizes, as there always will be some statistical error associated with
sampling. However, sampling plans can be evaluated by choosing two values of p

considered to be important and calculating the probabilities of lot acceptance at
these values. First, a number, p0, is chosen so that a lot containing a proportion
of defectives less than or equal to p0 is desired to be accepted. This value of p is
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Figure 6. OC curve.

called the acceptable quality level, or AQL. Then, a second value of p, p1, is chosen
so that we wish to reject a lot containing a proportion of defectives greater than
p1. This value of p is called the lot tolerance percentage defective, or LTPD. We
evaluate a sampling plan by finding the probability that a “good” lot (a lot with
p … p0) will be rejected and the probability that a “bad” lot (one with p Ú p1) will be
accepted.

The probability that a “good” lot will be rejected is called the producer’s risk,
and the probability that a “bad” lot will be accepted is called the consumer’s risk.
The producer’s risk expresses the probability that a “good” lot (one with p < p0) will
erroneously be rejected by the sampling plan. It is the risk that the producer takes
as a consequence of sampling variability. The consumer’s risk is the probability that
the consumer erroneously will receive a “bad” lot (one with p > p1). These risks are
analogous to the type I and type II errors, α and β (If the true value of the parameter
θ is θ0 and the statistician incorrectly concludes that θ = θ1, he is committing an error
referred to as a type I error. On the other hand, if the true value of the parameter θ

1

L(p)

0 p

1

Figure 7. “Ideal” OC curve.
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is θ1 and the statistician incorrectly concludes that θ = θ0, he is committing a type II
error.)

Suppose an AQL of 0.05 is chosen (p0 = 0.05). Then, it can be seen from
Figure 6 that the given sampling plan has a producer’s risk of about 0.03, since
the probability of acceptance of a lot with an actual proportion defective of 0.05
is approximately 0.97. Similarly, if an LTPD of 0.20 is chosen, the consumer’s risk
is about 0.41. This plan obviously has an unacceptably high consumer’s risk—over
40 percent of the lots received by the consumer will have 20 percent defectives or
greater. To produce a plan with better characteristics, it will be necessary to increase
the sample size, n, to decrease the acceptance number, c, or both. The following
example shows what happens to these characteristics when c is decreased to 1, while
n remains fixed at 20.

EXAMPLE 16

Find the producer’s and consumer’s risks corresponding to an AQL of 0.05 and an
LTPD of 0.20 for the sampling plan defined by n = 20 and c = 1.

Solution

First, we calculate L(p) for various values of p. Referring to Table I of “Statistical
Tables” with n = 20 and x = 1, we obtain the following table:

p 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

L(p) 0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001

A graph of this OC curve is shown in Figure 8. From this graph, we observe
that the producer’s risk is 1 − 0.7358 = 0.2642, and the consumer’s risk is 0.0692.
Note that the work of constructing OC curves can be shortened considerably using
computer software such as Excel or MINITAB.

p

L(p)

.6.5.4.3.2.1.05

AQL

0

.0692

1.0

.9

.8

.7
.7358

.6

.5

.4

.3

.2

.1

LTPD

Figure 8. OC curve for Example 16.
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Reduction of the acceptance number from 3 to 1 obviously has improved the
consumer’s risk, but now the producer’s risk seems unacceptably high. Evidently, a
larger sample size is needed.

The preceding example has been somewhat artificial. It would be quite unusual
to specify an LTPD as high as 0.20 (20 percent defectives), and higher sample sizes
than 20 usually are used for acceptance sampling. In practice, OC curves have been
calculated for sampling plans having many different combinations of n and c. Choice
then is made of the sampling plan whose OC curve has as nearly as possible the
desired characteristics, AQL, LTPD, consumer’s risk, and producer’s risk for sample
sizes in an acceptable range.

Applied Exercises SECS. 1–4

40. A multiple-choice test consists of eight questions and
three answers to each question (of which only one is cor-
rect). If a student answers each question by rolling a bal-
anced die and checking the first answer if he gets a 1 or 2,
the second answer if he gets a 3 or 4, and the third answer
if he gets a 5 or 6, what is the probability that he will get
exactly four correct answers?

41. An automobile safety engineer claims that 1 in 10
automobile accidents is due to driver fatigue. Using the
formula for the binomial distribution and rounding to
four decimals, what is the probability that at least 3 of
5 automobile accidents are due to driver fatigue?

42. In a certain city, incompatibility is given as the legal
reason in 70 percent of all divorce cases. Find the prob-
ability that five of the next six divorce cases filed in this
city will claim incompatibility as the reason, using
(a) the formula for the binomial distribution;

(b) Table I of “Statistical Tables.”

43. If 40 percent of the mice used in an experiment will
become very aggressive within 1 minute after having been
administered an experimental drug, find the probability
that exactly 6 of 15 mice that have been administered the
drug will become very aggressive within 1 minute, using
(a) the formula for the binomial distribution;

(b) Table I of “Statistical Tables.”

44. A social scientist claims that only 50 percent of all
high school seniors capable of doing college work actually
go to college. Assuming that this claim is true, use Table I
of “Statistical Tables” to find the probabilities that among
18 high school seniors capable of doing college work
(a) exactly 10 will go to college;

(b) at least 10 will go to college;

(c) at most 8 will go to college.

45. Suppose that the probability is 0.63 that a car stolen
in a certain Western city will be recovered. Use the com-
puter printout of Figure 1 to find the probability that
at least 8 of 10 cars stolen in this city will be recov-
ered, using
(a) the values in the P(X = K) column;

(b) the values in the P(X LESS OR = K) column.

46. With reference to Exercise 45 and the computer
printout of Figure 1, find the probability that among 10
cars stolen in the given city anywhere from 3 to 5 will be
recovered, using
(a) the values in the P(X = K) column;

(b) the values in the P(X LESS OR = K) column.

47. With reference to Exercise 43, suppose that the per-
centage had been 42 instead of 40. Use a suitable table
or a computer printout of the binomial distribution with
n=15 and θ=0.42 to rework both parts of that exercise.

48. With reference to Exercise 44, suppose that the per-
centage had been 51 instead of 50. Use a suitable table or
a computer printout of the binomial distribution with n=
18 and θ=0.51 to rework the three parts of that exercise.

49. In planning the operation of a new school, one school
board member claims that four out of five newly hired
teachers will stay with the school for more than a year,
while another school board member claims that it would
be correct to say three out of five. In the past, the two
board members have been about equally reliable in their
predictions, so in the absence of any other information
we would assign their judgments equal weight. If one
or the other has to be right, what probabilities would
we assign to their claims if it were found that 11 of 12
newly hired teachers stayed with the school for more than
a year?

50. (a) To reduce the standard deviation of the binomial
distribution by half, what change must be made in the
number of trials?

(b) If n is multiplied by the factor k in the binomial dis-
tribution having the parameters n and θ , what statement
can be made about the standard deviation of the resulting
distribution?

51. A manufacturer claims that at most 5 percent of the
time a given product will sustain fewer than 1,000 hours
of operation before requiring service. Twenty products
were selected at random from the production line and
tested. It was found that three of them required service
before 1,000 hours of operation. Comment on the manu-
facturer’s claim.
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52. (a) Use a computer program to calculate the proba-
bility of rolling between 14 and 18 “sevens” in 100 rolls of
a pair of dice.

(b) Would it surprise you if more than 18 “sevens” were
rolled? Why?

53. (a) Use a computer program to calculate the proba-
bility that more than 12 of 80 business telephone calls last
longer than five minutes if it is assumed that 10 percent of
such calls last that long.

(b) Can this result be used as evidence that the assump-
tion is reasonable? Why?

54. Use Chebyshev’s theorem and Theorem 3 to verify
that the probability is at least 35

36 that
(a) in 900 flips of a balanced coin the proportion of heads
will be between 0.40 and 0.60;

(b) in 10,000 flips of a balanced coin the proportion of
heads will be between 0.47 and 0.53;

(c) in 1,000,000 flips of a balanced coin the proportion of
heads will be between 0.497 and 0.503.

Note that this serves to illustrate the law of large num-
bers.

55. You can get a feeling for the law of large numbers
given Section 4 by flipping coins. Flip a coin 100 times
and plot the accumulated proportion of heads after each
five flips.

56. Record the first 200 numbers encountered in a news-
paper, beginning with page 1 and proceeding in any con-
venient, systematic fashion. Include also numbers appear-
ing in advertisements. For each of these numbers, note
the leftmost digit, and record the proportions of 1’s, 2’s,
3’s, . . . , and 9’s. (Note that 0 cannot be a leftmost digit. In
the decimal number 0.0074, the leftmost digit is 7.) The
results may seem quite surprising, but the law of large
numbers tells you that you must be estimating correctly.

SECS. 5–7

57. If the probabilities of having a male or female child
are both 0.50, find the probabilities that
(a) a family’s fourth child is their first son;

(b) a family’s seventh child is their second daughter;

(c) a family’s tenth child is their fourth or fifth son.

58. If the probability is 0.75 that a person will believe a
rumor about the transgressions of a certain politician, find
the probabilities that
(a) the eighth person to hear the rumor will be the fifth to
believe it;

(b) the fifteenth person to hear the rumor will be the
tenth to believe it.

59. When taping a television commercial, the probability
is 0.30 that a certain actor will get his lines straight on any
one take. What is the probability that he will get his lines
straight for the first time on the sixth take?

60. An expert sharpshooter misses a target 5 percent of
the time. Find the probability that she will miss the target
for the second time on the fifteenth shot using
(a) the formula for the negative binomial distribution;

(b) Theorem 5 and Table I of “Statistical Tables.”

61. Adapt the formula of Theorem 5 so that it can be used
to express geometric probabilities in terms of binomial
probabilities, and use the formula and Table I of “Statis-
tical Tables” to
(a) verify the result of Example 5;

(b) rework Exercise 59.

62. In a “torture test” a light switch is turned on and off
until it fails. If the probability is 0.001 that the switch will
fail any time it is turned on or off, what is the probability
that the switch will not fail during the first 800 times that it
is turned on or off? Assume that the conditions underly-
ing the geometric distribution are met and use logarithms.

63. A quality control engineer inspects a random sample
of two hand-held calculators from each incoming lot of
size 18 and accepts the lot if they are both in good work-
ing condition; otherwise, the entire lot is inspected with
the cost charged to the vendor. What are the probabilities
that such a lot will be accepted without further inspection
if it contains
(a) 4 calculators that are not in good working condition;

(b) 8 calculators that are not in good working condition;

(c) 12 calculators that are not in good working condition?

64. Among the 16 applicants for a job, 10 have college
degrees. If 3 of the applicants are randomly chosen for
interviews, what are the probabilities that
(a) none has a college degree;

(b) 1 has a college degree;

(c) 2 have college degrees;

(d) all 3 have college degrees?

65. Find the mean and the variance of the hypergeometric
distribution with n = 3, N = 16, and M = 10, using
(a) the results of Exercise 64;

(b) the formulas of Theorem 7.

66. What is the probability that an IRS auditor will catch
only 2 income tax returns with illegitimate deductions if
she randomly selects 5 returns from among 15 returns, of
which 9 contain illegitimate deductions?

67. Check in each case whether the condition for the
binomial approximation to the hypergeometric distribu-
tion is satisfied:
(a) N = 200 and n = 12;

(b) N = 500 and n = 20;

(c) N = 640 and n = 30.

68. A shipment of 80 burglar alarms contains 4 that are
defective. If 3 from the shipment are randomly selected
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and shipped to a customer, find the probability that the
customer will get exactly one bad unit using
(a) the formula of the hypergeometric distribution;

(b) the binomial distribution as an approximation.

69. Among the 300 employees of a company, 240 are
union members, whereas the others are not. If 6 of the
employees are chosen by lot to serve on a committee that
administers the pension fund, find the probability that 4
of the 6 will be union members using
(a) the formula for the hypergeometric distribution;

(b) the binomial distribution as an approximation.

70. A panel of 300 persons chosen for jury duty includes
30 under 25 years of age. Since the jury of 12 persons cho-
sen from this panel to judge a narcotics violation does
not include anyone under 25 years of age, the youthful
defendant’s attorney complains that this jury is not really
representative. Indeed, he argues, if the selection were
random, the probability of having one of the 12 jurors
under 25 years of age should be many times the probabil-
ity of having none of them under 25 years of age. Actually,
what is the ratio of these two probabilities?

71. Check in each case whether the values of n and θ

satisfy the rule of thumb for a good approximation, an
excellent approximation, or neither when we want to use
the Poisson distribution to approximate binomial proba-
bilities.
(a) n = 125 and θ = 0.10;

(b) n = 25 and θ = 0.04;

(c) n = 120 and θ = 0.05;

(d) n = 40 and θ = 0.06.

72. It is known from experience that 1.4 percent of the
calls received by a switchboard are wrong numbers. Use
the Poisson approximation to the binomial distribution to
determine the probability that among 150 calls received
by the switchboard 2 are wrong numbers.

73. With reference to Example 8, determine the value of
x (from 5 to 15) for which the percentage error is great-
est when we use the Poisson distribution with λ = 7.5 to
approximate the binomial distribution with n = 150 and
θ = 0.05.

74. In a given city, 4 percent of all licensed drivers will
be involved in at least one car accident in any given year.
Use the Poisson approximation to the binomial distribu-
tion to determine the probability that among 150 licensed
drivers randomly chosen in this city
(a) only 5 will be involved in at least one accident in any
given year;

(b) at most 3 will be involved in at least one accident in
any given year.

75. Records show that the probability is 0.0012 that a per-
son will get food poisoning spending a day at a certain
state fair. Use the Poisson approximation to the binomial

distribution to find the probability that among 1,000 per-
sons attending the fair at most 2 will get food poisoning.

76. With reference to Example 13 and the computer
printout of Figure 4, find the probability that a 15-square-
foot sheet of the metal will have anywhere from 8 to 12
defects, using
(a) the values in the P(X = K) column;

(b) the values in the P(X LESS OR = K) column.

77. The number of complaints that a dry-cleaning estab-
lishment receives per day is a random variable having a
Poisson distribution with λ = 3.3. Use the formula for
the Poisson distribution to find the probability that it will
receive only two complaints on any given day.

78. The number of monthly breakdowns of a super com-
puter is a random variable having a Poisson distribution
with λ = 1.8. Use the formula for the Poisson distribution
to find the probabilities that this computer will function
(a) without a breakdown;

(b) with only one breakdown.

79. Use Table II of “Statistical Tables” to verify the
results of Exercise 78.

80. In the inspection of a fabric produced in continuous
rolls, the number of imperfections per yard is a random
variable having the Poisson distribution with λ = 0.25.
Find the probability that 2 yards of the fabric will have at
most one imperfection using
(a) Table II of “Statistical Tables”;

(b) the computer printout of Figure 5.

81. In a certain desert region the number of persons who
become seriously ill each year from eating a certain poi-
sonous plant is a random variable having a Poisson distri-
bution with λ = 5.2. Use Table II of “Statistical Tables”
to find the probabilities of
(a) 3 such illnesses in a given year;

(b) at least 10 such illnesses in a given year;

(c) anywhere from 4 to 6 such illnesses in a given year.

82. (a) Use a computer program to calculate the exact
probability of obtaining one or more defectives in a sam-
ple of size 100 taken from a lot of 1,000 manufactured
products assumed to contain six defectives.

(b) Approximate this probability using the appropriate
binomial distribution.

(c) Approximate this probability using the appropriate
Poisson distribution and compare the results of parts (a),
(b), and (c).

SECS. 8–9

83. The probabilities are 0.40, 0.50, and 0.10 that, in city
driving, a certain kind of compact car will average less
than 28 miles per gallon, from 28 to 32 miles per gallon,
or more than 32 miles per gallon. Find the probability
that among 10 such cars tested, 3 will average less than
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28 miles per gallon, 6 will average from 28 to 32 miles per
gallon, and 1 will average more than 32 miles per gallon.

84. Suppose that the probabilities are 0.60, 0.20, 0.10, and
0.10 that a state income tax return will be filled out cor-
rectly, that it will contain only errors favoring the tax-
payer, that it will contain only errors favoring the state,
or that it will contain both kinds of errors. What is the
probability that among 12 such income tax returns ran-
domly chosen for audit, 5 will be filled out correctly, 4
will contain only errors favoring the taxpayer, 2 will con-
tain only errors favoring the state, and 1 will contain both
kinds of errors?

85. According to the Mendelian theory of heredity, if
plants with round yellow seeds are crossbred with plants
with wrinkled green seeds, the probabilities of getting a
plant that produces round yellow seeds, wrinkled yellow
seeds, round green seeds, or wrinkled green seeds are,
respectively, 9

16 , 3
16 , 3

16 , and 1
16 . What is the probability

that among nine plants thus obtained there will be four
that produce round yellow seeds, two that produce wrin-
kled yellow seeds, three that produce round green seeds,
and none that produce wrinkled green seeds?

86. Among 25 silver dollars struck in 1903 there are 15
from the Philadelphia mint, 7 from the New Orleans mint,
and 3 from the San Francisco mint. If 5 of these sil-
ver dollars are picked at random, find the probabilities
of getting
(a) 4 from the Philadelphia mint and 1 from the New
Orleans mint;

(b) 3 from the Philadelphia mint and 1 from each of the
other 2 mints.

87. If 18 defective glass bricks include 10 that have cracks
but no discoloration, 5 that have discoloration but no
cracks, and 3 that have cracks and discoloration, what
is the probability that among 6 of the bricks (chosen at
random for further checks) 3 will have cracks but no dis-
coloration, 1 will have discoloration but no cracks, and 2
will have cracks and discoloration?

SEC. 10

88. A sampling inspection program has a 0.10 probability
of rejecting a lot when the true proportion of defectivesis

0.01, and a 0.95 probability of rejecting the lot when the
true proportion of defectives is 0.03. If 0.01 is the AQL
and 0.03 is the LTPD, what are the producer’s and con-
sumer’s risks?

89. The producer’s risk in a sampling program is 0.05 and
the consumer’s risk is 0.10; the AQL is 0.03 and the LTPD
is 0.07.
(a) What is the probability of accepting a lot whose true
proportion of defectives is 0.03?

(b) What is the probability of accepting a lot whose true
proportion of defectives is 0.07?

90. Suppose the acceptance number in Example 16 is
changed from 1 to 2. Keeping the producer’s risk at 0.05
and the consumer’s risk at 0.10, what are the new values
of the AQL and the LTPD?

91. From Figure 6,
(a) find the producer’s risk if the AQL is 0.10;

(b) find the LTPD corresponding to a consumer’s risk of
0.05.

92. Sketch the OC curve for a sampling plan having a
sample size of 15 and an acceptance number of 1.

93. Sketch the OC curve for a sampling plan having a
sample size of 25 and an acceptance number of 2.

94. Sketch the OC curve for a sampling plan having a
sample size of 10 and an acceptance number of 0.

95. Find the AQL and the LTPD of the sampling plan in
Exercise 93 if both the producer’s and consumer’s risks
are 0.10.

96. If the AQL is 0.1 and the LTPD is 0.25 in the sam-
pling plan given in Exercise 92, find the producer’s and
consumer’s risks.

97. (a) In Exercise 92 change the acceptance number
from 1 to 0 and sketch the OC curve.

(b) How do the producer’s and consumer’s risks change
if the AQL is 0.05 and the LTPD is 0.3 in both sampling
plans?
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Answers to Odd-Numbered Exercises

11 µ′2 = µ′
(2)
+µ′

(1)
, µ′3 = µ′

(3)
+ 3µ′

(2)
+µ′

(1)
, and µ′4 =

µ′
(4)
+ 6µ′

(3)
+ 7µ′

(2)
+µ′

(1)
.

13 (a) Fx(t) = 1− θ + θ t; (b) Fx(t) = [1+ θ(t− 1)]n.

15 (a) α3 = 0 when θ = 1
2 ; (b) α3→0 when n→q.

17 µY = k

(

1

θ
− 1

)

; σ 2
Y
=

k

θ

(

1

θ
− 1

)

.

37 MY(t) = eλ(et−t−1); σ 2
Y
= M′

Y
(0) = λ.

41 0.0086.

43 (a) 0.2066; (b) 0.2066.

45 (a) 0.2205; (b) 0.2206.

47 0.2041.

49 0.9222.

51 0.0754.

53 (a) 0.0538.

57 (a) 0.0625; (b) 0.0469; (c) 0.2051.

59 0.0504.

61 (a) 0.0117; (b) 0.0504.

63 (a) 0.5948; (b) 0.2941; (c) 0.0980.

65 (a) µ = 15
8 and σ 2 = 39

64
; (b) µ = 15

8 and σ 2 = 39
64

.

67 (a) The condition is not satisfied. (b) The condition is sat-
isfied. (c) The condition is satisfied.

69 (a) 0.2478; (b) 0.2458.

71 (a) Neither rule of thumb is satisfied. (b) The rule of
thumb for good approximation is satisfied. (c) The rule of
thumb for excellent approximation is satisfied. (d) Neither
rule of thumb is satisfied.

73 x = 15.

75 0.8795.

77 0.2008.

79 (a) 0.1653; (b) 0.2975.

81 (a) 0.1293; (b) 0.0397; (c) 0.4944.

83 0.0841.

85 0.0292.

87 0.0970.

89 (a) 0.95; (b) 0.10.

91 (a) 0.17; (b) 0.35.

95 AQL = 0.07, LTPD = 0.33.

97 (b) Plan 1 (c = 0): producer’s risk = 0.0861 and con-
sumer’s risk = 0.1493; Plan 2 (c = 1): producer’s risk =

0.4013 and consumer’s risk = 0.0282.
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Densities

1 Introduction
2 The Uniform Distribution
3 The Gamma, Exponential, and Chi-Square

Distributions
4 The Beta Distribution

5 The Normal Distribution
6 The Normal Approximation to the Binomial

Distribution
7 The Bivariate Normal Distribution
8 The Theory in Practice

1 Introduction In this chapter we shall study some of the probability densities that figure most
prominently in statistical theory and in applications. In addition to the ones given
in the text, several others are introduced in the exercises following Section 4. We
shall derive parameters and moment-generating functions, again leaving some of
the details as exercises.

2 The Uniform Distribution

DEFINITION 1. UNIFORM DISTRIBUTION. A random variable X has a uniform distri-
bution and it is referred to as a continuous uniform random variable if and only

if its probability density is given by

u(x;α, β) =











1

β −α
for α < x <β

0 elsewhere

The parameters α and β of this probability density are real constants, with α <

β, and may be pictured as in Figure 1. In Exercise 2 the reader will be asked to
verify the following theorem.

THEOREM 1. The mean and the variance of the uniform distribution are
given by

µ =
α+β

2
and σ 2 =

1

12
(β −α)2

From Chapter 6 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright  2014 by Pearson Education, Inc.
All rights reserved.
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a

x

b

1

b 2 a

u(x; a, b)

Figure 1. The uniform distribution.

Although the uniform distribution has some direct applications, its main value
is that, due to its simplicity, it lends itself readily to the task of illustrating various
aspects of statistical theory.

3 The Gamma, Exponential, and Chi-Square Distributions

Let’s start with random variables having probability densities of the form

f (x) =

{

kxα−1e−x/β for x > 0

0 elsewhere

where α > 0, β > 0, and k must be such that the total area under the curve is equal

to 1. To evaluate k, we first make the substitution y =
x

β
, which yields

∫

q

0
kxα−1e−x/βdx = kβα

∫

q

0
yα−1e−ydy

The integral thus obtained depends on α alone, and it defines the well-known gamma

function

Ŵ(α) =
∫

q

0
yα−1e−ydy for α > 0

which is treated in detail in most advanced calculus texts. Integrating by parts, which
is left to the reader in Exercise 7, we find that the gamma function satisfies the recur-
sion formula

Ŵ(α) = (α− 1) ·Ŵ(α− 1)
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for α > 1, and since

Ŵ(1) =
∫

q

0
e−ydy = 1

it follows by repeated application of the recursion formula that Ŵ(α) = (α− 1)! when

α is a positive integer. Also, an important special value is Ŵ

(

1
2

)

=
√

π , as the reader

will be asked to verify in Exercise 9.
Returning now to the problem of evaluating k, we equate the integral we obtained

to 1, getting

∫

q

0
kxα−1e−x/βdx = kβαŴ(α) = 1

and hence

k =
1

βαŴ(α)

This leads to the following definition of the gamma distribution.

DEFINITION 2. GAMMA DISTRIBUTION. A random variable X has a gamma distribu-
tion and it is referred to as a gamma random variable if and only if its probability

density is given by

g(x;α, β) =











1

βαŴ(α)
xα−1e−x/β for x > 0

0 elsewhere

where a > 0 and b > 0.

When α is not a positive integer, the value of Ŵ(α) will have to be looked up in a
special table. To give the reader some idea about the shape of the graphs of gamma
densities, those for several special values of α and β are shown in Figure 2.

Some special cases of the gamma distribution play important roles in statistics;
for instance, for α = 1 and β = θ , we obtain the following definition.

4

1

1

2

1

2

3

4

a        ,  b   1

a   2,  b  

1

5
a   11,  b  

1

2

1

1 2 3 4 5 60

f (x)

x

Figure 2. Graphs of gamma distributions.
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DEFINITION 3. EXPONENTIAL DISTRIBUTION. A random variable X has an exponen-
tial distribution and it is referred to as an exponential random variable if and

only if its probability density is given by

g(x; θ) =











1

θ
e−x/θ for x > 0

0 elsewhere

where u > 0.

This density is pictured in Figure 3.
Let us consider there is the probability of getting x successes during a time inter-

val of length t when (i) the probability of a success during a very small time interval
from t to t+1t is α ·1t, (ii) the probability of more than one success during such
a time interval is negligible, and (iii) the probability of a success during such a time
interval does not depend on what happened prior to time t. The number of successes
is a value of the discrete random variable X having the Poisson distribution with
λ = αt. Let us determine the probability density of the continuous random variable
Y, the waiting time until the first success. Clearly,

F(y) = P(Y F y) = 1−P(Y > y)

= 1−P(0 successes in a time interval of length y)

= 1−p(0;αy)

= 1−
e−αy(αy)0

0!

= 1− e−αy for y > 0

x

g (x ; u)

1

u

0

Figure 3. Exponential distribution.
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and F(y) = 0 for y F 0. Having thus found the distribution function of Y, we find
that differentiation with respect to y yields

f (y) =

{

αe−αy for y > 0

0 elsewhere

which is the exponential distribution with θ =
1

α
.

The exponential distribution applies not only to the occurrence of the first suc-
cess in a Poisson process but, by virtue of condition (see Exercise 16), it applies also
to the waiting times between successes.

EXAMPLE 1

At a certain location on highway I-10, the number of cars exceeding the speed limit
by more than 10 miles per hour in half an hour is a random variable having a Poisson
distribution with λ = 8.4. What is the probability of a waiting time of less than 5
minutes between cars exceeding the speed limit by more than 10 miles per hour?

Solution

Using half an hour as the unit of time, we have α = λ = 8.4. Therefore, the waiting
time is a random variable having an exponential distribution with θ = 1

8.4 , and since

5 minutes is 1
6 of the unit of time, we find that the desired probability is

∫ 1/6

0
8.4e−8.4xdx = −e−8.4x

∣

∣

∣

∣

1/6

0

= −e−1.4+ 1

which is approximately 0.75.

Another special case of the gamma distribution arises when α =
ν

2
and β = 2,

where ν is the lowercase Greek letter nu.

DEFINITION 4. CHI-SQUARE DISTRIBUTION. A random variable X has a chi-square
distribution and it is referred to as a chi-square random variable if and only if its

probability density is given by

f (x, v) =











1

2ν/2Ŵ(ν/2)
x

ν−2
2 e−

x
2 for x > 0

0 elsewhere

The parameter ν is referred to as the number of degrees of freedom, or simply the
degrees of freedom. The chi-square distribution plays a very important role in sam-
pling theory.

To derive formulas for the mean and the variance of the gamma distribution,
and hence the exponential and chi-square distributions, let us first prove the follow-
ing theorem.
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THEOREM 2. The rth moment about the origin of the gamma distribution is
given by

µ′r =
βrŴ(α+ r)

Ŵ(α)

Proof By using the definition of the rth moment about the origin,

µ′r =
∫

q

0
xr ·

1

βαŴ(α)
xα−1e−x/βdx =

βr

Ŵ(α)
·
∫

q

0
yα+r−1e−ydy

where we let y =
x

β
. Since the integral on the right is Ŵ(r+α) according

to the definition of gamma function, this completes the proof.

Using this theorem, let us now derive the following results about the gamma
distribution.

THEOREM 3. The mean and the variance of the gamma distribution are
given by

µ = αβ and σ 2 = αβ2

Proof From Theorem 2 with r = 1 and r = 2, we get

µ′1 =
βŴ(α+ 1)

Ŵ(α)
= αβ

and

µ′2 =
β2Ŵ(α+ 2)

Ŵ(α)
= α(α+ 1)β2

so µ = αβ and σ 2 = α(α+ 1)β2− (αβ)2 = αβ2.

Substituting into these formulas α = 1 and β = θ for the exponential distribu-

tion and α =
ν

2
and β = 2 for the chi-square distribution, we obtain the following

corollaries.

COROLLARY 1. The mean and the variance of the exponential distribution
are given by

µ = θ and σ 2 = θ2

COROLLARY 2. The mean and the variance of the chi-square distribution are
given by

µ = ν and σ 2 = 2ν

For future reference, let us give here also the moment-generating function of the
gamma distribution.

THEOREM 4. The moment-generating function of the gamma distribution is
given by

MX(t) = (1−βt)−α
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The reader will be asked to prove this result and use it to find some of the lower
moments in Exercises 12 and 13.

4 The Beta Distribution

The uniform density f (x) = 1 for 0 < x < 1 and f (x) = 0 elsewhere is a special case
of the beta distribution, which is defined in the following way.

DEFINITION 5. BETA DISTRIBUTION. A random variable X has a beta distribution
and it is referred to as a beta random variable if and only if its probability density

is given by

f (x;α, β) =











Ŵ(α+β)

Ŵ(α) ·Ŵ(β)
xα−1(1− x)β−1 for 0 < x < 1

0 elsewhere

where a > 0 and b > 0.

In recent years, the beta distribution has found important applications in Bayesian

inference, where parameters are looked upon as random variables, and there is a
need for a fairly “flexible” probability density for the parameter θ of the binomial
distribution, which takes on nonzero values only on the interval from 0 to 1. By “flex-
ible” we mean that the probability density can take on a great variety of different
shapes, as the reader will be asked to verify for the beta distribution in Exercise 27.

We shall not prove here that the total area under the curve of the beta distribu-
tion, like that of any probability density, is equal to 1, but in the proof of the theorem
that follows, we shall make use of the fact that

∫ 1

0

Ŵ(α+β)

Ŵ(α) ·Ŵ(β)
xα−1(1− x)β−1dx = 1

and hence that

∫ 1

0
xα−1(1− x)β−1dx =

Ŵ(α) ·Ŵ(β)

Ŵ(α+β)

This integral defines the beta function, whose values are denoted B(α, β); in other

words, B(α, β) =
Ŵ(α) ·Ŵ(β)

Ŵ(α+β)
. Detailed discussion of the beta function may be found

in any textbook on advanced calculus.

THEOREM 5. The mean and the variance of the beta distribution are
given by

µ =
α

α+β
and σ 2 =

αβ

(α+β)2(α+β + 1)
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Proof By definition,

µ =
Ŵ(α+β)

Ŵ(α) ·Ŵ(β)
·
∫ 1

0
x · xα−1(1− x)β−1dx

=
Ŵ(α+β)

Ŵ(α) ·Ŵ(β)
·
Ŵ(α+ 1) ·Ŵ(β)

Ŵ(α+β + 1)

=
α

α+β

where we recognized the integral as B(α+ 1, β) and made use of the fact
that Ŵ(α+ 1) = α ·Ŵ(α) and Ŵ(α+β + 1) = (α+β) ·Ŵ(α+β). Similar
steps, which will be left to the reader in Exercise 28, yield

µ′2 =
(α+ 1)α

(α+β + 1)(α+β)

and it follows that

σ 2 =
(α+ 1)α

(α+β + 1)(α+β)
−
(

α

α+β

)2

=
αβ

(α+β)2(α+β + 1)

Exercises

1. Show that if a random variable has a uniform den-
sity with the parameters α and β, the probability
that it will take on a value less than α+p(β −α) is
equal to p.

2. Prove Theorem 1.

3. If a random variable X has a uniform density with the
parameters α and β, find its distribution function.

4. Show that if a random variable has a uniform density
with the parameters α and β, the rth moment about the
mean equals
(a) 0 when r is odd;

(b)
1

r+ 1

(

β −α

2

)r

when r is even.

5. Use the results of Exercise 4 to find α3 and α4 for the
uniform density with the parameters α and β.

6. A random variable is said to have a Cauchy distribu-
tion if its density is given by

f (x) =

β

π

(x−α)2+β2
for −q< x <q

Show that for this distribution µ′1 and µ′2 do not exist.

7. Use integration by parts to show that Ŵ(α) = (α− 1) ·
Ŵ(α− 1) for α > 1.

8. Perform a suitable change of variable to show that the
integral defining the gamma function can be written as

Ŵ(α) = 21−α ·
∫

q

0
z2α−1e−

1
2 z2

dz for α > 0

9. Using the form of the gamma function of Exercise 8,
we can write

Ŵ

(

1

2

)

=
√

2

∫

q

0
e−

1
2 z2

dz

and hence

[

Ŵ

(

1

2

)

]2

= 2

{∫

q

0
e−

1
2 x2

dx

}{∫

q

0
e−

1
2 y2

dy

}

= 2

∫

q

0

∫

q

0
e−

1
2 (x2+y2) dx dy

Change to polar coordinates to evaluate this double inte-
gral, and thus show that Ŵ( 1

2 ) =
√

π .

10. Find the probabilities that the value of a random vari-
able will exceed 4 if it has a gamma distribution with
(a) α = 2 and β = 3;

(b) α = 3 and β = 4.
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11. Show that a gamma distribution with α > 1 has a rel-
ative maximum at x = β(α− 1). What happens when
0 <α < 1 and when α = 1?

12. Prove Theorem 4, making the substitution y =

x

(

1

β
− t

)

in the integral defining MX(t).

13. Expand the moment-generating function of the
gamma distribution as a binomial series, and read off the
values of µ′1, µ′2, µ′3, and µ′4.

14. Use the results of Exercise 13 to find α3 and α4 for the
gamma distribution.

15. Show that if a random variable has an exponential
density with the parameter θ , the probability that it will
take on a value less than−θ · ln(1−p) is equal to p for 0 F
p < 1.

16. If X has an exponential distribution, show that

P[(X Ú t+T)|(xÚT)] = P(X Ú t)

17. This question has been intentionally omitted for this
edition.

18. With reference to Exercise 17, using the fact that the
moments of Y about the origin are the corresponding
moments of X about the mean, find α3 and α4 for the
exponential distribution with the parameter θ .

19. Show that if ν > 2, the chi-square distribution has a
relative maximum at x = ν− 2. What happens when
ν = 2 or 0 <ν < 2?

20. A random variable X has a Rayleigh distribution if
and only if its probability density is given by

f (x) =

{

2αxe−αx2
for x > 0

0 elsewhere

where α > 0. Show that for this distribution

(a) µ =
1

2

√

π

α
;

(b) σ 2 =
1

α

(

1−
π

4

)

.

21. A random variable X has a Pareto distribution if and
only if its probability density is given by

f (x) =











α

xα+1
for x > 1

0 elsewhere

where α > 0. Show that µ′r exists only if r <α.

22. With reference to Exercise 21, show that for the
Pareto distribution

µ =
α

α− 1
provided α > 1.

23. A random variable X has a Weibull distribution if and
only if its probability density is given by

f (x) =

{

kxβ−1e−αxβ
for x > 0

0 elsewhere

where α > 0 and β > 0.
(a) Express k in terms of α and β.

(b) Show that µ = α−1/βŴ

(

1+
1

β

)

.

Note that Weibull distributions with β = 1 are exponen-
tial distributions.

24. If the random variable T is the time to failure of a
commercial product and the values of its probability den-
sity and distribution function at time t are f (t) and F(t),

then its failure rate at time t is given by
f (t)

1−F(t)
. Thus, the

failure rate at time t is the probability density of failure at
time t given that failure does not occur prior to time t.
(a) Show that if T has an exponential distribution, the
failure rate is constant.

(b) Show that if T has a Weibull distribution (see Exer-
cise 23), the failure rate is given by αβtβ−1.

25. Verify that the integral of the beta density from −q
to q equals 1 for
(a) α = 2 and β = 4;

(b) α = 3 and β = 3.

26. Show that if α > 1 and β > 1, the beta density has a
relative maximum at

x =
α− 1

α+β − 2
.

27. Sketch the graphs of the beta densities having
(a) α = 2 and β = 2;

(b) α = 1
2 and β = 1;

(c) α = 2 and β = 1
2 ;

(d) α = 2 and β = 5.
[Hint: To evaluate Ŵ( 3

2 ) and Ŵ( 5
2 ), make use of the recur-

sion formula Ŵ(α) = (α− 1) ·Ŵ(α− 1) and the result of
Exercise 9.]

28. Verify the expression given for µ′2 in the proof of The-
orem 5.

29. Show that the parameters of the beta distribution can
be expressed as follows in terms of the mean and the vari-
ance of this distribution:

(a) α = µ

[

µ(1−µ)

σ 2
− 1

]

;

(b) β = (1−µ)

[

µ(1−µ)

σ 2
− 1

]

.

30. Karl Pearson, one of the founders of modern statis-
tics, showed that the differential equation

1

f (x)
·

d[f (x)]

dx
=

d− x

a+bx+ cx2
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yields (for appropriate values of the constants a, b, c,
and d) most of the important distributions of statistics.
Verify that the differential equation gives
(a) the gamma distribution when a = c = 0, b > 0, and
d >−b;

(b) the exponential distribution when a = c = d = 0 and
b > 0;

(c) the beta distribution when a = 0, b = −c, d−1
b

< 1,

and d
b

>−1.

5 The Normal Distribution

The normal distribution, which we shall study in this section, is in many ways the
cornerstone of modern statistical theory. It was investigated first in the eighteenth
century when scientists observed an astonishing degree of regularity in errors of
measurement. They found that the patterns (distributions) that they observed could
be closely approximated by continuous curves, which they referred to as “normal
curves of errors” and attributed to the laws of chance. The mathematical properties
of such normal curves were first studied by Abraham de Moivre (1667–1745), Pierre
Laplace (1749–1827), and Karl Gauss (1777–1855).

DEFINITION 6. NORMAL DISTRIBUTION. A random variable X has a normal distribu-
tion and it is referred to as a normal random variable if and only if its probability

density is given by

n(x;µ, σ) =
1

σ
√

2π
e
− 1

2

(

x−µ
σ

)2

for −q< x <q

where s > 0.

The graph of a normal distribution, shaped like the cross section of a bell, is shown
in Figure 4.

The notation used here shows explicitly that the two parameters of the normal
distribution are µ and σ . It remains to be shown, however, that the parameter µ is,
in fact, E(X) and that the parameter σ is, in fact, the square root of var(X), where
X is a random variable having the normal distribution with these two parameters.

First, though, let us show that the formula of Definition 6 can serve as a prob-
ability density. Since the values of n(x;µ, σ) are evidently positive as long as σ > 0,

m
x

Figure 4. Graph of normal distribution.
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we must show that the total area under the curve is equal to 1. Integrating from −q
to q and making the substitution z =

x−µ

σ
, we get

∫

q

−q

1

σ
√

2π
e
− 1

2

(

x−µ
σ

)2

dx =
1
√

2π

∫

q

−q
e−

1
2 z2

dz =
2
√

2π

∫

q

0
e−

1
2 z2

dz

Then, since the integral on the right equals
Ŵ

(

1
2

)

√
2
=
√

π
√

2
according to Exercise 9, it

follows that the total area under the curve is equal to
2
√

2π
·
√

π
√

2
= 1.

Next let us prove the following theorem.

THEOREM 6. The moment-generating function of the normal distribution is
given by

MX(t) = eµt+ 1
2 σ 2t2

Proof By definition,

MX(t) =
∫

q

−q
ext ·

1

σ
√

2π
e
− 1

2

(

x−µ
σ

)2

dx

=
1

σ
√

2π
·
∫

q

−q
e
− 1

2σ2 [−2xtσ 2+(x−µ)2]
dx

and if we complete the square, that is, use the identity

−2xtσ 2+ (x−µ)2 = [x− (µ+ tσ 2)]2− 2µtσ 2− t2σ 4

we get

MX(t) = eµt+ 1
2 t2σ 2











1

σ
√

2π
·
∫

q

−q
e
− 1

2

[

x−(µ+tσ2)
σ

]2

dx











Since the quantity inside the braces is the integral from −q to q of a
normal density with the parameters µ+ tσ 2 and σ , and hence is equal to
1, it follows that

MX(t) = eµt+ 1
2 σ 2t2

We are now ready to verify that the parameters µ and σ in Definition 6 are,
indeed, the mean and the standard deviation of the normal distribution. Twice dif-
ferentiating MX(t) with respect to t, we get

M′
X(t) = (µ+ σ 2t) ·MX(t)

and

M′′
X(t) = [(µ+ σ 2t)2+ σ 2] ·MX(t)

so that M′
X(0) = µ and M′′

X(0) = µ2+ σ 2. Thus, E(X) = µ and var(X) = (µ2+
σ 2)−µ2 = σ 2.

Since the normal distribution plays a basic role in statistics and its density cannot
be integrated directly, its areas have been tabulated for the special case where µ = 0
and σ = 1.
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DEFINITION 7. STANDARD NORMAL DISTRIBUTION. The normal distribution with

m = 0 and s = 1 is referred to as the standard normal distribution.

The entries in standard normal distribution table, represented by the shaded
area of Figure 5, are the values of

∫ z

0

1
√

2π
e−

1
2 x2

dx

that is, the probabilities that a random variable having the standard normal distribu-
tion will take on a value on the interval from 0 to z, for z = 0.00, 0.01, 0.02, . . . , 3.08,
and 3.09 and also z = 4.0, z = 5.0, and z = 6.0. By virtue of the symmetry of the
normal distribution about its mean, it is unnecessary to extend the table to negative
values of z.

EXAMPLE 2

Find the probabilities that a random variable having the standard normal distribu-
tion will take on a value

(a) less than 1.72;

(b) less than −0.88;

(c) between 1.30 and 1.75;

(d) between −0.25 and 0.45.

Solution

(a) We look up the entry corresponding to z = 1.72 in the standard normal distri-
bution table, add 0.5000 (see Figure 6), and get 0.4573+ 0.5000 = 0.9573.

(b) We look up the entry corresponding to z = 0.88 in the table, subtract it from
0.5000 (see Figure 6), and get 0.5000− 0.3106 = 0.1894.

(c) We look up the entries corresponding to z = 1.75 and z = 1.30 in the table,
subtract the second from the first (see Figure 6), and get 0.4599− 0.4032 =
0.0567.

(d) We look up the entries corresponding to z = 0.25 and z = 0.45 in the table,
add them (see Figure 6), and get 0.0987+ 0.1736 = 0.2723.

0 z

Figure 5. Tabulated areas under the standard normal distribution.
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z

0 1.75

0.0567

0.4032

0.5000 0.4573

1.30

0 1.72

z

z

020.25

0.0987
0.1736

0.3106

0.1894

0.45

020.88

z

Figure 6. Diagrams for Example 2.

Occasionally, we are required to find a value of z corresponding to a specified
probability that falls between values listed in the table. In that case, for convenience,
we always choose the z value corresponding to the tabular value that comes closest
to the specified probability. However, if the given probability falls midway between
tabular values, we shall choose for z the value falling midway between the corre-
sponding values of z.

EXAMPLE 3

With reference to the standard normal distribution table, find the values of z that
correspond to entries of

(a) 0.3512;

(b) 0.2533.

Solution

(a) Since 0.3512 falls between 0.3508 and 0.3531, corresponding to z = 1.04 and
z = 1.05, and since 0.3512 is closer to 0.3508 than 0.3531, we choose z = 1.04.

(b) Since 0.2533 falls midway between 0.2517 and 0.2549, corresponding to z =
0.68 and z = 0.69, we choose z = 0.685.

To determine probabilities relating to random variables having normal distri-
butions other than the standard normal distribution, we make use of the follow-
ing theorem.

THEOREM 7. If X has a normal distribution with the mean µ and the stan-
dard deviation σ , then

Z =
X −µ

σ

has the standard normal distribution.
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Proof Since the relationship between the values of X and Z is linear, Z

must take on a value between z1 =
x1−µ

σ
and z2 =

x2−µ

σ
when X takes

on a value between x1 and x2. Hence, we can write

P(x1 < X < x2) =
1

√
2πσ

∫ x2

x1

e
− 1

2

(

x−µ
σ

)2

dx

=
1
√

2π

∫ z2

z1

e−
1
2 z2

dz

=
∫ z2

z1

n(z; 0, 1) dz

= P(z1 < Z < z2)

where Z is seen to be a random variable having the standard normal
distribution.

Thus, to use the standard normal distribution table in connection with any ran-
dom variable having a normal distribution, we simply perform the change of scale

z =
x−µ

σ
.

EXAMPLE 4

Suppose that the amount of cosmic radiation to which a person is exposed when fly-
ing by jet across the United States is a random variable having a normal distribution
with a mean of 4.35 mrem and a standard deviation of 0.59 mrem. What is the prob-
ability that a person will be exposed to more than 5.20 mrem of cosmic radiation on
such a flight?

Solution

Looking up the entry corresponding to z =
5.20− 4.35

0.59
= 1.44 in the table and

subtracting it from 0.5000 (see Figure 7), we get 0.5000− 0.4251 = 0.0749.

Probabilities relating to random variables having the normal distribution and
several other continuous distributions can be found directly with the aid of computer

4.35 5.20

0.0749

0.4251

x

z   0 z   1.44

Figure 7. Diagram for Example 4.
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programs especially written for statistical applications. The following example illus-
trates such calculations using MINITAB statistical software.

EXAMPLE 5

Use a computer program to find the probability that a random variable having

(a) the chi-square distribution with 25 degrees of freedom will assume a value
greater than 30;

(b) the normal distribution with the mean 18.7 and the standard deviation 9.1 will
assume a value between 10.6 and 24.8.

Solution

Using MINITAB software, we select the option “cumulative distribution” to obtain
the following:

(a) MTB>CDF C1;

SUBC>Chisquare 25

3Ø.ØØØØ Ø.7757

Thus, the required probability is 1.0000− 0.7757 = 0.2243.

(b) MTB>CDF C2; and MTB>CDF C3;

SUBC>Normal 18.7 9.1. SUBC>Normal 18.7 9.1.

1Ø.6ØØØ Ø.1867 24.8ØØ Ø.7487

Thus, the required probability is 0.7487− 0.1867 = 0.5620.

6 The Normal Approximation to the Binomial Distribution

The normal distribution is sometimes introduced as a continuous distribution that
provides a close approximation to the binomial distribution when n, the number of
trials, is very large and θ , the probability of a success on an individual trial, is close
to 1

2 . Figure 8 shows the histograms of binomial distributions with θ = 1
2 and n = 2,

n   2 n   5

n   10 n   25

Figure 8. Binomial distributions with θ = 1

2
.
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5, 10, and 25, and it can be seen that with increasing n these distributions approach
the symmetrical bell-shaped pattern of the normal distribution.

To provide a theoretical foundation for this argument, let us first prove the fol-
lowing theorem.

THEOREM 8. If X is a random variable having a binomial distribution with
the parameters n and θ , then the moment-generating function of

Z =
X −nθ

√
nθ(1− θ)

approaches that of the standard normal distribution when n→q.

Proof Making use of theorems relating to moment-generating functions
of the binomial distribution, we can write

MZ(t) = M X−µ
σ

(t) = e−µt/σ · [1+ θ(et/σ − 1)]n

where µ = nθ and σ =
√

nθ(1− θ). Then, taking logarithms and substi-
tuting the Maclaurin’s series of et/σ , we get

ln M X−µ
σ

(t) = −
µt

σ
+n · ln[1+ θ(et/σ − 1)]

= −
µt

σ
+n · ln



1+ θ

{

t

σ
+

1

2

(

t

σ

)2

+
1

6

(

t

σ

)3

+ · · ·

}





and, using the infinite series ln(1+ x) = x− 1
2 x2+ 1

3 x3− · · · , which con-
verges for |x|< 1, to expand this logarithm, it follows that

ln M X−µ
σ

(t) = −
µt

σ
+nθ

[

t

σ
+

1

2

(

t

σ

)2

+
1

6

(

t

σ

)3

+ · · ·

]

−
nθ2

2

[

t

σ
+

1

2

(

t

σ

)2

+
1

6

(

t

σ

)3

+ · · ·

]2

+
nθ3

3

[

t

σ
+

1

2

(

t

σ

)2

+
1

6

(

t

σ

)3

+ · · ·

]3

− · · ·

Collecting powers of t, we obtain

ln M X−µ
σ

(t) =
(

−
µ

σ
+

nθ

σ

)

t+

(

nθ

2σ 2
−

nθ2

2σ 2

)

t2

+

(

nθ

6σ 3
−

nθ2

2σ 3
+

nθ3

3σ 3

)

t3+ · · ·

=
1

σ 2

(

nθ −nθ2

2

)

t2+
n

σ 3

(

θ − 3θ2+ 2θ3

6

)

t3+ · · ·
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since µ = nθ . Then, substituting σ =
√

nθ(1− θ), we find that

ln M X−µ
σ

(t) =
1

2
t2+

n

σ 3

(

θ − 3θ2+ 2θ3

6

)

t3+ · · ·

For r > 2 the coefficient of tr is a constant times
n

σ r
, which approaches 0

when n→q. It follows that

lim
n→q

ln M X−µ
σ

(t) =
1

2
t2

and since the limit of a logarithm equals the logarithm of the limit (pro-
vided the two limits exist), we conclude that

lim
n→q

M X−µ
σ

(t) = e
1
2 t2

which is the moment-generating function of Theorem 6 with µ = 0 and
σ = 1.

This completes the proof of Theorem 8, but have we shown that when n→q

the distribution of Z, the standardized binomial random variable, approaches the
standard normal distribution? Not quite. To this end, we must refer to two theorems
that we shall state here without proof:

1. There is a one-to-one correspondence between moment-generating functions

and probability distributions (densities) when the former exist.

2. If the moment-generating function of one random variable approaches that of

another random variable, then the distribution (density) of the first random

variable approaches that of the second random variable under the same limit-

ing conditions.

Strictly speaking, our results apply only when n→q, but the normal distribution
is often used to approximate binomial probabilities even when n is fairly small. A
good rule of thumb is to use this approximation only when nθ and n(1− θ) are both
greater than 5.

EXAMPLE 6

Use the normal approximation to the binomial distribution to determine the proba-
bility of getting 6 heads and 10 tails in 16 flips of a balanced coin.

Solution

To find this approximation, we must use the continuity correction according to which
each nonnegative integer k is represented by the interval from k− 1

2 to k+ 1
2 . With

reference to Figure 9, we must thus determine the area under the curve between

5.5 and 6.5, and since µ = 16 · 1
2 = 8 and σ =

√

16 · 1
2 ·

1
2 = 2, we must find the

area between

z =
5.5− 8

2
= −1.25 and z =

6.5− 8

2
= −0.75

The entries in the standard normal distribution table corresponding to z = 1.25 and
z = 0.75 are 0.3944 and 0.2734, and we find that the normal approximation to the
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5.5 6.5 8

Number
of heads

0.2734

0.1210

z   21.25 z   20.75

Figure 9. Diagram for Example 6.

probability of “6 heads and 10 tails” is 0.3944− 0.2734 = 0.1210. Since the corre-
sponding value in the binomial probabilities table of “Statistical Tables” is 0.1222,
we find that the error of the approximation is −0.0012 and that the percentage error

is
0.0012

0.1222
· 100 = 0.98% in absolute value.

The normal approximation to the binomial distribution used to be applied quite
extensively, particularly in approximating probabilities associated with large sets of
values of binomial random variables. Nowadays, most of this work is done with
computers, as illustrated in Example 5, and we have mentioned the relationship
between the binomial and normal distributions primarily because of its theoretical
applications.

Exercises

31. Show that the normal distribution has
(a) a relative maximum at x = µ;

(b) inflection points at x = µ− σ and x = µ+ σ .

32. Show that the differential equation of Exercise 30
with b = c = 0 and a > 0 yields a normal distribution.

33. This question has been intentionally omitted for this
edition.

34. If X is a random variable having a normal distribu-
tion with the mean µ and the standard deviation σ , find
the moment-generating function of Y = X − c, where c is
a constant, and use it to rework Exercise 33.

35. This question has been intentionally omitted for this
edition.

36. This question has been intentionally omitted for this
edition.

37. If X is a random variable having the standard normal
distribution and Y = X2, show that cov(X, Y) = 0 even
though X and Y are evidently not independent.

38. Use the Maclaurin’s series expansion of the moment-
generating function of the standard normal distribution
to show that
(a) µr = 0 when r is odd;

(b) µr =
r!

2r/2

(

r

2

)

!

when r is even.

39. If we let KX(t) = ln MX−µ(t), the coefficient of
tr

r!
in the Maclaurin’s series of KX(t) is called the rth cumu-
lant, and it is denoted by κr. Equating coefficients of like
powers, show that
(a) κ2 = µ2;

(b) κ3 = µ3;

(c) κ4 = µ4− 3µ2
2.
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40. With reference to Exercise 39, show that for normal
distributions κ2=σ 2 and all other cumulants are zero.

41. Show that if X is a random variable having the Pois-
son distribution with the parameter λ and λ→q, then the
moment-generating function of

Z =
X − λ
√

λ

that is, that of a standardized Poisson random variable,
approaches the moment-generating function of the stan-
dard normal distribution.

42. Show that when α→q and β remains constant, the
moment-generating function of a standardized gamma
random variable approaches the moment-generating
function of the standard normal distribution.

7 The Bivariate Normal Distribution

Among multivariate densities, of special importance is the multivariate normal dis-

tribution, which is a generalization of the normal distribution in one variable. As it
is best (indeed, virtually necessary) to present this distribution in matrix notation,
we shall give here only the bivariate case; discussions of the general case are listed
among the references at the end of this chapter.

DEFINITION 8. BIVARIATE NORMAL DISTRIBUTION. A pair of random variables X and

Y have a bivariate normal distribution and they are referred to as jointly nor-

mally distributed random variables if and only if their joint probability density is

given by

f (x, y) =
e
− 1

2(1−ρ)2

[

(

x−µ1
σ1

)2
−2ρ

(

x−µ1
σ1

)(

y−µ2
σ2

)

+
(

y−µ2
σ2

)2
]

2πσ1σ2

√

1− ρ2

for −q< x <q and −q< y <q, where s1 > 0, s2 > 0, and −1 < r < 1.

To study this joint distribution, let us first show that the parameters µ1, µ2, σ1,
and σ2 are, respectively, the means and the standard deviations of the two random
variables X and Y. To begin with, we integrate on y from −q to q, getting

g(x) =
e
− 1

2(1−ρ2)

(

x−µ1
σ1

)2

2πσ1σ2

√

1− ρ2

∫

q

−q
e
− 1

2(1−ρ2)

[

(

y−µ2
σ2

)2
−2ρ

(

x−µ1
σ1

)(

y−µ2
σ2

)

]

dy

for the marginal density of X. Then, temporarily making the substitution u =
x−µ1

σ1
to simplify the notation and changing the variable of integration by letting v =
y−µ2

σ2
, we obtain

g(x) =
e
− 1

2(1−ρ2)
µ2

2πσ1

√

1− ρ2

∫

q

−q
e
− 1

2(1−ρ2)
(v2−2ρuv)

dv

After completing the square by letting

v2− 2ρuv = (v− ρu)2− ρ2u2

and collecting terms, this becomes

g(x) =
e−

1
2 u2

σ1

√
2π















1
√

2π
√

1− ρ2

∫

q

−q
e
− 1

2

(

v−ρu√
1−ρ2

)2

dv














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Finally, identifying the quantity in parentheses as the integral of a normal density
from −q to q, and hence equaling 1, we get

g(x) =
e−

1
2 u2

σ1

√
2π

=
1

σ1

√
2π

e
− 1

2

(

x−µ1
σ1

)2

for −q< x <q. It follows by inspection that the marginal density of X is a normal
distribution with the mean µ1 and the standard deviation σ1 and, by symmetry, that
the marginal density of Y is a normal distribution with the mean µ2 and the standard
deviation σ2.

As far as the parameter ρ is concerned, where ρ is the lowercase Greek letter
rho, it is called the correlation coefficient, and the necessary integration will show
that cov(X, Y) = ρσ1σ2. Thus, the parameter ρ measures how the two random vari-
ables X and Y vary together.

When we deal with a pair of random variables having a bivariate normal distri-
bution, their conditional densities are also of importance; let us prove the follow-
ing theorem.

THEOREM 9. If X and Y have a bivariate normal distribution, the condi-
tional density of Y given X = x is a normal distribution with the mean

µY|x = µ2+ ρ
σ2

σ1
(x−µ1)

and the variance

σ 2
Y|x = σ 2

2 (1− ρ2)

and the conditional density of X given Y = y is a normal distribution with
the mean

µX|y = µ1+ ρ
σ1

σ2
(y−µ2)

and the variance

σ 2
X|y = σ 2

1 (1− ρ2)

Proof Writing w(y|x) =
f (x, y)

g(x)
in accordance with the definition of con-

ditional density and letting u =
x−µ1

σ1
and v =

y−µ2

σ2
to simplify the

notation, we get

w(y|x) =

1

2πσ1σ2

√

1− ρ2
e
− 1

2(1−ρ2)
[u2−2ρuv+v2]

1
√

2πσ1
e−

1
2 u2

=
1

√
2πσ2

√

1− ρ2
e
− 1

2(1−ρ2)
[v2−2ρuv+ρ2u2]

=
1

√
2πσ2

√

1− ρ2
e
− 1

2

[

v−ρu√
1−ρ2

]2
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Then, expressing this result in terms of the original variables, we obtain

w(y|x) =
1

σ2

√
2π
√

1− ρ2
e

− 1
2







y−
{

µ2+ρ
σ2
σ1

(x−µ1)

}

σ2

√
1−ρ2







2

for −q< y <q, and it can be seen by inspection that this is a normal

density with the mean µY|x = µ2+ ρ
σ2

σ1
(x−µ1) and the variance σ 2

Y|x =

σ 2
2 (1− ρ2). The corresponding results for the conditional density of X

given Y = y follow by symmetry.

The bivariate normal distribution has many important properties, some statisti-
cal and some purely mathematical. Among the former, there is the following prop-
erty, which the reader will be asked to prove in Exercise 43.

THEOREM 10. If two random variables have a bivariate normal distribution,
they are independent if and only if ρ = 0.

In this connection, if ρ = 0, the random variables are said to be uncorrelated.
Also, we have shown that for two random variables having a bivariate normal

distribution the two marginal densities are normal, but the converse is not necessar-
ily true. In other words, the marginal distributions may both be normal without the
joint distribution being a bivariate normal distribution. For instance, if the bivariate
density of X and Y is given by

f ∗(x, y) =















2f (x, y) inside squares 2 and 4 of Figure 10

0 inside squares 1 and 3 of Figure 10

f (x, y) elsewhere

where f (x, y) is the value of the bivariate normal density with µ1 = 0, µ2 = 0, and
ρ = 0 at (x, y), it is easy to see that the marginal densities of X and Y are normal
even though their joint density is not a bivariate normal distribution.

2 1

3 4

x

y

Figure 10. Sample space for the bivariate density given by f∗(x, y).
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Figure 11. Bivariate normal surface.

Many interesting properties of the bivariate normal density are obtained by
studying the bivariate normal surface, pictured in Figure 11, whose equation is z =
f (x, y), where f (x, y) is the value of the bivariate normal density at (x, y). As the
reader will be asked to verify in some of the exercises that follow, the bivariate nor-
mal surface has a maximum at (µ1, µ2), any plane parallel to the z-axis intersects the
surface in a curve having the shape of a normal distribution, and any plane parallel
to the xy-plane that intersects the surface intersects it in an ellipse called a contour

of constant probability density. When ρ = 0 and σ1 = σ2, the contours of constant
probability density are circles, and it is customary to refer to the corresponding joint
density as a circular normal distribution.

Exercises

43. To prove Theorem 10, show that if X and Y have a
bivariate normal distribution, then
(a) their independence implies that ρ = 0;

(b) ρ = 0 implies that they are independent.

44. Show that any plane perpendicular to the xy-plane
intersects the bivariate normal surface in a curve having
the shape of a normal distribution.

45. If the exponent of e of a bivariate normal density is

−1

102
[(x+ 2)2− 2.8(x+ 2)(y− 1)+ 4(y− 1)2]

find
(a) µ1, µ2, σ1, σ2, and ρ;

(b) µY|x and σ 2
Y|x.

46. If the exponent of e of a bivariate normal density is

−1

54
(x2+ 4y2+ 2xy+ 2x+ 8y+ 4)

find σ1, σ2, and ρ, given that µ1 = 0 and µ2 = −1.

47. If X and Y have the bivariate normal distribution with
µ1 = 2, µ2 = 5, σ1 = 3, σ2 = 6, and ρ = 2

3 , find µY|1
and σY|1.

48. If X and Y have a bivariate normal distribution and
U = X +Y and V = X −Y, find an expression for the
correlation coefficient of U and V.

49. If X and Y have a bivariate normal distribution, it can
be shown that their joint moment-generating function is
given by

MX,Y(t1, t2) = E(et1X + t2Y)

= et1µ1 + t2µ2 + 1
2 (σ 2

1 t21 + 2ρσ1σ2t1t2 + σ 2
2 t22)

Verify that
(a) the first partial derivative of this function with respect
to t1 at t1 = 0 and t2 = 0 is µ1;

(b) the second partial derivative with respect to t1 at t1=0
and t2 = 0 is σ 2

1 +µ2
1;

(c) the second partial derivative with respect to t1 and t2
at t1 = 0 and t2 = 0 is ρσ1σ2+µ1µ2.

8 The Theory in Practice

In many of the applications of statistics it is assumed that the data are approxi-
mately normally distributed. Thus, it is important to make sure that the assumption

 #"



Special Probability Densities

of normality can, at least reasonably, be supported by the data. Since the normal dis-
tribution is symmetric and bell-shaped, examination of the histogram picturing the
frequency distribution of the data is useful in checking the assumption of normal-
ity. If the histogram is not symmetric, or if it is symmetric but not bell-shaped, the
assumption that the data set comes from a normal distribution cannot be supported.
Of course, this method is subjective; data that appear to have symmetric, bell-shaped
histograms may not be normally distributed.

Another somewhat less subjective method for checking data is the normal-scores

plot. This plot makes use of ordinary graph paper. It is based on the calculation
of normal scores, zp. If n observations are ordered from smallest to largest, they
divide the area under the normal curve into n+ 1 equal parts, each having the area
1/(n+ 1). The normal score for the first of these areas is the value of z such that the
area under the standard normal curve to the left of z is 1/(n+ 1), or −z1/(n+1). Thus,
the normal scores for n = 4 observations are−z0.20 = −0.84,−z0.40 = −0.25, z0.40 =
0.25, and z20 = 0.84. The ordered observations then are plotted against the corre-
sponding normal scores on ordinary graph paper.

EXAMPLE 7

Find the normal scores and the coordinates for making a normal-scores plot of the
following six observations:

3, 2, 7, 4, 3, 5

Solution

Since n = 6, there are 6 normal scores, as follows: −z0.14 = −1.08,−z0.29 = −0.55,
−z0.43 = −0.18, z0.43 = 0.18, z0.29 = 0.55, and z0.14 = 1.08. When the observa-
tions are ordered and tabulated together with the normal scores, the following table
results:

Observation: 2 3 3 4 5 7
Normal score: −1.08 −0.55 −0.18 0.18 0.55 1.08

The coordinates for a normal-scores plot make use of a cumulative percentage
distribution of the data. The cumulative percentage distribution is as follows:

Class Boundary Cumulative Percentage Normal Score

4395 5 −1.64
4595 17 −0.95
4795 37 −0.33
4995 69 0.50
5195 87 1.13
5395 97 1.88

A graph of the class boundaries versus the normal scores is shown in Figure 12. It can
be seen from this graph that the points lie in an almost perfect straight line, strongly
suggesting that the underlying data are very close to being normally distributed.

In modern practice, use of MINITAB or other statistical software eases the com-
putation considerably. In addition, MINITAB offers three tests for normality that
are less subjective than mere examination of a normal-scores plot.

Sometimes a normal-scores plot showing a curve can be changed to a straight
line by means of an appropriate transformation. The procedure involves identifying
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22.0 21.0

5395

Class
boundary

Normal score

0 1.0 2.0

5195

4995

4795

4595

4395

Figure 12. Normal-scores plot.

the type of transformation needed, making the transformation, and then checking
the transformed data by means of a normal-scores plot to see if they can be assumed
to have a normal distribution.

When data appear not to be normally distributed because of too many large

values, the following transformations are good candidates to try:

logarithmic transformation u = log(x)

square-root transformation u =
√

x

reciprocal transformation u =
1

x

When data exhibit too many small values, the following transformations may
produce approximately normal data:

power transformation u = xa, where a > 1

exponential transformation u = ax, where a > 1

On rare occasions, it helps to make a linear transformation of the form u = a+
bx first, and then to use one of the indicated transformations. This strategy becomes
necessary when some of the data have negative values and logarithmic, square-root,
or certain power transformations are to be tried. However, making a linear transfor-
mation alone cannot be effective. If x is a value of a normally distributed random
variable, then the random variable having the values a+bx also has the normal
distribution. Thus, a linear transformation alone cannot transform nonnormally dis-
tributed data into normality.

EXAMPLE 8

Make a normal-scores plot of the following data. If the plot does not appear to show
normality, make an appropriate transformation, and check the transformed data for
normality.

54.9 8.3 5.2 32.4 15.5
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Solution

The normal scores are −0.95,−0.44, 0, 0.44, and 0.95. A normal-scores plot of these
data (Figure 13[a]) shows sharp curvature. Since two of the five values are very large
compared with the other three values, a logarithmic transformation (base 10) was
used to transform the data to

1.74 0.92 0.72 1.51 1.19

A normal-scores plot of these transformed data (Figure 13[b]) shows a nearly
straight line, indicating that the transformed data are approximately normally dis-
tributed.

If lack of normality seems to result from one or a small number of aberrant
observations called outliers, a single large observation, a single small observation, or
both, it is not likely that the data can be transformed to normality. It is difficult to
give a hard-and-fast rule for identifying outliers. For example, it may be inappropri-
ate to define an outlier as an observation whose value is more than three standard
deviations from the mean, since such an observation can occur with a reasonable
probability in a large number of observations taken from a normal distribution.
Ordinarily, an observation that clearly does not lie on the straight line defined by
the other observations in a normal-scores plot can be considered an outlier. In the
presence of suspected outliers, it is customary to examine normal-scores plots of the
data after the outlier or outliers have been omitted.

Outlying observations may result from several causes, such as an error in record-
ing data, an error of observation, or an unusual event such as a particle of dust
settling on a material during thin-film deposition. There is always a great temptation
to drop outliers from a data set entirely on the basis that they do not seem to belong
to the main body of data. But an outlier can be as informative about the process
from which the data were taken as the remainder of the data. Outliers which occur
infrequently, but regularly in successive data sets, give evidence that should not be
ignored. For example, a hole with an unusually large diameter might result from a
drill not having been inserted properly into the chuck. Perhaps the condition was
corrected after one or two holes were drilled, and the operator failed to discard the
parts with the “bad” hole, thus producing one or two outliers. While outliers some-
times are separated from the other data for the purpose of performing a preliminary

21.0

60

Original data

(a)

0 1.0

50

40

30

20

10

21.0

Transformed data

(b)

0 1.0

0.5

1.0

1.5

Figure 13. Normal-scores plot for Example 8.
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0.0020.90
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Figure 14. Normal-scores plots.

analysis, they should be discarded only after a good reason for their existence has
been found.

Normal scores and normal-score plots can be obtained with a variety of statis-
tical software. To illustrate the procedure using MINITAB, 20 numbers are entered
with the following command and data-entry instructions

SET C1:

0 215 31 7 15 80 17 41 51 3 58 158 0 11 42 11 17 32 64 100

END

Then the command NSCORES C1 PUT IN C2 is given to find the normal scores and
place them in the second column. A normal-scores plot, generated by the command
PLOT C1 VS C2, is shown in Figure 14(a). The points in this graph clearly do not
follow a straight line. Several power transformations were tried in an attempt to
transform the data to normality. The cube-root transformation u = X1/3, made by
giving the command RAISE C1 TO THE POWER .3333 PUT IN C3, seemed to work
best. Then, a normal-scores plot of the transformed data was generated with the
command PLOT C3 VS C2, as shown in Figure 14(b). It appears from this graph that
the cube roots of the original data are approximately normally distributed.

Applied Exercises SECS. 1–4

50. In certain experiments, the error made in determining
the density of a substance is a random variable having a
uniform density with α = −0.015 and β = 0.015. Find the
probabilities that such an error will
(a) be between −0.002 and 0.003;

(b) exceed 0.005 in absolute value.

51. A point D is chosen on the line AB, whose midpoint
is C and whose length is a. If X, the distance from D to
A, is a random variable having the uniform density with
α = 0 and β = a, what is the probability that AD, BD,
and AC will form a triangle?
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52. In a certain city, the daily consumption of electric
power in millions of kilowatt-hours can be treated as a
random variable having a gamma distribution with α = 3
and β = 2. If the power plant of this city has a daily
capacity of 12 million kilowatt-hours, what is the prob-
ability that this power supply will be inadequate on any
given day?

53. If a company employs n salespersons, its gross sales in
thousands of dollars may be regarded as a random vari-
able having a gamma distribution with α = 80

√
n and

β = 2. If the sales cost is $8,000 per salesperson, how
many salespersons should the company employ to maxi-
mize the expected profit?

54. The amount of time that a watch will run without hav-
ing to be reset is a random variable having an exponential
distribution with θ = 120 days. Find the probabilities that
such a watch will
(a) have to be reset in less than 24 days;

(b) not have to be reset in at least 180 days.

55. The mileage (in thousands of miles) that car owners
get with a certain kind of radial tire is a random variable
having an exponential distribution with θ = 40. Find the
probabilities that one of these tires will last
(a) at least 20,000 miles;

(b) at most 30,000 miles.

56. The number of bad checks that a bank receives during
a 5-hour business day is a Poisson random variable with
λ = 2. What is the probability that it will not receive a bad
check on any one day during the first 2 hours of business?

57. The number of planes arriving per day at a small pri-
vate airport is a random variable having a Poisson dis-
tribution with λ = 28.8. What is the probability that the
time between two such arrivals is at least 1 hour?

58. If the annual proportion of erroneous income tax
returns filed with the IRS can be looked upon as a ran-
dom variable having a beta distribution with α = 2 and
β = 9, what is the probability that in any given year there
will be fewer than 10 percent erroneous returns?

59. A certain kind of appliance requires repairs on the
average once every 2 years. Assuming that the times
between repairs are exponentially distributed, what is the
probability that such an appliance will work at least 3
years without requiring repairs?

60. If the annual proportion of new restaurants that fail
in a given city may be looked upon as a random vari-
able having a beta distribution with α = 1 and β = 4,
find
(a) the mean of this distribution, that is, the annual pro-
portion of new restaurants that can be expected to fail in
the given city;

(b) the probability that at least 25 percent of all new
restaurants will fail in the given city in any one year.

61. Suppose that the service life in hours of a semicon-
ductor is a random variable having a Weibull distribution
(see Exercise 23) with α = 0.025 and β = 0.500.
(a) How long can such a semiconductor be expected
to last?

(b) What is the probability that such a semiconductor will
still be in operating condition after 4,000 hours?

SECS. 5–7

62. If Z is a random variable having the standard normal
distribution, find
(a) P(Z < 1.33);

(b) P(Z G −0.79);

(c) P(0.55 < Z < 1.22);

(d) P(−1.90…Z… 0.44).

63. If Z is a random variable having the standard nor-
mal distribution, find the probabilities that it will take on
a value
(a) greater than 1.14;

(b) greater than −0.36;

(c) between −0.46 and −0.09;

(d) between −0.58 and 1.12.

64. If Z is a random variable having the standard normal
distribution, find the respective values z1, z2, z3, and z4

such that
(a) P(0 < Z < z1) = 0.4306;

(b) P(Z G z2) = 0.7704;

(c) P(Z > z3) = 0.2912;

(d) P(−z4 F Z < z4) = 0.9700.

65. Find z if the standard-normal-curve area
(a) between 0 and z is 0.4726;

(b) to the left of z is 0.9868;

(c) to the right of z is 0.1314;

(d) between −z and z is 0.8502.

66. If X is a random variable having a normal distribu-
tion, what are the probabilities of getting a value
(a) within one standard deviation of the mean;

(b) within two standard deviations of the mean;

(c) within three standard deviations of the mean;

(d) within four standard deviations of the mean?

67. If zα is defined by

∫

q

zα

n(z; 0, 1) dz = α

find its values for
(a) α = 0.05;

(b) α = 0.025;

(c) α = 0.01;

(d) α = 0.005.
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68. (a) Use a computer program to find the probability
that a random variable having the normal distribution
with the mean −1.786 and the standard deviation 1.0416
will assume a value between −2.159 and 0.5670.

(b) Interpolate in the standard normal distribution table
to find this probability and compare your result with the
more exact value found in part (a).

69. (a) Use a computer program to find the probability
that a random variable having the normal distribution
with mean 5.853 and the standard deviation 1.361 will
assume a value greater than 8.625.

(b) Interpolate in the standard normal distribution table
to find this probability and compare your result with the
more exact value found in part (a).

70. Suppose that during periods of meditation the reduc-
tion of a person’s oxygen consumption is a random vari-
able having a normal distribution with µ = 37.6 cc per
minute and σ = 4.6 cc per minute. Find the probabilities
that during a period of meditation a person’s oxygen con-
sumption will be reduced by
(a) at least 44.5 cc per minute;

(b) at most 35.0 cc per minute;

(c) anywhere from 30.0 to 40.0 cc per minute.

71. In a photographic process, the developing time of
prints may be looked upon as a random variable hav-
ing the normal distribution with µ = 15.40 seconds and
σ = 0.48 second. Find the probabilities that the time it
takes to develop one of the prints will be
(a) at least 16.00 seconds;

(b) at most 14.20 seconds;

(c) anywhere from 15.00 to 15.80 seconds.

72. A random variable has a normal distribution with
σ = 10. If the probability that the random variable will
take on a value less than 82.5 is 0.8212, what is the proba-
bility that it will take on a value greater than 58.3?

73. Suppose that the actual amount of instant coffee that
a filling machine puts into “6-ounce” jars is a random vari-
able having a normal distribution with σ = 0.05 ounce. If
only 3 percent of the jars are to contain less than 6 ounces
of coffee, what must be the mean fill of these jars?

74. Check in each case whether the normal approxima-
tion to the binomial distribution may be used according
to the rule of thumb in Section 6.
(a) n = 16 and θ = 0.20;

(b) n = 65 and θ = 0.10;

(c) n = 120 and θ = 0.98.

75. Suppose that we want to use the normal approxi-
mation to the binomial distribution to determine b(1;
150, 0.05).
(a) Based on the rule of thumb in Section 6, would we be
justified in using the approximation?

(b) Make the approximation and round to four decimals.

(c) If a computer printout shows that b(1; 150, 0.05) =
0.0036 rounded to four decimals, what is the percentage
error of the approximation obtained in part (b)?

This serves to illustrate that the rule of thumb is just
that and no more; making approximations like this also
requires a good deal of professional judgment.

76. Use the normal approximation to the binomial distri-
bution to determine (to four decimals) the probability of
getting 7 heads and 7 tails in 14 flips of a balanced coin.
Also refer to the binomial probabilities table of “Statisti-
cal Tables” to find the error of this approximation.

77. With reference to Exercise 75, show that the Poisson
distribution would have yielded a better approximation.

78. If 23 percent of all patients with high blood pressure
have bad side effects from a certain kind of medicine,
use the normal approximation to find the probability that
among 120 patients with high blood pressure treated with
this medicine more than 32 will have bad side effects.

79. If the probability is 0.20 that a certain bank will
refuse a loan application, use the normal approximation
to determine (to three decimals) the probability that the
bank will refuse at most 40 of 225 loan applications.

80. To illustrate the law of large numbers, use the normal
approximation to the binomial distribution to determine
the probabilities that the proportion of heads will be any-
where from 0.49 to 0.51 when a balanced coin is flipped
(a) 100 times;

(b) 1,000 times;

(c) 10,000 times.

SEC. 8

81. Check the following data for normality by finding nor-
mal scores and making a normal-scores plot:

3.9 4.6 4.5 1.6 4.2

82. Check the following data for normality by finding nor-
mal scores and making a normal-scores plot:

36 22 3 13 31 45

83. This question has been intentionally omitted for this
edition.

84. The weights (in pounds) of seven shipments of
bolts are

37 45 11 51 13 48 61

Make a normal-scores plot of these weights. Can they be
regarded as having come from a normal distribution?

85. This question has been intentionally omitted for this
edition.

86. Use a computer program to make a normal-scores
plot for the data on the time to make coke in successive
runs of a coke oven (given in hours).
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7.8 9.2 6.4 8.2 7.6 5.9 7.4 7.1 6.7 8.5
10.1 8.6 7.7 5.9 9.3 6.4 6.8 7.9 7.2 10.2
6.9 7.4 7.8 6.6 8.1 9.5 6.4 7.6 8.4 9.2

Also test these data for normality using the three tests
given by MINITAB.

87. Eighty pilots were tested in a flight simulator and
the time for each to take corrective action for a given
emergency was measured in seconds, with the following
results:

11.1 5.2 3.6 7.6 12.4 6.8 3.8 5.7 9.0 6.0 4.9 12.6
7.4 5.3 14.2 8.0 12.6 13.7 3.8 10.6 6.8 5.4 9.7 6.7

14.1 5.3 11.1 13.4 7.0 8.9 6.2 8.3 7.7 4.5 7.6 5.0
9.4 3.5 7.9 11.0 8.6 10.5 5.7 7.0 5.6 9.1 5.1 4.5
6.2 6.8 4.3 8.5 3.6 6.1 5.8 10.0 6.4 4.0 5.4 7.0
4.1 8.1 5.8 11.8 6.1 9.1 3.3 12.5 8.5 10.8 6.5 7.9
6.8 10.1 4.9 5.4 9.6 8.2 4.2 3.4

Use a computer to make a normal-scores plot of these
data, and test for normality.
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Answers to Odd-Numbered Exercises

3 F(x) =















0 for x…α
x−α

β −α
for α < x <β

1 for xÚβ

5 α3 = 0 and α4 = 9
5 .

11 For 0 <α < 1 the function → q when x → 0; for α = 1
the function has an absolute maximum at x = 0.

13 µ′1 = αβ, µ′2 = α(α+ 1)β2, µ′3 = α(α+ 1)(α+ 2)β3, and

µ′4 = α(α+ 1)(α+ 2)(α+ 3)β4.

17 MY(t) =
e−θ t

1− θ t
.

19 For 0 < v < 2 the function → q when x → 0, for v = 2
the function has an absolute maximum at x = 0.

23 (a) k = αβ.

33 µ3 = 0 and µ4 = 3σ 4.

45 (a) µ1 = −2, µ2 = 1, σ1 = 10, σ2 = 5, and ρ = 0.7.

47 µY|1 =
11
3 , σY|1 =

√
20 = 4.47.

51 1
2 .

53 n = 100.

55 (a) 0.6065; (b) 0.5276.

57 0.1827.

59 0.2231.

61 (a) 3200 hours; (b) 0.2060.

63 (a) 0.1271; (b) 0.6406; (c) 0.1413; (d) 0.5876.

65 (a) 1.92; (b) 2.22; (c) 1.12; (d) ;1.44.

67 (a) 1.645; (b) 1.96; (c) 2.33; (d) 2.575.

69 (a) 0.0208.

71 (a) 0.1056; (b) 0.0062; (c) 0.5934.

73 6.094 ounces.

75 (a) yes; (b) 0.0078; (c) 117%.

77 0.0041.

79 0.227.
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Functions of

Random Variables

1 Introduction
2 Distribution Function Technique
3 Transformation Technique: One Variable

4 Transformation Technique: Several Variables
5 Moment-Generating Function Technique
6 The Theory in Application

1 Introduction In this chapter we shall concern ourselves with the problem of finding the probability
distributions or densities of functions of one or more random variables. That is, given
a set of random variables X1, X2, . . . , Xn and their joint probability distribution or
density, we shall be interested in finding the probability distribution or density of
some random variable Y = u(X1, X2, . . . , Xn). This means that the values of Y are
related to those of the X’s by means of the equation

y = u(x1, x2, . . . , xn)

Several methods are available for solving this kind of problem. The ones we shall
discuss in the next four sections are called the distribution function technique, the
transformation technique, and the moment-generating function technique. Although
all three methods can be used in some situations, in most problems one technique
will be preferable (easier to use than the others). This is true, for example, in some
instances where the function in question is linear in the random variables X1, X2, . . . ,
Xn, and the moment-generating function technique yields the simplest derivations.

2 Distribution Function Technique

A straightforward method of obtaining the probability density of a function of
continuous random variables consists of first finding its distribution function and
then its probability density by differentiation. Thus, if X1, X2, . . . , Xn are continu-
ous random variables with a given joint probability density, the probability density
of Y = u(X1, X2, . . . , Xn) is obtained by first determining an expression for the
probability

F(y) = P(Y F y) = P[u(X1, X2, . . . , Xn) F y]

and then differentiating to get

f (y) =
dF(y)

dy

From Chapter 7 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright  2014 by Pearson Education, Inc.
All rights reserved.
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Functions of Random Variables

EXAMPLE 1

If the probability density of X is given by

f (x) =







6x(1− x) for 0 < x < 1

0 elsewhere

find the probability density of Y = X3.

Solution

Letting G(y) denote the value of the distribution function of Y at y, we can write

G(y) = P(Y F y)

= P(X3
F y)

= P(X F y1/3)

=
∫ y1/3

0
6x(1− x) dx

= 3y2/3− 2y

and hence

g(y) = 2(y−1/3− 1)

for 0 < y < 1; elsewhere, g(y) = 0. In Exercise 15 the reader will be asked to verify
this result by a different technique.

EXAMPLE 2

If Y = |X|, show that

g(y) =







f (y)+ f (−y) for y > 0

0 elsewhere

where f (x) is the value of the probability density of X at x and g(y) is the value of
the probability density of Y at y. Also, use this result to find the probability density
of Y = |X| when X has the standard normal distribution.

Solution

For y > 0 we have

G(y) = P(Y F y)

= P(|X| F y)

= P(−y F X F y)

= F(y)−F(−y)

and, upon differentiation,
g(y) = f (y)+ f (−y)
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Functions of Random Variables

Also, since |x| cannot be negative, g(y) = 0 for y < 0. Arbitrarily letting g(0) = 0, we
can thus write

g(y) =

{

f (y)+ f (−y) for y > 0

0 elsewhere

If X has the standard normal distribution and Y = |X|, it follows that

g(y) = n(y; 0, 1)+n(−y; 0, 1)

= 2n(y; 0, 1)

for y > 0 and g(y) = 0 elsewhere. An important application of this result may be
found in Example 9.

EXAMPLE 3

If the joint density of X1 and X2 is given by

f (x1, x2) =







6e−3x1−2x2 for x1 > 0, x2 > 0

0 elsewhere

find the probability density of Y = X1+X2.

Solution

Integrating the joint density over the shaded region of Figure 1, we get

F(y) =
∫ y

0

∫ y−x2

0
6e−3x1−2x2dx1 dx2

= 1+ 2e−3y− 3e−2y

x1 1 x2   y

x2

x1

Figure 1. Diagram for Example 3.
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and, differentiating with respect to y, we obtain

f (y) = 6(e−2y− e−3y)

for y > 0; elsewhere, f (y) = 0.

Exercises

1. If X has an exponential distribution with the param-
eter θ , use the distribution function technique to
find the probability density of the random variable
Y = ln X.

2. If the probability density of X is given by

f (x) =







2xe−x2
for x > 0

0 elsewhere

and Y = X2, find
(a) the distribution function of Y;

(b) the probability density of Y.

3. If X has the uniform density with the parameters α = 0
and β = 1, use the distribution function technique to find
the probability density of the random variable Y =

√
X.

4. If the joint probability density of X and Y is given by

f (x, y) =











4xye−(x2+y2) for x > 0, y > 0

0 elsewhere

and Z =
√

X2+Y2, find
(a) the distribution function of Z;

(b) the probability density of Z.

2

1

x2

x1
21

2

1

x2

x1
21

2

1

x2

x1
21

2

1

x2

x1
21

y   x1 1 x2 ! 2

y   x1 1 x2 " 0

1 # y   x1 1 x2 # 2

0 # y   x1 1 x2 # 1

Figure 2. Diagram for Exercise 6.

" #



Functions of Random Variables

5. If X1 and X2 are independent random variables having
exponential densities with the parameters θ1 and θ2, use
the distribution function technique to find the probability
density of Y = X1+X2 when

(a) θ1 Z θ2;

(b) θ1 = θ2.

(Example 3 is a special case of this with θ1 = 1
3 and

θ2 = 1
2 .)

6. Let X1 and X2 be independent random variables hav-
ing the uniform density with α = 0 and β = 1. Referring
to Figure 2, find expressions for the distribution function
of Y = X1+X2 for

(a) y F 0;

(b) 0 < y < 1;

(c) 1 < y < 2;

(d) y G 2.
Also find the probability density of Y.

7. With reference to the two random variables of Exer-
cise 5, show that if θ1 = θ2 = 1, the random variable

Z =
X1

X1+X2

has the uniform density with α = 0 and β = 1.

8. If the joint density of X and Y is given by

f (x, y) =







e−(x+y) for x > 0, y > 0

0 elsewhere

and Z =
X +Y

2
, find the probability density of Z by the

distribution function technique.

3 Transformation Technique: One Variable

Let us show how the probability distribution or density of a function of a random
variable can be determined without first getting its distribution function. In the
discrete case there is no real problem as long as the relationship between the val-
ues of X and Y = u(X) is one-to-one; all we have to do is make the appropriate
substitution.

EXAMPLE 4

If X is the number of heads obtained in four tosses of a balanced coin, find the

probability distribution of Y =
1

1+X
.

Solution

Using the formula for the binomial distribution with n = 4 and θ = 1
2 , we find that

the probability distribution of X is given by

x 0 1 2 3 4

f (x)
1

16

4

16

6

16

4

16

1

16

Then, using the relationship y =
1

1+ x
to substitute values of Y for values of X, we

find that the probability distribution of Y is given by

y 1
1

2

1

3

1

4

1

5

g(y)
1

16

4

16

6

16

4

16

1

16
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If we had wanted to make the substitution directly in the formula for the binomial

distribution with n = 4 and θ = 1
2 , we could have substituted x =

1

y
− 1 for x in

f (x) =

(

4
x

)

(

1

2

)4

for x = 0, 1, 2, 3, 4

getting

g(y) = f

(

1

y
− 1

)

=

(

4
1
y − 1

)

(

1

2

)4

for y = 1,
1

2
,

1

3
,

1

4
,

1

5

Note that in the preceding example the probabilities remained unchanged; the
only difference is that in the result they are associated with the various values of Y

instead of the corresponding values of X. That is all there is to the transformation

(or change-of-variable) technique in the discrete case as long as the relationship is
one-to-one. If the relationship is not one-to-one, we may proceed as in the follow-
ing example.

EXAMPLE 5

With reference to Example 4, find the probability distribution of the random vari-
able Z = (X − 2)2.

Solution

Calculating the probabilities h(z) associated with the various values of Z, we get

h(0) = f (2) =
6

16

h(1) = f (1)+ f (3) =
4

16
+

4

16
=

8

16

h(4) = f (0)+ f (4) =
1

16
+

1

16
=

2

16

and hence

z 0 1 4

h(z)
3

8

4

8

1

8

To perform a transformation of variable in the continuous case, we shall assume
that the function given by y = u(x) is differentiable and either increasing or decreas-
ing for all values within the range of X for which f (x) Z 0, so the inverse function,
given by x = w(y), exists for all the corresponding values of y and is differentiable
except where u′(x) = 0.† Under these conditions, we can prove the following
theorem.

†To avoid points where u′(x) might be 0, we generally do not include the endpoints of the intervals for which
probability densities are nonzero. This is the practice that we follow throughout this chapter.
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THEOREM 1. Let f (x) be the value of the probability density of the con-
tinuous random variable X at x. If the function given by y = u(x) is
differentiable and either increasing or decreasing for all values within the
range of X for which f (x) Z 0, then, for these values of x, the equation
y = u(x) can be uniquely solved for x to give x = w(y), and for the corre-
sponding values of y the probability density of Y = u(X) is given by

g(y) = f [w(y)] · |w′(y)| provided u′(x)Z 0

Elsewhere, g(y) = 0.

Proof First, let us prove the case where the function given by y = u(x) is
increasing. As can be seen from Figure 3, X must take on a value between
w(a) and w(b) when Y takes on a value between a and b. Hence,

P(a < Y < b) = P[w(a)< X < w(b)]

=
∫ w(b)

w(a)

f (x) dx

=
∫ b

a

f [w(y)]w′(y) dy

where we performed the change of variable y = u(x), or equivalently
x = w(y), in the integral. The integrand gives the probability density of Y

as long as w′(y) exists, and we can write

g(y) = f [w(y)]w′(y)

When the function given by y = u(x) is decreasing, it can be seen from
Figure 3 that X must take on a value between w(b) and w(a) when Y

takes on a value between a and b. Hence,

P(a < Y < b) = P[w(b)< X < w(a)]

=
∫ w(a)

w(b)

f (x) dx

=
∫ a

b

f [w(y)]w′(y) dy

= −
∫ b

a

f [w(y)]w′(y) dy

where we performed the same change of variable as before, and it fol-
lows that

g(y) = −f [w(y)]w′(y)

Since w′(y) =
dx

dy
=

1

dy

dx

is positive when the function given by y = u(x) is

increasing, and −w′(y) is positive when the function given by y = u(x) is
decreasing, we can combine the two cases by writing

g(y) = f [w(y)] · |w′(y)|
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y = u(x)

y

Increasing function

b

a

w(a) w(b)
x

y = u(x)

y

Decreasing function

a

b

w(b) w(a)
x

Figure 3. Diagrams for proof of Theorem 1.

EXAMPLE 6

If X has the exponential distribution given by

f (x) =







e−x for x > 0

0 elsewhere

find the probability density of the random variable Y =
√

X.

Solution

The equation y =
√

x, relating the values of X and Y, has the unique inverse x = y2,

which yields w′(y) =
dx

dy
= 2y. Therefore,

g(y) = e−y2
|2y| = 2ye−y2

for y > 0 in accordance with Theorem 1. Since the probability of getting a value of Y

less than or equal to 0, like the probability of getting a value of X less than or equal
to 0, is zero, it follows that the probability density of Y is given by
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g(y) =

{

2ye−y2
for y > 0

0 elsewhere

0.1

1

f (x)   e2x

x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 54

0.35 0.1

1

g(y)   2ye2y2

y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 54

0.35

Figure 4. Diagrams for Example 6.

The two diagrams of Figure 4 illustrate what happened in this example when we
transformed from X to Y. As in the discrete case (for instance, Example 4), the prob-
abilities remain the same, but they pertain to different values (intervals of values) of
the respective random variables. In the diagram on the left, the 0.35 probability per-
tains to the event that X will take on a value on the interval from 1 to 4, and in the
diagram on the right, the 0.35 probability pertains to the event that Y will take on a
value on the interval from 1 to 2.

EXAMPLE 7

If the double arrow of Figure 5 is spun so that the random variable 2 has the uni-
form density

f (θ) =

{

1
π

for − π
2 <θ < π

2

0 elsewhere

determine the probability density of X, the abscissa of the point on the x-axis to
which the arrow will point.

x   a · tan u

u

a

x0

Figure 5. Diagram for Example 7.
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Solution

As is apparent from the diagram, the relationship between x and θ is given by x =
a · tan θ , so that

dθ

dx
=

a

a2+ x2

and it follows that

g(x) =
1

π
·
∣

∣

∣

∣

a

a2+ x2

∣

∣

∣

∣

=
1

π
·

a

a2+ x2
for−q< x <q

according to Theorem 1.

EXAMPLE 8

If F(x) is the value of the distribution function of the continuous random variable X

at x, find the probability density of Y = F(X).

Solution

As can be seen from Figure 6, the value of Y corresponding to any particular value
of X is given by the area under the curve, that is, the area under the graph of the
density of X to the left of x. Differentiating y = F(x) with respect to x, we get

dy

dx
= F ′(x) = f (x)

and hence
dx

dy
=

1

dy

dx

=
1

f (x)

provided f (x)Z 0. It follows from Theorem 1 that

g(y) = f (x) ·
∣

∣

∣

∣

1

f (x)

∣

∣

∣

∣

= 1

for 0 < y < 1, and we can say that y has the uniform density with α = 0 and β = 1.

x

y   F (x)

Figure 6. Diagram for Example 8.
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The transformation that we performed in this example is called the probability

integral transformation. Not only is the result of theoretical importance, but it facili-
tates the simulation of observed values of continuous random variables. A reference
to how this is done, especially in connection with the normal distribution, is given in
the end of the chapter.

When the conditions underlying Theorem 1 are not met, we can be in serious
difficulties, and we may have to use the method of Section 2 or a generalization of
Theorem 1 referred to among the references at the end of the chapter; sometimes,
there is an easy way out, as in the following example.

EXAMPLE 9

If X has the standard normal distribution, find the probability density of Z = X2.

Solution

Since the function given by z = x2 is decreasing for negative values of x and increas-
ing for positive values of x, the conditions of Theorem 1 are not met. However, the
transformation from X to Z can be made in two steps: First, we find the probability
density of Y = |X|, and then we find the probability density of Z = Y2(= X2).

As far as the first step is concerned, we already studied the transformation
Y = |X| in Example 2; in fact, we showed that if X has the standard normal dis-
tribution, then Y = |X| has the probability density

g(y) = 2n(y; 0, 1) =
2
√

2π
e−

1
2 y2

for y > 0, and g(y) = 0 elsewhere. For the second step, the function given by z = y2

is increasing for y > 0, that is, for all values of Y for which g(y) Z 0. Thus, we can use
Theorem 1, and since

dy

dz
=

1

2
z−

1
2

we get

h(z) =
2
√

2π
e−

1
2 z

∣

∣

∣

∣

1

2
z−

1
2

∣

∣

∣

∣

=
1
√

2π
z−

1
2 e−

1
2 z

for z > 0, and h(z) = 0 elsewhere. Observe that since Ŵ( 1
2 ) =

√
π , the distribution

we have arrived at for Z is a chi-square distribution with ν = 1.

4 Transformation Technique: Several Variables

The method of the preceding section can also be used to find the distribution of a
random variable that is a function of two or more random variables. Suppose, for
instance, that we are given the joint distribution of two random variables X1 and X2

and that we want to determine the probability distribution or the probability density
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of the random variable Y = u(X1, X2). If the relationship between y and x1 with x2

held constant or the relationship between y and x2 with x1 held constant permits, we
can proceed in the discrete case as in Example 4 to find the joint distribution of Y

and X2 or that of X1 and Y and then sum on the values of the other random variable
to get the marginal distribution of Y. In the continuous case, we first use Theorem 1
with the transformation formula written as

g(y, x2) = f (x1, x2) ·
∣

∣

∣

∣

­x1

­y

∣

∣

∣

∣

or as

g(x1, y) = f (x1, x2) ·
∣

∣

∣

∣

­x2

­y

∣

∣

∣

∣

where f (x1, x2) and the partial derivative must be expressed in terms of y and x2 or
x1 and y. Then we integrate out the other variable to get the marginal density of Y.

EXAMPLE 10

If X1 and X2 are independent random variables having Poisson distributions with
the parameters λ1 and λ2, find the probability distribution of the random variable
Y = X1+X2.

Solution

Since X1 and X2 are independent, their joint distribution is given by

f (x1, x2) =
e−λ1(λ1)

x1

x1!
·

e−λ2(λ2)
x2

x2!

=
e−(λ1+λ2)(λ1)

x1(λ2)
x2

x1!x2!

for x1 = 0, 1, 2, . . . and x2 = 0, 1, 2, . . .. Since y = x1+ x2 and hence x1 = y− x2, we
can substitute y− x2 for x1, getting

g(y, x2) =
e−(λ1+λ2)(λ2)

x2(λ1)
y−x2

x2!(y− x2)!

for y = 0, 1, 2, . . . and x2 = 0, 1, . . . , y, for the joint distribution of Y and X2. Then,
summing on x2 from 0 to y, we get

h(y) =
y
∑

x2=0

e−(λ1+λ2)(λ2)
x2(λ1)

y−x2

x2!(y− x2)!

=
e−(λ1+λ2)

y!
·

y
∑

x2=0

y!

x2!(y− x2)!
(λ2)

x2(λ1)
y−x2
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after factoring out e−(λ1+λ2) and multiplying and dividing by y!. Identifying the sum-
mation at which we arrived as the binomial expansion of (λ1+ λ2)

y, we finally get

h(y) =
e−(λ1+λ2)(λ1+ λ2)

y

y!
for y = 0, 1, 2, . . .

and we have thus shown that the sum of two independent random variables having
Poisson distributions with the parameters λ1 and λ2 has a Poisson distribution with
the parameter λ = λ1+ λ2.

EXAMPLE 11

If the joint probability density of X1 and X2 is given by

f (x1, x2) =

{

e−(x1+x2) for x1 > 0, x2 > 0

0 elsewhere

find the probability density of Y =
X1

X1+X2
.

Solution

Since y decreases when x2 increases and x1 is held constant, we can use Theorem 1 to

find the joint density of X1 and Y. Since y =
x1

x1+ x2
yields x2 = x1 ·

1− y

y
and hence

­x2

­y
= −

x1

y2

it follows that

g(x1, y) = e−x1/y

∣

∣

∣

∣

∣

−
x1

y2

∣

∣

∣

∣

∣

=
x1

y2
· e−x1/y

for x1 > 0 and 0 < y < 1. Finally, integrating out x1 and changing the variable of inte-
gration to u = x1/y, we get

h(y) =
∫

q

0

x1

y2
· e−x1/ydx1

=
∫

q

0
u · e−udu

= Ŵ(2)

= 1

for 0 < y < 1, and h(y) = 0 elsewhere. Thus, the random variable Y has the uniform
density with α = 0 and β = 1. (Note that in Exercise 7 the reader was asked to show
this by the distribution function technique.)

The preceding example could also have been worked by a general method where
we begin with the joint distribution of two random variables X1 and X2 and determine
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the joint distribution of two new random variables Y1 = u1(X1, X2) and Y2 =
u2(X1, X2). Then we can find the marginal distribution of Y1 or Y2 by summation
or integration.

This method is used mainly in the continuous case, where we need the following
theorem, which is a direct generalization of Theorem 1.

THEOREM 2. Let f (x1, x2) be the value of the joint probability density of
the continuous random variables X1 and X2 at (x1, x2). If the functions
given by y1 = u1(x1, x2) and y2 = u2(x1, x2) are partially differentiable
with respect to both x1 and x2 and represent a one-to-one transformation
for all values within the range of X1 and X2 for which f (x1, x2)Z 0, then,
for these values of x1 and x2, the equations y1 = u1(x1, x2) and y2 =
u2(x1, x2) can be uniquely solved for x1 and x2 to give x1 = w1(y1, y2) and
x2 = w2(y1, y2), and for the corresponding values of y1 and y2, the joint
probability density of Y1 = u1(X1, X2) and Y2 = u2(X1, X2) is given by

g(y1, y2) = f [w1(y1, y2), w2(y1, y2)] · |J|

Here, J, called the Jacobian of the transformation, is the determinant

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

­x1

­y1

­x1

­y2

­x2

­y1

­x2

­y2

∣

∣

∣

∣

∣

∣

∣

∣

∣

Elsewhere, g(y1, y2) = 0.

We shall not prove this theorem, but information about Jacobians and their
applications can be found in most textbooks on advanced calculus. There they are
used mainly in connection with multiple integrals, say, when we want to change
from rectangular coordinates to polar coordinates or from rectangular coordinates
to spherical coordinates.

EXAMPLE 12

With reference to the random variables X1 and X2 of Example 11, find

(a) the joint density of Y1 = X1+X2 and Y2 =
X1

X1+X2
;

(b) the marginal density of Y2.

Solution

(a) Solving y1 = x1+ x2 and y2 =
x1

x1+ x2
for x1 and x2, we get x1 = y1y2 and

x2 = y1(1− y2), and it follows that

J =

∣

∣

∣

∣

∣

∣

y2 y1

1− y2 −y1

∣

∣

∣

∣

∣

∣

= −y1
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Since the transformation is one-to-one, mapping the region x1 > 0 and x2 > 0
in the x1x2-plane into the region y1 > 0 and 0 < y2 < 1 in the y1y2-plane, we can
use Theorem 2 and it follows that

g(y1, y2) = e−y1 | − y1| = y1e−y1

for y1 > 0 and 0 < y2 < 1; elsewhere, g(y1, y2) = 0.

(b) Using the joint density obtained in part (a) and integrating out y1, we get

h(y2) =
∫

q

0
g(y1, y2) dy1

=
∫

q

0
y1e−y1 dy1

= Ŵ(2)

= 1

for 0 < y2 < 1; elsewhere, h(y2) = 0.

EXAMPLE 13

If the joint density of X1 and X2 is given by

f (x1, x2) =

{

1 for 0 < x1 < 1, 0 < x2 < 1

0 elsewhere

find

(a) the joint density of Y = X1+X2 and Z = X2;

(b) the marginal density of Y.

Note that in Exercise 6 the reader was asked to work the same problem by the dis-
tribution function technique.

Solution

(a) Solving y = x1+ x2 and z = x2 for x1 and x2, we get x1 = y− z and x2 = z,
so that

J =

∣

∣

∣

∣

∣

1 −1

0 1

∣

∣

∣

∣

∣

= 1

Because this transformation is one-to-one, mapping the region 0 < x1 < 1 and
0 < x2 < 1 in the x1x2-plane into the region z < y < z+ 1 and 0 < z < 1 in the
yz-plane (see Figure 7), we can use Theorem 2 and we get

g(y, z) = 1 · |1| = 1

for z < y < z+ 1 and 0 < z < 1; elsewhere, g(y, z) = 0.
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1

z

0 1z   0

z   y

z   1

z   y 2 1

y
2

x

Figure 7. Transformed sample space for Example 13.

(b) Integrating out z separately for y F 0, 0 < y < 1, 1 < y < 2, and y G 2, we get

h(y) =











































0 for y F 0
∫ y

0
1 ·dz = y for 0 < y < 1

∫ 1

y−1
1 ·dz = 2− y for 1 < y < 2

0 for y G 2

and to make the density function continuous, we let h(1) = 1. We have thus
shown that the sum of the given random variables has the triangular probabil-

ity density whose graph is shown in Figure 8.

1

h(y)

h(y)   y h(y)   2 2 y

0
y

21

Figure 8. Triangular probability density.

So far we have considered here only functions of two random variables, but
the method based on Theorem 2 can easily be generalized to functions of three or
more random variables. For instance, if we are given the joint probability density
of three random variables X1, X2, and X3 and we want to find the joint probabil-
ity density of the random variables Y1 = u1(X1, X2, X3), Y2 = u2(X1,X2, X3), and
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Y3 = u3(X1, X2, X3), the general approach is the same, but the Jacobian is now the
3 * 3 determinant

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

­x1

­y1

­x1

­y2

­x1

­y3

­x2

­y1

­x2

­y2

­x2

­y3

­x3

­y1

­x3

­y2

­x3

­y3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Once we have determined the joint probability density of the three new random
variables, we can find the marginal density of any two of the random variables, or
any one, by integration.

EXAMPLE 14

If the joint probability density of X1, X2, and X3 is given by

f (x1, x2, x3) =







e−(x1+x2+x3) for x1 > 0, x2 > 0, x3 > 0

0 elsewhere

find

(a) the joint density of Y1 = X1+X2+X3, Y2 = X2, and Y3 = X3;

(b) the marginal density of Y1.

Solution

(a) Solving the system of equations y1 = x1+ x2+ x3, y2 = x2, and y3 = x3 for x1,
x2, and x3, we get x1 = y1− y2− y3, x2 = y2, and x3 = y3. It follows that

J =

∣

∣

∣

∣

∣

∣

∣

1 −1 −1

0 1 0

0 0 1

∣

∣

∣

∣

∣

∣

∣

= 1

and, since the transformation is one-to-one, that

g(y1, y2, y3) = e−y1 · |1|

= e−y1

for y2 > 0, y3 > 0, and y1 > y2+ y3; elsewhere, g(y1, y2, y3) = 0.

(b) Integrating out y2 and y3, we get

h(y1) =
∫ y1

0

∫ y1−y3

0
e−y1 dy2 dy3

=
1

2
y2

1 · e
−y1

for y1 > 0;h(y1) = 0 elsewhere. Observe that we have shown that the sum of
three independent random variables having the gamma distribution with α = 1
and β = 1 is a random variable having the gamma distribution with α = 3 and
β = 1.
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As the reader will find in Exercise 39, it would have been easier to obtain the
result of part (b) of Example 14 by using the method based on Theorem 1.

Exercises

9. If X has a hypergeometric distribution with M = 3,
N = 6, and n = 2, find the probability distribution of Y,
the number of successes minus the number of failures.

10. With reference to Exercise 9, find the probability dis-
tribution of the random variable Z = (X − 1)2.

11. If X has a binomial distribution with n = 3 and θ = 1
3 ,

find the probability distributions of

(a) Y =
X

1+X
;

(b) U = (X − 1)4.

12. If X has a geometric distribution with θ = 1
3 , find

the formula for the probability distribution of the random
variable Y = 4− 5X.

13. This question has been intentionally omitted for this
edition.

14. This question has been intentionally omitted for this
edition.

15. Use the transformation technique to rework Exer-
cise 2.

16. If the probability density of X is given by

f (x) =















kx3

(1+ 2x)6
for x > 0

0 elsewhere

where k is an appropriate constant, find the probability

density of the random variable Y =
2X

1+ 2X
. Identify the

distribution of Y, and thus determine the value of k.

17. If the probability density of X is given by

f (x) =















x

2
for 0 < x < 2

0 elsewhere

find the probability density of Y = X3. Also, plot the
graphs of the probability densities of X and Y and indi-
cate the respective areas under the curves that represent
P( 1

2 < X < 1) and P( 1
8 < Y < 1).

18. If X has a uniform density with α = 0 and β = 1, show
that the random variable Y = −2. In X has a gamma dis-
tribution. What are its parameters?

19. This question has been intentionally omitted for this
edition.

20. Consider the random variable X with the probabil-
ity density

f (x) =















3x2

2
for − 1 < x < 1

0 elsewhere

(a) Use the result of Example 2 to find the probability
density of Y = |X|.
(b) Find the probability density of Z = X2(= Y2).

21. Consider the random variable X with the uniform
density having α = 1 and β = 3.
(a) Use the result of Example 2 to find the probability
density of Y = |X|.
(b) Find the probability density of Z = X4(= Y4).

22. If the joint probability distribution of X1 and X2 is
given by

f (x1, x2) =
x1x2

36

for x1 = 1, 2, 3 and x2 = 1, 2, 3, find
(a) the probability distribution of X1X2;

(b) the probability distribution of X1/X2.

23. With reference to Exercise 22, find
(a) the joint distribution of Y1 = X1 + X2 and Y2 =
X1 − X2;

(b) the marginal distribution of Y1.

24. If the joint probability distribution of X and Y is
given by

f (x, y) =
(x− y)2

7

for x = 1, 2 and y = 1, 2, 3, find
(a) the joint distribution of U = X +Y and V = X −Y;

(b) the marginal distribution of U.

25. If X1, X2, and X3 have the multinomial distribution
with n = 2, θ1 = 1

4 , θ2 = 1
3 , and θ3 = 5

12 , find the joint
probability distribution of Y1 = X1+X2, Y2 = X1−X2,
and Y3 = X3.

26. This question has been intentionally omitted for this
edition.
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27. If X1 and X2 are independent random variables hav-
ing binomial distributions with the respective parameters
n1 and θ and n2 and θ , show that Y = X1+X2 has the
binomial distribution with the parameters n1+n2 and θ .

28. If X1 and X2 are independent random variables hav-
ing the geometric distribution with the parameter θ , show
that Y = X1+X2 is a random variable having the neg-
ative binomial distribution with the parameters θ and
k = 2.

29. If X and Y are independent random variables hav-
ing the standard normal distribution, show that the ran-
dom variable Z = X +Y is also normally distributed.
(Hint: Complete the square in the exponent.) What are
the mean and the variance of this normal distribution?

30. Consider two random variables X and Y with the
joint probability density

f (x, y) =







12xy(1− y) for 0 < x < 1, 0 < y < 1

0 elsewhere

Find the probability density of Z = XY2 by using
Theorem 1 to determine the joint probability density of
Y and Z and then integrating out y.

31. Rework Exercise 30 by using Theorem 2 to determine
the joint probability density of Z = XY2 and U = Y and
then finding the marginal density of Z.

32. Consider two independent random variables X1 and
X2 having the same Cauchy distribution

f (x) =
1

π(1+ x2)
for −q< x <q

Find the probability density of Y1 = X1+X2 by using
Theorem 1 to determine the joint probability density of
X1 and Y1 and then integrating out x1. Also, identify the
distribution of Y1.

33. Rework Exercise 32 by using Theorem 2 to determine
the joint probability density of Y1 = X1+X2 and Y2 =
X1−X2 and then finding the marginal density of Y1.

34. Consider two random variables X and Y whose joint
probability density is given by

f (x, y) =











1

2
for x > 0, y > 0, x+ y < 2

0 elsewhere

Find the probability density of U = Y−X by using
Theorem 1.

35. Rework Exercise 34 by using Theorem 2 to determine
the joint probability density of U = Y−X and V = X
and then finding the marginal density of U.

36. Let X1 and X2 be two continuous random variables
having the joint probability density

f (x1, x2) =

{

4x1x2 for 0 < x1 < 1, 0 < x2 < 1

0 elsewhere

Find the joint probability density of Y1 = X2
1 and Y2 =

X1X2.

37. Let X and Y be two continuous random variables hav-
ing the joint probability density

f (x, y) =

{

24xy for 0 < x < 1, 0 < y < 1, x+ y < 1

0 elsewhere

Find the joint probability density of Z = X +Y and
W = X.

38. Let X and Y be two independent random variables
having identical gamma distributions.
(a) Find the joint probability density of the random vari-

ables U =
X

X +Y
and V = X +Y.

(b) Find and identify the marginal density of U.

39. The method of transformation based on Theorem 1
can be generalized so that it applies also to random vari-
ables that are functions of two or more random variables.
So far we have used this method only for functions of two
random variables, but when there are three, for example,
we introduce the new random variable in place of one of
the original random variables, and then we eliminate (by
summation or integration) the other two random vari-
ables with which we began. Use this method to rework
Example 14.

40. In Example 13 we found the probability density of
the sum of two independent random variables having
the uniform density with α = 0 and β = 1. Given a
third random variable X3, which has the same uniform
density and is independent of both X1 and X2, show that
if U = Y+X3 = X1+X2+X3, then
(a) the joint probability density of U and Y is given by

g(u, y) =



















y for Regions I and II of Figure 9

2− y for Regions III and IV of Figure 9

0 elsewhere
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y   u

y   u 2 1

IV

III

II

I

u

y

2

1

321

Figure 9. Diagram for Exercise 40.

(b) the probability density of U is given by

h(u) =











































































0 for u F 0

1

2
u2 for 0 < u < 1

1

2
u2−

3

2
(u− 1)2 for 1 < u < 2

1

2
u2−

3

2
(u− 1)2+

3

2
(u− 2)2 for 2 < u < 3

0 for u G 3

Note that if we let h(1) = h(2) = 1
2 , this will make the

probability density of U continuous.

5 Moment-Generating Function Technique

Moment-generating functions can play an important role in determining the prob-
ability distribution or density of a function of random variables when the func-
tion is a linear combination of n independent random variables. We shall illustrate
this technique here when such a linear combination is, in fact, the sum of n inde-
pendent random variables, leaving it to the reader to generalize it in Exercises 45
and 46.

The method is based on the following theorem that the moment-generating
function of the sum of n independent random variables equals the product of their
moment-generating functions.

THEOREM 3. If X1, X2, . . ., and Xn are independent random variables and
Y = X1+X2+ · · ·+Xn, then

MY(t) =
n
∏

i=1

MXi
(t)

where MXi
(t) is the value of the moment-generating function of Xi at t.

Proof Making use of the fact that the random variables are independent
and hence

f (x1, x2, . . . , xn) = f1(x1) · f2(x2) · . . . · fn(xn)

according to the following definition “INDEPENDENCE OF DISCRETE

RANDOM VARIABLES. If f(x1, x2, . . . , xn) is the value of the joint proba-

bility distribution of the discrete random variables X1, X2, . . . , Xn at

(x1, x2, . . . , xn) and fi(xi) is the value of the marginal distribution of Xi at

xi for i = 1, 2, . . . , n, then the n random variables are independent if and

only if f (x1, x2, . . . , xn) = f1(x1) · f2(x2) · . . . · fn(xn) for all (x1, x2, . . . , xn)

within their range”, we can write

  #



Functions of Random Variables

MY(t) = E(eYt)

= E
[

e(X1+X2+ ···+Xn)t
]

=
∫

q

−q

· · ·
∫

q

−q

e(x1+x2+ ···+xn)tf (x1, x2, . . . , xn) dx1 dx2 · · · dxn

=
∫

q

−q

ex1tf1(x1) dx1 ·
∫

q

−q

ex2tf2(x2) dx2 · · ·
∫

q

−q

exntfn(xn) dxn

=
n
∏

i=1

MXi
(t)

which proves the theorem for the continuous case. To prove it for the
discrete case, we have only to replace all the integrals by sums.

Note that if we want to use Theorem 3 to find the probability distribution or the
probability density of the random variable Y = X1+X2+ · · ·+Xn, we must be able
to identify whatever probability distribution or density corresponds to MY(t).

EXAMPLE 15

Find the probability distribution of the sum of n independent random variables X1,
X2, . . . , Xn having Poisson distributions with the respective parameters λ1, λ2, . . . , λn.

Solution

By the theorem “The moment-generating function of the Poisson distribution is

given by MX(t) = eλ(et−1)” we have

MXi
(t) = eλi(e

t−1)

hence, for Y = X1+X2+ · · ·+Xn, we obtain

MY(t) =
n
∏

i=1

eλi(e
t−1) = e(λ1+λ2+ ···+λn)(et−1)

which can readily be identified as the moment-generating function of the Poisson
distribution with the parameter λ = λ1+ λ2+ · · ·+ λn. Thus, the distribution of the
sum of n independent random variables having Poisson distributions with the param-
eters λi is a Poisson distribution with the parameter λ = λ1+ λ2+ · · ·+ λn. Note that
in Example 10 we proved this for n = 2.

EXAMPLE 16

If X1, X2, . . . , Xn are independent random variables having exponential distributions
with the same parameter θ , find the probability density of the random variable Y =
X1+X2+ · · ·+Xn.

Solution

Since the exponential distribution is a gamma distribution with α = 1 and β = θ ,
we have

MXi
(t) = (1− θ t)−1
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and hence

MY(t) =
n
∏

i=1

(1− θ t)−1 = (1− θ t)−n

Identifying the moment-generating function of Y as that of a gamma distribution
with α = n and β = θ , we conclude that the distribution of the sum of n independent
random variables having exponential distributions with the same parameter θ is a
gamma distribution with the parameters α = n and β = θ . Note that this agrees
with the result of Example 14, where we showed that the sum of three independent
random variables having exponential distributions with the parameter θ = 1 has a
gamma distribution with α = 3 and β = 1.

Theorem 3 also provides an easy and elegant way of deriving the moment-
generating function of the binomial distribution. Suppose that X1, X2, . . . , Xn are
independent random variables having the same Bernoulli distribution f (x; θ) =
θx(1− θ)1−x for x = 0, 1. We have

MXi
(t) = e0·t(1− θ)+ e1·tθ = 1+ θ(et − 1)

so that Theorem 3 yields

MY(t) =
n
∏

i=1

[1+ θ(et− 1)] = [1+ θ(et− 1)]n

This moment-generating function is readily identified as that of the binomial dis-
tribution with the parameters n and θ . Of course, Y = X1+X2+ · · ·+Xn is the
total number of successes in n trials, since X1 is the number of successes on the
first trial, X2 is the number of successes on the second trial, . . ., and Xn is the num-
ber of successes on the nth trial. This is a fruitful way of looking at the binomial
distribution.

Exercises

41. Use the moment-generating function technique to
rework Exercise 27.

42. Find the moment-generating function of the negative
binomial distribution by making use of the fact that if k
independent random variables have geometric distribu-
tions with the same parameter θ , their sum is a random
variable having the negative binomial distribution with
the parameters θ and k.

43. If n independent random variables have the same
gamma distribution with the parameters α and β, find the
moment-generating function of their sum and, if possible,
identify its distribution.

44. If n independent random variables Xi have normal
distributions with the means µi and the standard devia-
tions σi, find the moment-generating function of their sum

and identify the corresponding distribution, its mean, and
its variance.

45. Prove the following generalization of Theorem 3: If
X1, X2, . . ., and Xn are independent random variables and
Y = a1X1+ a2X2+ · · ·+ anXn, then

MY(t) =
n
∏

i=1

MXi(ait)

where MXi(t) is the value of the moment-generating func-
tion of Xi at t.

46. Use the result of Exercise 45 to show that, if n
independent random variables Xi have normal distribu-
tions with the means µi and the standard deviations σi,
then Y = a1X1+ a2X2+ · · ·+ anXn has a normal dis-
tribution. What are the mean and the variance of this
distribution?
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6 The Theory in Application

Examples of the need for transformations in solving practical problems abound. To
illustrate these applications, we give three examples. The first example illustrates
an application of the transformation technique to a simple problem in electrical
engineering.

EXAMPLE 17

Suppose the resistance in a simple circuit varies randomly in response to environ-
mental conditions. To determine the effect of this variation on the current flowing
through the circuit, an experiment was performed in which the resistance (R) was
varied with equal probabilities on the interval 0 < R … A and the ensuing voltage
(E) was measured. Find the distribution of the random variable I, the current flowing
through the circuit.

Solution

Using the well-known relation E = IR, we have I = u(R) =
E

R
. The probability

distribution of R is given by f (R) =
1

A
for 0 < R … A. Thus, w(I) =

E

I
, and the

probability density of I is given by

g(I) = f (R) · |w′(I)| =
1

A

∣

∣

∣

∣

−
E

R2

∣

∣

∣

∣

=
E

AR2
R > 0

It should be noted, with respect to this example, that this is a designed experi-
ment in as much as the distribution of R was preselected as a uniform distribution. If
the nominal value of R is to be the mean of this distribution, some other distribution
might have been selected to impart better properties to this estimate.

The next example illustrates transformations of data to normality.

EXAMPLE 18

What underlying distribution of the data is assumed when the square-root transfor-
mation is used to obtain approximately normally distributed data? (Assume the data
are nonnegative, that is, the probability of a negative observation is zero.)

Solution

A simple alternate way to use the distribution-function technique is to write down
the differential element of the density function, f (x) dx, of the transformed obser-
vations, y, and to substitute x2 for y. (When we do this, we must remember that the
differential element, dy, must be changed to dx = 2x dx.) We obtain

f (x) dx =
1

√
2πσ

· 2x · e−
1
2 (x2−µ)2/σ 2

dx

The required density function is given by

f (x) =
√

2

πσ 2
xe−

1
2 (x2−µ)2/σ 2

This distribution is not immediately recognizable, but it can be graphed quickly using
appropriate computer software.
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The final example illustrates an application to waiting-time problems.

EXAMPLE 19

Let us assume that the decay of a radioactive element is exponentially distributed,
so that f (x) = λe−λx for λ > 0 and x > 0; that is, the time for the nucleus to emit
the first α particle is x (in seconds). It can be shown that such a process has no
memory; that is, the time between successive emissions also can be described by this
distribution. Thus, it follows that successive emissions of α particles are independent.
If the parameter λ equals 5, find the probability that a given substance will emit 2
particles in less than or equal to 3 seconds.

Solution

Let xi be the waiting time between emissions i and i+ 1, for i = 0, 1, 2, . . . , n− 1.
Then the total time for n emissions to take place is the sum T = x0+ x1+ · · ·+ xn−1.
The moment-generating function of this sum is given in Example 16 to be

MT(t) = (1− t/λ)−n

This can be recognized as the moment-generating function of the gamma distribu-
tion with parameters α = n = 2 and β = 1/λ = 1/5. The required probability is
given by

P

(

T … 3;α = 10, β =
1

5

)

=
1

1
5Ŵ(2)

∫ 3

0
x e−5xdx

Integrating by parts, the integral becomes

P(T … 3) = −
1

5
xe−5x

∣

∣

∣

3

0
−
∫ 3

0
−

1

5
e−5x dx = 1− 1.6e−15

Without further evaluation, it is clear that this event is virtually certain to occur.

Applied Exercises SECS. 1–2

47. This question has been intentionally omitted for this
edition.

48. This question has been intentionally omitted for this
edition.

49. This question has been intentionally omitted for this
edition.

50. Let X be the amount of premium gasoline (in 1,000
gallons) that a service station has in its tanks at the
beginning of a day, and Y the amount that the service sta-
tion sells during that day. If the joint density of X and Y
is given by

f (x, y) =











1

200
for 0 < y < x < 20

0 elsewhere

use the distribution function technique to find the prob-
ability density of the amount that the service station has
left in its tanks at the end of the day.

51. The percentages of copper and iron in a certain kind
of ore are, respectively, X1 and X2. If the joint density of
these two random variables is given by

f (x1, x2) =























3

11
(5x1+ x2) for x1 > 0, x2 > 0,

and x1+ 2x2 < 2

0 elsewhere

use the distribution function technique to find the prob-
ability density of Y = X1+X2. Also find E(Y), the
expected total percentage of copper and iron in the ore.
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SECS. 3–4

52. According to the Maxwell–Boltzmann law of theoret-
ical physics, the probability density of V, the velocity of a
gas molecule, is

f (v) =







kv2e−βv2
for v > 0

0 elsewhere

where β depends on its mass and the absolute tem-
perature and k is an appropriate constant. Show that
the kinetic energy E = 1

2 mV2, where m the mass
of the molecule is a random variable having a gamma
distribution.

53. This question has been intentionally omitted for this
edition.

54. This question has been intentionally omitted for this
edition.

55. This question has been intentionally omitted for this
edition.

56. Use a computer program to generate 10 “pseudoran-
dom” numbers having the standard normal distribution.

57. Describe how the probability integral transformation
might have been used by the writers of the software that
you used to produce the result of Exercise 56.

SEC. 5

58. A lawyer has an unlisted number on which she
receives on the average 2.1 calls every half-hour and
a listed number on which she receives on the average
10.9 calls every half-hour. If it can be assumed that the
numbers of calls that she receives on these phones are
independent random variables having Poisson distribu-
tions, what are the probabilities that in half an hour she
will receive altogether

(a) 14 calls;

(b) at most 6 calls?

59. In a newspaper ad, a car dealer lists a 2001 Chrysler, a
2010 Ford, and a 2008 Buick. If the numbers of inquiries
he will get about these cars may be regarded as indepen-
dent random variables having Poisson distributions with
the parameters λ1 = 3.6, λ2 = 5.8, and λ3 = 4.6, what are
the probabilities that altogether he will receive

(a) fewer than 10 inquiries about these cars;

(b) anywhere from 15 to 20 inquiries about these cars;

(c) at least 18 inquiries about these cars?

60. With reference to Exercise 59, what is the probabil-
ity that the car dealer will receive six inquiries about the
2010 Ford and eight inquiries about the other two cars?

61. If the number of complaints a dry-cleaning establish-
ment receives per day is a random variable having the
Poisson distribution with λ = 3.3, what are the probabili-
ties that it will receive

(a) 2 complaints on any given day;

(b) 5 complaints altogether on any two given days;

(c) at least 12 complaints altogether on any three given
days?

62. The number of fish that a person catches per hour
at Woods Canyon Lake is a random variable having the
Poisson distribution with λ = 1.6. What are the probabil-
ities that a person fishing there will catch

(a) four fish in 2 hours;

(b) at least two fish in 3 hours;

(c) at most three fish in 4 hours?

63. If the number of minutes it takes a service station
attendant to balance a tire is a random variable having an
exponential distribution with the parameter θ = 5, what
are the probabilities that the attendant will take

(a) less than 8 minutes to balance two tires;

(b) at least 12 minutes to balance three tires?

64. If the number of minutes that a doctor spends with a
patient is a random variable having an exponential distri-
bution with the parameter θ = 9, what are the probabili-
ties that it will take the doctor at least 20 minutes to treat

(a) one patient; (b) two patients; (c) three patients?

65. If X is the number of 7’s obtained when rolling a pair
of dice three times, find the probability that Y = X2 will
exceed 2.

66. If X has the exponential distribution given by f (x) =
0.5 e−0.5x, x > 0, find the probability that x > 1.

SEC. 6

67. If, d, the diameter of a circle is selected at random
from the density function

f (d) = k

(

1−
d

5

)

, 0 < d < 5,

(a) find the value of k so that f(d) is a probability density;

(b) find the density function of the areas of the circles so
selected.

68. Show that the underlying distribution function of
Example 18 is, indeed, a probability distribution, and use
a computer program to graph the density function.

69. If X = ln Y has a normal distribution with the mean µ

and the standard deviation σ , find the probability density
of Y which is said to have the log-normal distribution.
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70. The logarithm of the ratio of the output to the input
current of a transistor is called its current gain. If cur-
rent gain measurements made on a certain transistor are

normally distributed with µ = 1.8 and σ = 0.05, find the
probability that the current gain will exceed the required
minimum value of 6.0.
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Answers to Odd-Numbered Exercises

1 g(y) = 1
θ

eye−(1/θ)ey for −q< y <q.

3 g(y) = 2y for 0 < y < 1 and g(y) = 0 elsewhere.

5 (a) f (y) =
1

θ1− θ2
· (e−y/θ1 − e−y/θ2 ) for y > 0 and

f (y) = 0 elsewhere; (b) f (y) =
1

θ2
· ye−y/θ for y > 0 and

f (y) = 0 elsewhere.

9 h(−2) = 1
5

, h(0) = 3
5

, and h(2) = 1
5

.

11 (a) g(0) = 8
27 , g( 1

2 ) = 12
27 , g( 2

3 ) = 6
27 , g( 3

4 ) = 1
27 ;

(b) g(0) = 12
27 , g(1) = 14

27 , g(16) = 1
27 .

13 g(0) = 1
3 , g(1) = 1

3 , g(2) = 1
3 .

17 g(y) =
1

6
y
−1
3 .

21 (a) g(y) = 1
8 y−3/4 for 0 < y < 1 and g(y) = 1

4 for 1 <

y < 3;

(b) h(z) = 1
16
· z−3/4 for 1 < z < 81 and h(z) = 0 elsewhere.

23 (a) f (2, 0) = 1
36

, f (3, −1) = 2
36

, f (3, 1) = 2
36

, f (4, −2)

= 3
36

, f (4, 0) = 4
36

, f (4, 2) = 3
36

, f (5, −1) = 6
36

, f (5, 1) =
6

36
, and f (6, 0) = 9

36
;

(b) g(2) = 1
36

, g(3) = 4
36

, g(4) = 10
36

, g(5) = 12
36

, and

g(6) = 9
36

.

25 (b) g(0, 0, 2) = 25
144

, g(1, −1, 1) = 5
18

, g(1, 1, 1) =
5

24 , g(2, −2, 0) = 1
9 , g(2, 0, 0) = 1

6
, and g(2, 2, 0) = 1

16
.

29 µ = 0 and σ 2 = 2.

31 g(z, u) = 12z(u−3−u−2) over the region bounded by

z = 0, u = 1, and z = u2, and g(z, u) = 0 elsewhere;
h(z) = 6z+ 6− 12

√
z for 0 < z < 1 and h(z) = 0 elsewhere.

33 The marginal distribution is the Cauchy distribution

g(y) =
1

π
·

2

4+ y2
for −q< y <q.

35 f (u, v) = 1
2 over the region bounded by v = 0, u = −v,

and 2v+u = 2, and f (u, v) = 0 elsewhere; g(u) = 1
4 (2+u)

for −2 < u … 0, g(u) = 1
4 (2−u) for 0 < u < 2 and g(u) = 0

elsewhere.

37 g(w, z) = 24w(z−w) over the region bounded by w =
0, z = 1, and z = w; g(w, z) = 0 elsewhere.

43 It is a gamma distribution with the parameters αn

and β.

51 g(y) = 9
11
· y2 for 0 < y … 1, g(y) =

3(2− y)(7y− 4)

11
for

1 < y < 2, and g(y) = 0 elsewhere.

53 h(r) = 2r for 0 < r < 1 and h(r) = 0 elsewhere.

55 g(v, w) = 5e−v for 0.2 < w < 0.4 and v > 0; h(v) = e−v

for v > 0 and h(v) = 0 elsewhere.

59 (a) 0.1093; (b) 0.3817; (c) 0.1728.

61 (a) 0.2008; (b) 0.1420; (c) 0.2919.

63 (a) 0.475; (b) 0.570.

65 2
27 .

67 (a) 2
5

; (b) g(A) = 2
5

(

1
√

π
A−1/2− 1

)

for 0 < A < 25
4 π

and g(A) = 0 elsewhere.

69 g(y) =
1

√
2πσ

·
1

y
· e−

1
2

(

ln y−µ
σ

)2

for y > 0 and g(y) = 0

elsewhere.
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1 Introduction Statistics concerns itself mainly with conclusions and predictions resulting from
chance outcomes that occur in carefully planned experiments or investigations.
Drawing such conclusions usually involves taking sample observations from a given
population and using the results of the sample to make inferences about the popu-
lation itself, its mean, its variance, and so forth. To do this requires that we first find
the distributions of certain functions of the random variables whose values make up
the sample, called statistics. (An example of such a statistic is the sample mean.) The
properties of these distributions then allow us to make probability statements about
the resulting inferences drawn from the sample about the population. The theory to
be given in this chapter forms an important foundation for the theory of statistical
inference.

Inasmuch as statistical inference can be loosely defined as a process of drawing
conclusions from a sample about the population from which it is drawn, it is useful
to have the following definition.

DEFINITION 1. POPULATION. A set of numbers from which a sample is drawn is

referred to as a population. The distribution of the numbers constituting a popu-

lation is called the population distribution.

To illustrate, suppose a scientist must choose and then weigh 5 of 40 guinea pigs
as part of an experiment, a layman might say that the ones she selects constitute the
sample. This is how the term “sample” is used in everyday language. In statistics, it is
preferable to look upon the weights of the 5 guinea pigs as a sample from the popu-
lation, which consists of the weights of all 40 guinea pigs. In this way, the population
as well as the sample consists of numbers. Also, suppose that, to estimate the average
useful life of a certain kind of transistor, an engineer selects 10 of these transistors,
tests them over a period of time, and records for each one the time to failure. If these
times to failure are values of independent random variables having an exponential
distribution with the parameter θ , we say that they constitute a sample from this
exponential population.

As can well be imagined, not all samples lend themselves to valid generalizations
about the populations from which they came. In fact, most of the methods of infer-
ence discussed in this chapter are based on the assumption that we are dealing with

From Chapter 8 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright  2014 by Pearson Education, Inc.
All rights reserved.
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Sampling Distributions

random samples. In practice, we often deal with random samples from populations
that are finite, but large enough to be treated as if they were infinite. Thus, most
statistical theory and most of the methods we shall discuss apply to samples from
infinite populations, and we shall begin here with a definition of random samples
from infinite populations. Random samples from finite populations will be treated
later in Section 3.

DEFINITION 2. RANDOM SAMPLE. If X1, X2, . . . , Xn are independent and identically

distributed random variables, we say that they constitute a random sample from

the infinite population given by their common distribution.

If f (x1, x2, . . . , xn) is the value of the joint distribution of such a set of random vari-
ables at (x1, x2, . . . , xn), by virtue of independence we can write

f (x1, x2, . . . , xn) =
n
∏

i=1

f (xi)

where f (xi) is the value of the population distribution at xi. Observe that Definition 2
and the subsequent discussion apply also to sampling with replacement from finite
populations; sampling without replacement from finite populations is discussed in
section 3.

Statistical inferences are usually based on statistics, that is, on random variables
that are functions of a set of random variables X1, X2, . . . , Xn, constituting a random
sample. Typical of what we mean by “statistic” are the sample mean and the sample

variance.

DEFINITION 3. SAMPLE MEAN AND SAMPLE VARIANCE. If X1, X2, . . . , Xn constitute a

random sample, then the sample mean is given by

X =

n
∑

i=1

Xi

n

and the sample variance is given by

S2 =

n
∑

i=1

(Xi−X)2

n− 1

As they are given here, these definitions apply only to random samples, but the sam-
ple mean and the sample variance can, similarly, be defined for any set of random
variables X1, X2, . . . , Xn.

It is common practice also to apply the terms “random sample,” “statistic,”
“sample mean,” and “sample variance” to the values of the random variables instead
of the random variables themselves. Intuitively, this makes more sense and it con-
forms with colloquial usage. Thus, we might calculate

x =

n
∑

i=1

xi

n
and s2 =

n
∑

i=1

(xi− x)2

n− 1

for observed sample data and refer to these statistics as the sample mean and the
sample variance. Here, the xi, x, and s2 are values of the corresponding random

†The note has been intentionally omitted for this edition.
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variables Xi, X, and S2. Indeed, the formulas for x and s2 are used even when we
deal with any kind of data, not necessarily sample data, in which case we refer to x

and s2 simply as the mean and the variance.
These, and other statistics that will be introduced in this chapter, are those

mainly used in statistical inference. Sample statistics such as the sample mean and
sample variance play an important role in estimating the parameters of the popula-
tion from which the corresponding random samples were drawn.

2 The Sampling Distribution of the Mean

Inasmuch as the values of sampling statistics can be expected to vary from sam-
ple to sample, it is necessary that we find the distribution of such statistics. We call
these distributions sampling distributions, and we make important use of them in
determining the properties of the inferences we draw from the sample about the
parameters of the population from which it is drawn.

First let us study some theory about the sampling distribution of the mean, mak-
ing only some very general assumptions about the nature of the populations sampled.

THEOREM 1. If X1, X2, . . . , Xn constitute a random sample from an infinite
population with the mean µ and the variance σ 2, then

E(X) = µ and var(X) =
σ 2

n

Proof Letting Y = X and hence setting ai =
1

n
, we get

E(X) =
n
∑

i=1

1

n
·µ = n

(

1

n
·µ
)

= µ

since E(Xi) = µ. Then, by the corollary of a theorem “If the random

variables X1, X2, . . . , Xn are independent and Y =
n
∑

i=1

aiXi, then var(Y) =
n
∑

i=1

a2
i · var(Xi)”, we conclude that

var(X) =
n
∑

i=1

1

n2
· σ 2 = n

(

1

n2
· σ 2

)

=
σ 2

n

It is customary to write E(X) as µX and var(X) as σ 2
X

and refer to σX as the

standard error of the mean. The formula for the standard error of the mean, σX =
σ
√

n
, shows that the standard deviation of the distribution of X decreases when n,

the sample size, is increased. This means that when n becomes larger and we actually
have more information (the values of more random variables), we can expect values
of X to be closer to µ, the quantity that they are intended to estimate.

THEOREM 2. For any positive constant c, the probability that X will take on
a value between µ− c and µ+ c is at least

1−
σ 2

nc2

When n→q, this probability approaches 1.
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Sampling Distributions

This result, called a law of large numbers, is primarily of theoretical interest. Of
much more practical value is the central limit theorem, one of the most important
theorems of statistics, which concerns the limiting distribution of the standardized

mean of n random variables when n→q. We shall prove this theorem here only
for the case where the n random variables are a random sample from a population
whose moment-generating function exists. More general conditions under which the
theorem holds are given in Exercises 7 and 9, and the most general conditions under
which it holds are referred to at the end of this chapter.

THEOREM 3. CENTRAL LIMIT THEOREM. If X1, X2, . . . , Xn constitute a ran-
dom sample from an infinite population with the mean µ, the variance
σ 2, and the moment-generating function MX(t), then the limiting distri-
bution of

Z =
X −µ

σ/
√

n

as n→q is the standard normal distribution.

Proof First using the third part and then the second of the given theorem
“If a and b are constants, then 1. MX+a(t) = E[e(X+a)t] = eat ·MX(t); 2.

MbX(t) = E(ebXt) = MX(bt); 3. M X+a
b

(t) = E[e

(

X+a
b

)

t
] = e

a
b

t ·MX

(

t

b

)

”,

we get

MZ(t) = M X−µ

σ/
√

n

(t) = e−
√

n µt/σ · MX

(√
nt

σ

)

= e−
√

n µt/σ · MnX

(

t

σ
√

n

)

Since nX = X1+X2+ · · · +Xn,

MZ(t) = e−
√

n µt/σ ·



MX

(

t

σ
√

n

)





n

and hence that

ln MZ(t) = −
√

n µt

σ
+n · ln MX

(

t

σ
√

n

)

Expanding MX

(

t

σ
√

n

)

as a power series in t, we obtain

ln MZ(t) = −
√

n µt

σ
+n · ln

[

1+µ′1
t

σ
√

n
+µ′2

t2

2σ 2n
+µ′3

t3

6σ 3n
√

n
+ · · ·

]

where µ′1, µ′2, and µ′3 are the moments about the origin of the population
distribution, that is, those of the original random variables Xi.
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If n is sufficiently large, we can use the expansion of ln(1+ x) as a power
series in x, getting

ln MZ(t) = −
√

n µt

σ
+n







[

µ′1
t

σ
√

n
+µ′2

t2

2σ 2n
+µ′3

t3

6σ 3n
√

n
+ · · ·

]

−
1

2

[

µ′1
t

σ
√

n
+µ′2

t2

2σ 2n
+µ′3

t3

6σ 3n
√

n
+ · · ·

]2

+
1

3

[

µ′1
t

σ
√

n
+µ′2

t2

2σ 2n
+µ′3

t3

6σ 3n
√

n
+ · · ·

]3

− · · ·







Then, collecting powers of t, we obtain

ln MZ(t) =
(

−
√

n µ

σ
+
√

n µ′1
σ

)

t+
(

µ′2
2σ 2

−
µ
′2
1

2σ 2

)

t2

+





µ′3
6σ 3

√
n
−

µ′1 ·µ
′
2

2σ 3
√

n
+

µ
′3
1

3σ 3
√

n



 t3+ · · ·

and since µ′1 = µ and µ′2− (µ′1)
2 = σ 2, this reduces to

ln MZ(t) =
1

2
t2+





µ′3
6
−

µ′1µ
′
2

2
+

µ
′3
1

6





t3

σ 3
√

n
+ · · ·

Finally, observing that the coefficient of t3 is a constant times
1
√

n
and in

general, for r G 2, the coefficient of tr is a constant times
1

√
nr−2

, we get

lim
n→q

ln MZ(t) =
1

2
t2

and hence
lim

n→q
MZ(t) = e

1
2 t2

since the limit of a logarithm equals the logarithm of the limit (provided
these limits exist). An illustration of this theorem is given in Exercise 13
and 14.

Sometimes, the central limit theorem is interpreted incorrectly as implying that
the distribution of X approaches a normal distribution when n→q. This is incorrect
because var(X)→ 0 when n→q; on the other hand, the central limit theorem does
justify approximating the distribution of X with a normal distribution having the

mean µ and the variance
σ 2

n
when n is large. In practice, this approximation is used

when n G 30 regardless of the actual shape of the population sampled. For smaller
values of n the approximation is questionable, but see Theorem 4.
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EXAMPLE 1

A soft-drink vending machine is set so that the amount of drink dispensed is a ran-
dom variable with a mean of 200 milliliters and a standard deviation of 15 milliliters.
What is the probability that the average (mean) amount dispensed in a random sam-
ple of size 36 is at least 204 milliliters?

Solution

According to Theorem 1, the distribution of X has the mean µX = 200 and the

standard deviation σX =
15
√

36
= 2.5, and according to the central limit theorem,

this distribution is approximately normal. Since z =
204− 200

2.5
= 1.6, it follows from

Table III of “Statistical Tables” that P(X G 204) = P(Z G 1.6) = 0.5000− 0.4452 =
0.0548.

It is of interest to note that when the population we are sampling is normal, the
distribution of X is a normal distribution regardless of the size of n.

THEOREM 4. If X is the mean of a random sample of size n from a normal
population with the mean µ and the variance σ 2, its sampling distribution
is a normal distribution with the mean µ and the variance σ 2/n.

Proof According to Theorems “If a and b are constants, then 1. MX+a(t) =
E[e(X+a)t] = eat ·MX(t); 2. MbX(t) = E(ebXt) = MX(bt); 3. M X+a

b
(t) =

E[e

(

X+a
b

)

t
] = e

a
b

t ·MX

(

t

b

)

. If X1, X2, . . ., and Xn are independent ran-

dom variables and Y = X1+X2+ · · ·+Xn, then MY(t) =
∏n

i=1 MXi
(t)

where MXi
(t) is the value of the moment-generating function of Xi at t”,

we can write

MX(t) =
[

MX

(

t

n

)

]n

and since the moment-generating function of a normal distribution with
the mean µ and the variance σ 2 is given by

MX(t) = eµt+ 1
2 σ 2t2

according to the theorem MX(t) = eµt+ 1
2 σ 2t2 , we get

MX(t) =
[

eµ· t
n+

1
2 ( t

n )2σ 2
]n

= eµt+ 1
2 t2( σ2

n )

This moment-generating function is readily seen to be that of a normal
distribution with the mean µ and the variance σ 2/n.

3 The Sampling Distribution of the Mean: Finite Populations

If an experiment consists of selecting one or more values from a finite set of numbers
{c1, c2, . . . , cN}, this set is referred to as a finite population of size N. In the definition
that follows, it will be assumed that we are sampling without replacement from a
finite population of size N.
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DEFINITION 4. RANDOM SAMPLE—FINITE POPULATION. If X1 is the first value drawn

from a finite population of size N, X2 is the second value drawn, . . . , Xn is the nth

value drawn, and the joint probability distribution of these n random variables is

given by

f (x1, x2, . . . , xn) =
1

N(N− 1) · . . . · (N−n+ 1)

for each ordered n-tuple of values of these random variables, then X1, X2, . . . , Xn

are said to constitute a random sample from the given finite population.

As in Definition 2, the random sample is a set of random variables, but here again
it is common practice also to apply the term “random sample” to the values of the
random variables, that is, to the actual numbers drawn.

From the joint probability distribution of Definition 4, it follows that the prob-
ability for each subset of n of the N elements of the finite population (regardless of
the order in which the values are drawn) is

n!

N(N− 1) · . . . · (N−n+ 1)
=

1
(

N

n

)

This is often given as an alternative definition or as a criterion for the selection of a

random sample of size n from a finite population of size N: Each of the
(

N
n

)

possible

samples must have the same probability.
It also follows from the joint probability distribution of Definition 4 that the

marginal distribution of Xr is given by

f (xr) =
1

N
for xr = c1, c2, . . . , cN

for r = 1, 2, . . . , n, and we refer to the mean and the variance of this discrete uniform
distribution as the mean and the variance of the finite population. Therefore,

DEFINITION 5. SAMPLE MEAN AND VARIANCE—FINITE POPULATION. The sample mean
and the sample variance of the finite population {c1, c2, . . . , cN} are

µ =
N
∑

i=1

ci ·
1

N
and σ 2 =

N
∑

i=1

(ci−µ)2 ·
1

N

Finally, it follows from the joint probability distribution of Definition 4 that
the joint marginal distribution of any two of the random variables X1, X2, . . . , Xn

is given by

g(xr, xs) =
1

N(N− 1)

for each ordered pair of elements of the finite population. Thus, we can prove the
following theorem.
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THEOREM 5. If Xr and Xs are the rth and sth random variables of a random
sample of size n drawn from the finite population {c1, c2, . . . , cN}, then

cov(Xr, Xs) = −
σ 2

N− 1

Proof According to the definition given here “COVARIANCE. m1,1 is called

the covariance of X and Y, and it is denoted by sXY, cov(X, Y), or C(X, Y)”,

cov(Xr, Xs) =
N
∑

i=1

N
∑

j=1
iZj

1

N(N− 1)
(ci−µ)(cj−µ)

=
1

N(N− 1)
·

N
∑

i=1

(ci−µ)









N
∑

j=1
jZi

(cj−µ)









and since

N
∑

j=1
jZi

(cj−µ) =
N
∑

j=1

(cj−µ)− (ci−µ) = −(ci−µ), we get

cov(Xr, Xs) = −
1

N(N− 1)
·

N
∑

i=1

(ci−µ)2

= −
1

N− 1
· σ 2

Making use of all these results, let us now prove the following theorem, which,
for random samples from finite populations, corresponds to Theorem 1.

THEOREM 6. If X is the mean of a random sample of size n taken without
replacement from a finite population of size N with the mean µ and the
variance σ 2, then

E(X) = µ and var(X) =
σ 2

n
·

N−n

N− 1

Proof Substituting ai =
1

N
, var(Xi) = σ 2, and cov(Xi, Xj) = −

σ 2

N− 1
into

the formula E(Y) =
∑n

i=1 aiE(Xi), we get

E(X) =
n
∑

i=1

1

n
·µ = µ

and

var(X) =
n
∑

i=1

1

n2
· σ 2+ 2 ·

∑∑

i<j

1

n2

(

−
σ 2

N− 1

)

=
σ 2

n
+ 2 ·

n(n− 1)

2
·

1

n2

(

−
σ 2

N− 1

)

=
σ 2

n
·

N−n

N− 1
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It is of interest to note that the formulas we obtained for var(X) in Theorems 1

and 6 differ only by the finite population correction factor
N−n

N− 1
.† Indeed, when

N is large compared to n, the difference between the two formulas for var(X) is

usually negligible, and the formula σX =
σ
√

n
is often used as an approximation

when we are sampling from a large finite population. A general rule of thumb is to
use this approximation when the sample does not constitute more than 5 percent of
the population.

Exercises

1. This question has been intentionally omitted for this
edition.

2. This question has been intentionally omitted for this
edition.

3. With reference to Exercise 2, show that if the two sam-
ples come from normal populations, then X1−X2 is a
random variable having a normal distribution with the

mean µ1−µ2 and the variance
σ 2

1

n1
+

σ 2
2

n2
. (Hint: Proceed

as in the proof of Theorem 4.)

4. If X1, X2, . . . , Xn are independent random variables
having identical Bernoulli distributions with the param-
eter θ , then X is the proportion of successes in n trials,
which we denote by 2̂. Verify that

(a) E(2̂) = θ ;

(b) var(2̂) =
θ(1− θ)

n
.

5. If the first n1 random variables of Exercise 2 have
Bernoulli distributions with the parameter θ1 and the
other n2 random variables have Bernoulli distributions
with the parameter θ2, show that, in the notation of Exer-
cise 4,

(a) E(2̂1− 2̂2) = θ1− θ2;

(b) var(2̂1− 2̂2) =
θ1(1− θ1)

n1
+

θ2(1− θ2)

n2
.

6. This question has been intentionally omitted for this
edition.

7. The following is a sufficient condition for the central
limit theorem: If the random variables X1, X2, . . . , Xn are
independent and uniformly bounded (that is, there exists
a positive constant k such that the probability is zero that
any one of the random variables Xi will take on a value
greater than k or less than −k), then if the variance of

Yn = X1+X2+ · · ·+Xn

becomes infinite when n→q, the distribution of the
standardized mean of the Xi approaches the standard

normal distribution. Show that this sufficient condition
holds for a sequence of independent random variables Xi

having the respective probability distributions

fi(xi) =



















1

2
for xi = 1− ( 1

2 )i

1

2
for xi = ( 1

2 )i− 1

8. Consider the sequence of independent random vari-
ables X1, X2, X3, . . . having the uniform densities

fi(xi) =



















1

2−
1

i

for 0 < xi < 2−
1

i

0 elsewhere

Use the sufficient condition of Exercise 7 to show that the
central limit theorem holds.

9. The following is a sufficient condition, the Laplace–
Liapounoff condition, for the central limit theorem: If
X1, X2, X3, . . . is a sequence of independent random vari-
ables, each having an absolute third moment

ci = E(|Xi−µi|3)

and if

lim
n→q

[var(Yn)]−
3
2 ·

n
∑

i=1

ci = 0

where Yn = X1+X2+ · · ·+Xn, then the distribution
of the standardized mean of the Xi approaches the stan-
dard normal distribution when n→q. Use this condi-
tion to show that the central limit theorem holds for the
sequence of random variables of Exercise 7.

10. Use the condition of Exercise 9 to show that the cen-
tral limit theorem holds for the sequence of random vari-
ables of Exercise 8.

†Since there are many problems in which we are interested in the standard deviation rather than the variance, the term “finite population correction

factor” often refers to

√

N−n

N− 1
instead of

N−n

N− 1
. This does not matter, of course, as long as the usage is clearly understood.

 ")



Sampling Distributions

11. Explain why, when we sample with replacement from
a finite population, the results of Theorem 1 apply rather
than those of Theorem 6.

12. This question has been intentionally omitted for this
edition.

13. Use MINITAB or some other statistical computer
program to generate 20 samples of size 10 each from the
uniform density function f (x) = 1, 0 ≤ x ≤ 1.
(a) Find the mean of each sample and construct a his-
togram of these sample means.

(b) Calculate the mean and the variance of the 20 sample
means.

14. Referring to Exercise 13, now change the sample size
to 30.
(a) Does this histogram more closely resemble that of a
normal distribution than that of Exercise 13? Why?

(b) Which resembles it more closely?

(c) Calculate the mean and the variance of the 20 sample
means.

15. If a random sample of size n is selected without
replacement from the finite population that consists of
the integers 1, 2, . . . , N, show that

(a) the mean of X is
N+ 1

2
;

(b) the variance of X is
(N+ 1)(N−n)

12n
;

(c) the mean and the variance of Y = n ·X are

E(Y) =
n(N+ 1)

2
and var(Y) =

n(N+ 1)(N−n)

12

16. Find the mean and the variance of the finite popula-
tion that consists of the 10 numbers 15, 13, 18, 10, 6, 21, 7,
11, 20, and 9.

17. Show that the variance of the finite population
{c1, c2, . . . , cN} can be written as

σ 2 =

N
∑

i=1

c2
i

N
−µ2

Also, use this formula to recalculate the variance of the
finite population of Exercise 16.

18. Show that, analogous to the formula of Exercise 17,
the formula for the sample variance can be written as

S2 =

n
∑

i=1

X2
i

n− 1
−

nX
2

n− 1

Also, use this formula to calculate the variance of the
following sample data on the number of service calls
received by a tow truck operator on eight consecutive
working days: 13, 14, 13, 11, 15, 14, 17, and 11.

19. Show that the formula for the sample variance can be
written as

S2 =

n





n
∑

i=1

X2
i



−





n
∑

i=1

Xi





2

n(n− 1)

Also, use this formula to recalculate the variance of the
sample data of Exercise 18.

4 The Chi-Square Distribution

If X has the standard normal distribution, then X2 has the special gamma distri-
bution, which is referred to as the chi-square distribution, and this accounts for
the important role that the chi-square distribution plays in problems of sampling
from normal populations. Theorem 11 will show the importance of this distribution
in making inferences about sample variances.

The chi-square distribution is often denoted by “χ2 distribution,” where χ is the
lowercase Greek letter chi. We also use χ2 for values of random variables having
chi-square distributions, but we shall refrain from denoting the corresponding ran-
dom variables by X2, where X is the capital Greek letter chi. This avoids having to
reiterate in each case whether X is a random variable with values x or a random
variable with values χ .

If a random variable X has the chi-square distribution with ν degrees of freedom
if its probability density is given by

f (x) =















1

2ν/2Ŵ(ν/2)
x

ν−2
2 e−x/2 for x > 0

0 elsewhere
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The mean and the variance of the chi-square distribution with ν degrees of free-
dom are ν and 2ν, respectively, and its moment-generating function is given by

MX(t) = (1− 2t)−ν/2

The chi-square distribution has several important mathematical properties, which
are given in Theorems 7 through 10.

THEOREM 7. If X has the standard normal distribution, then X2 has the
chi-square distribution with ν = 1 degree of freedom.

More generally, let us prove the following theorem.

THEOREM 8. If X1, X2, . . . , Xn are independent random variables having
standard normal distributions, then

Y =
n
∑

i=1

X2
i

has the chi-square distribution with ν = n degrees of freedom.

Proof Using the moment-generating function given previously with ν = 1
and Theorem 7, we find that

MX2
i
(t) = (1− 2t)−

1
2

and it follows the theorem “MY(t) =
∏n

i=1 MXi
(t)” that

MY(t) =
n
∏

i=1

(1− 2t)−
1
2 = (1− 2t)−

n
2

This moment-generating function is readily identified as that of the chi-
square distribution with ν = n degrees of freedom.

Two further properties of the chi-square distribution are given in the two theo-
rems that follow; the reader will be asked to prove them in Exercises 20 and 21.

THEOREM 9. If X1, X2, . . . , Xn are independent random variables having
chi-square distributions with ν1, ν2, . . . , νn degrees of freedom, then

Y =
n
∑

i=1

Xi

has the chi-square distribution with ν1+ ν2+ · · ·+ νn degrees of freedom.

THEOREM 10. If X1 and X2 are independent random variables, X1

has a chi-square distribution with ν1 degrees of freedom, and X1+X2 has
a chi-square distribution with ν > ν1 degrees of freedom, then X2 has a
chi-square distribution with ν− ν1 degrees of freedom.
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The chi-square distribution has many important applications. Foremost are those
based, directly or indirectly, on the following theorem.

THEOREM 11. If X and S2 are the mean and the variance of a random sam-
ple of size n from a normal population with the mean µ and the standard
deviation σ , then

1. X and S2 are independent;

2. the random variable
(n− 1)S2

σ 2
has a chi-square distribution with n−

1 degrees of freedom.

Proof Since a detailed proof of part 1 would go beyond the scope of this
chapter we shall assume the independence of X and S2 in our proof of
part 2. In addition to the references to proofs of part 1 at the end of this
chapter, Exercise 31 outlines the major steps of a somewhat simpler proof
based on the idea of a conditional moment-generating function, and in
Exercise 30 the reader will be asked to prove the independence of X and
S2 for the special case where n = 2.

To prove part 2, we begin with the identity

n
∑

i=1

(Xi−µ)2 =
n
∑

i=1

(Xi−X)2+n(X −µ)2

which the reader will be asked to verify in Exercise 22. Now, if we divide

each term by σ 2 and substitute (n− 1)S2 for
n
∑

i=1

(Xi−X)2, it follows that

n
∑

i=1

(

Xi−µ

σ

)2

=
(n− 1)S2

σ 2
+
(

X −µ

σ/
√

n

)2

With regard to the three terms of this identity, we know from The-
orem 8 that the one on the left-hand side of the equation is a random
variable having a chi-square distribution with n degrees of freedom. Also,
according to Theorems 4 and 7, the second term on the right-hand side of
the equation is a random variable having a chi-square distribution with 1
degree of freedom. Now, since X and S2 are assumed to be independent,
it follows that the two terms on the right-hand side of the equation are

independent, and we conclude that
(n− 1)S2

σ 2
is a random variable having

a chi-square distribution with n− 1 degrees of freedom.

Since the chi-square distribution arises in many important applications, integrals
of its density have been extensively tabulated. Table V of “Statistical Tables” con-
tains values of χ2

α,ν for α = 0.995, 0.99, 0.975, 0.95, 0.05, 0.025, 0.01, 0.005, and

ν = 1, 2, . . . , 30, where χ2
α,ν is such that the area to its right under the chi-square

curve with ν degrees of freedom (see Figure 1) is equal to α. That is, χ2
α,ν is such

that if X is a random variable having a chi-square distribution with ν degrees of
freedom, then

P(X G χ2
α,ν) = α

 ""



Sampling Distributions

0

a

x
2
a, v

x
2

Figure 1. Chi-square distribution.

When ν is greater than 30, Table V of “Statistical Tables” cannot be used and prob-
abilities related to chi-square distributions are usually approximated with normal
distributions, as in Exercise 25 or 28.

EXAMPLE 2

Suppose that the thickness of a part used in a semiconductor is its critical dimension
and that the process of manufacturing these parts is considered to be under control if
the true variation among the thicknesses of the parts is given by a standard deviation
not greater than σ = 0.60 thousandth of an inch. To keep a check on the process,
random samples of size n = 20 are taken periodically, and it is regarded to be “out
of control” if the probability that S2 will take on a value greater than or equal to the
observed sample value is 0.01 or less (even though σ = 0.60). What can one conclude
about the process if the standard deviation of such a periodic random sample is
s = 0.84 thousandth of an inch?

Solution

The process will be declared “out of control” if
(n− 1)s2

σ 2
with n = 20 and σ = 0.60

exceeds χ2
0.01,19 = 36.191. Since

(n− 1)s2

σ 2
=

19(0.84)2

(0.60)2
= 37.24

exceeds 36.191, the process is declared out of control. Of course, it is assumed here
that the sample may be regarded as a random sample from a normal population.

5 The t Distribution

In Theorem 4 we showed that for random samples from a normal population with
the mean µ and the variance σ 2, the random variable X has a normal distribution

with the mean µ and the variance
σ 2

n
; in other words,

X −µ

σ/
√

n
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has the standard normal distribution. This is an important result, but the major dif-
ficulty in applying it is that in most realistic applications the population standard
deviation σ is unknown. This makes it necessary to replace σ with an estimate,
usually with the value of the sample standard deviation S. Thus, the theory that

follows leads to the exact distribution of
X −µ

S/
√

n
for random samples from normal

populations.
To derive this sampling distribution, let us first study the more general situation

treated in the following theorem.

THEOREM 12. If Y and Z are independent random variables, Y has a chi-
square distribution with ν degrees of freedom, and Z has the standard
normal distribution, then the distribution of

T =
Z

√
Y/ν

is given by

f (t) =
Ŵ

(

ν+ 1

2

)

√
πνŴ

(

ν

2

) ·
(

1+
t2

ν

)− ν+1
2

for −q< t <q

and it is called the t distribution with ν degrees of freedom.

Proof Since Y and Z are independent, their joint probability density is
given by

f (y, z) =
1
√

2π
e−

1
2 z2 ·

1

Ŵ

(

ν

2

)

2
ν
2

y
ν
2−1e−

y
2

for y > 0 and −q< z <q, and f (y, z) = 0 elsewhere. Then, to use the

change-of-variable technique, we solve t =
z

√
y/ν

for z, getting z = t
√

y/ν

and hence
­z

­t
=
√

y/ν. Thus, the joint density of Y and T is given by

g(y, t) =























1
√

2πνŴ

(

ν

2

)

2
ν
2

y
ν−1

2 e
− y

2

(

1+ t2

ν

)

for y > 0 and−q< t <q

0 elsewhere

and, integrating out y with the aid of the substitution w =
y

2

(

1+
t2

ν

)

, we

finally get

f (t) =
Ŵ

(

ν+ 1

2

)

√
πνŴ

(

ν

2

) ·
(

1+
t2

ν

)− ν+1
2

for −q< t <q
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The t distribution was introduced originally by W. S. Gosset, who published his
scientific writings under the pen name “Student,” since the company for which he
worked, a brewery, did not permit publication by employees. Thus, the t distribution
is also known as the Student t distribution, or Student’s t distribution. As shown
in Figure 2, graphs of t distributions having different numbers of degrees of free-
dom resemble that of the standard normal distribution, but have larger variances.
In fact, for large values of υ, the t distribution approaches the standard normal
distribution.

In view of its importance, the t distribution has been tabulated extensively.
Table IV of “Statistical Tables”, for example, contains values of tα,ν for α = 0.10, 0.05,
0.025, 0.01, 0.005 and ν = 1, 2, . . . , 29, where tα,ν is such that the area to its right under
the curve of the t distribution with ν degrees of freedom (see Figure 3) is equal to
α. That is, tα,ν is such that if T is a random variable having a t distribution with ν

degrees of freedom, then

P(T G tα,ν) = α

The table does not contain values of tα,ν for α > 0.50, since the density is symmetrical
about t = 0 and hence t1−α,ν = −tα,ν . When ν is 30 or more, probabilities related to
the t distribution are usually approximated with the use of normal distributions (see
Exercise 35).

Among the many applications of the t distribution, its major application (for
which it was originally developed) is based on the following theorem.

0−1−2 1 2

n (0; 1)

f (t; 10)

f (t; 2)

Figure 2. Comparison of t distributions and standard normal distribution.

a

0
t

ta, v

Figure 3. t distribution.
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THEOREM 13. If X and S2 are the mean and the variance of a random sam-
ple of size n from a normal population with the mean µ and the variance
σ 2, then

T =
X −µ

S/
√

n

has the t distribution with n− 1 degrees of freedom.

Proof By Theorems 11 and 4, the random variables

Y =
(n− 1)S2

σ 2
and Z =

X −µ

σ/
√

n

have, respectively, a chi-square distribution with n− 1 degrees of freedom
and the standard normal distribution. Since they are also independent
by part 1 of Theorem 11, substitution into the formula for T of Theo-
rem 12 yields

T =

X −µ

σ/
√

n
√

S2/σ 2
=

X −µ

S/
√

n

and this completes the proof.

EXAMPLE 3

In 16 one-hour test runs, the gasoline consumption of an engine averaged 16.4 gallons
with a standard deviation of 2.1 gallons. Test the claim that the average gasoline
consumption of this engine is 12.0 gallons per hour.

Solution

Substituting n = 16, µ = 12.0, x = 16.4, and s = 2.1 into the formula for t in
Theorem 13, we get

t =
x−µ

s/
√

n
=

16.4− 12.0

2.1/
√

16
= 8.38

Since Table IV of “Statistical Tables” shows that for ν = 15 the probability of getting
a value of T greater than 2.947 is 0.005, the probability of getting a value greater
than 8 must be negligible. Thus, it would seem reasonable to conclude that the true
average hourly gasoline consumption of the engine exceeds 12.0 gallons.

6 The F Distribution

Another distribution that plays an important role in connection with sampling from
normal populations is the F distribution, named after Sir Ronald A. Fisher, one
of the most prominent statisticians of the last century. Originally, it was studied as
the sampling distribution of the ratio of two independent random variables with
chi-square distributions, each divided by its respective degrees of freedom, and this
is how we shall present it here.

Fisher’s F distribution is used to draw statistical inferences about the ratio of
two sample variances. As such, it plays a key role in the analysis of variance, used in
conjunction with experimental designs.
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THEOREM 14. If U and V are independent random variables having
chi-square distributions with ν1 and ν2 degrees of freedom, then

F =
U/ν1

V/ν2

is a random variable having an F distribution, that is, a random variable
whose probability density is given by

g(f ) =
Ŵ

(

ν1+ ν2

2

)

Ŵ

(

ν1

2

)

Ŵ

(

ν2

2

)

(

ν1

ν2

)

ν1
2

· f
ν1
2 −1

(

1+
ν1

ν2
f

)− 1
2 (ν1+ν2)

for f > 0 and g(f ) = 0 elsewhere.

Proof By virtue of independence, the joint density of U and V is given by

f (u, v) =
1

2ν1/2Ŵ

(

ν1

2

) · u
ν1
2 −1e−

u
2 ·

1

2ν2/2Ŵ

(

ν2

2

) · v
ν2
2 −1e−

v
2

=
1

2(ν1+ν2)/2Ŵ

(

ν1

2

)

Ŵ

(

ν2

2

) · u
ν1
2 −1v

ν2
2 −1e−

µ+v
2

for u > 0 and v > 0, and f (u, v) = 0 elsewhere. Then, to use the change-of-
variable technique, we solve

f =
u/ν1

v/ν2

for u, getting u =
ν1

ν2
· vf and hence

­u

­f
=

ν1

ν2
· v. Thus, the joint density

of F and V is given by

g(f , v) =

(

ν1

ν2

)ν1/2

2(ν1+ν2)/2Ŵ

(

ν1

2

)

Ŵ

(

ν2

2

) · f
ν1
2 −1v

ν1+ν2
2 −1e

− v
2

(

ν1f

ν2
+1

)

for f > 0 and v > 0, and g(f , v) = 0 elsewhere. Now, integrating out v by

making the substitution w =
v

2

(

ν1f

ν2
+ 1

)

, we finally get

g(f ) =
Ŵ

(

ν1+ ν2

2

)

Ŵ

(

ν1

2

)

Ŵ

(

ν2

2

)

(

ν1

ν2

)

ν1
2

· f
ν1
2 −1

(

1+
ν1

ν2
f

)− 1
2 (ν1+ν2)

for f > 0, and g(f ) = 0 elsewhere.
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a

fa, v1, v2
0

f

Figure 4. F distribution.

In view of its importance, the F distribution has been tabulated extensively.
Table VI of “Statistical Tables”, for example, contains values of fα,ν1,ν2 for α = 0.05
and 0.01 and for various values of ν1 and ν2, where fα,ν1,ν2 is such that the area to its
right under the curve of the F distribution with ν1 and ν2 degrees of freedom (see
Figure 4) is equal to α. That is, fα,ν1,ν2 is such that

P(F G fα,ν1,ν2) = α

Applications of Theorem 14 arise in problems in which we are interested in com-
paring the variances σ 2

1 and σ 2
2 of two normal populations; for instance, in problems

in which we want to estimate the ratio
σ 2

1

σ 2
2

or perhaps to test whether σ 2
1 = σ 2

2 . We

base such inferences on independent random samples of sizes n1 and n2 from the
two populations and Theorem 11, according to which

χ2
1 =

(n1− 1)s2
1

σ 2
1

and χ2
2 =

(n2− 1)s2
2

σ 2
2

are values of random variables having chi-square distributions with n1− 1 and n2− 1
degrees of freedom. By “independent random samples,” we mean that the n1+n2

random variables constituting the two random samples are all independent, so that
the two chi-square random variables are independent and the substitution of their
values for U and V in Theorem 14 yields the following result.

THEOREM 15. If S2
1 and S2

2 are the variances of independent random samples

of sizes n1 and n2 from normal populations with the variances σ 2
1 and

σ 2
2 , then

F =
S2

1/σ
2
1

S2
2/σ

2
2

=
σ 2

2 S2
1

σ 2
1 S2

2

is a random variable having an F distribution with n1− 1 and n2− 1 degrees
of freedom.

The F distribution is also known as the variance-ratio distribution.
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Exercises

20. Prove Theorem 9.

21. Prove Theorem 10.

22. Verify the identity

n
∑

i=1

(Xi−µ)2 =
n
∑

i=1

(Xi−X)2+n(X −µ)2

which we used in the proof of Theorem 11.

23. Use Theorem 11 to show that, for random samples of
size n from a normal population with the variance σ 2,
the sampling distribution of S2 has the mean σ 2 and the

variance
2σ 4

n− 1
. (A general formula for the variance of

S2 for random samples from any population with finite
second and fourth moments may be found in the book
by H. Cramér listed among the references at the end of
this chapter.)

24. Show that if X1, X2, . . . , Xn are independent ran-
dom variables having the chi-square distribution with
ν = 1 and Yn = X1+X2+ · · ·+Xn, then the limiting
distribution of

Z =

Yn

n
− 1

√

2/n

as n→q is the standard normal distribution.

25. Based on the result of Exercise 24, show that if X is
a random variable having a chi-square distribution with
ν degrees of freedom and ν is large, the distribution of
X − ν
√

2ν
can be approximated with the standard normal dis-

tribution.

26. Use the method of Exercise 25 to find the approxi-
mate value of the probability that a random variable hav-
ing a chi-square distribution with ν = 50 will take on a
value greater than 68.0.

27. If the range of X is the set of all positive real num-
bers, show that for k > 0 the probability that

√
2X −

√
2ν

will take on a value less than k equals the probability that
X − ν
√

2ν
will take on a value less than k+

k2

2
√

2ν
.

28. Use the results of Exercises 25 and 27 to show that
if X has a chi-square distribution with ν degrees of free-
dom, then for large ν the distribution of

√
2X −

√
2ν can

be approximated with the standard normal distribution.
Also, use this method of approximation to rework Exer-
cise 26.

29. Find the percentage errors of the approximations of
Exercises 26 and 28, given that the actual value of the
probability (rounded to five decimals) is 0.04596.

30. (Proof of the independence of X and S2 for n = 2) If
X1 and X2 are independent random variables having the
standard normal distribution, show that
(a) the joint density of X1 and X is given by

f (x1, x) =
1

π
· e−x−2

e−(x1−x)2

for −q< x1 <q and −q< x <q;

(b) the joint density of U = |X1−X| and X is given by

g(u, x) =
2

π
· e−(x2+u2)

for u > 0 and −q< x <q, since f (x1, x) is symmetrical
about x for fixed x;

(c) S2 = 2(X1−X)2 = 2U2;

(d) the joint density of X and S2 is given by

h(s2, x) =
1
√

π
e−x2

·
1
√

2π
(s2)−

1
2 e−

1
2 s2

for s2 > 0 and −q< x <q, demonstrating that X and S2

are independent.

31. (Proof of the independence of X and S2) If
X1, X2, . . . , Xn constitute a random sample from a normal
population with the mean µ and the variance σ 2,
(a) find the conditional density of X1 given X2 = x2, X3 =
x3, . . . , Xn = xn, and then set X1 = nX −X2− · · ·−Xn

and use the transformation technique to find the condi-
tional density of X given X2 = x2, X3 = x3, . . . , Xn = xn;

(b) find the joint density of X, X2, X3, . . . , Xn by multiply-
ing the conditional density of X obtained in part (a) by
the joint density of X2, X3, . . . , Xn, and show that

g(x2, x3, . . . , xn|x) =
√

n

(

1

σ
√

2π

)n−1

e
− (n−1)s2

2σ2

for −q< xi <q, i = 2, 3, . . . , n;

(c) show that the conditional moment-generating func-

tion of
(n− 1)S2

σ 2
given X = x is

E



e
(n−1)S2

σ2 ·t
∣

∣

∣

∣

∣

x



 = (1− 2t)−
n−1

2 for t <
1

2

Since this result is free of x, it follows that X and S2 are

independent; it also shows that
(n− 1)S2

σ 2
has a chi-square

distribution with n− 1 degrees of freedom.

This proof, due to J. Shuster, is listed among the refer-
ences at the end of this chapter.

32. This question has been intentionally omitted for this
edition.
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33. Show that for ν > 2 the variance of the t distribution

with ν degrees of freedom is
ν

ν− 2
. (Hint: Make the sub-

stitution 1+
t2

ν
=

1

u
.)

34. Show that for the t distribution with ν > 4 degrees
of freedom

(a) µ4 =
3ν2

(ν− 2)(ν− 4)
;

(b) α4 = 3+
6

ν− 4
.

(Hint: Make the substitution 1+
t2

ν
=

1

u
.)

35. This question has been intentionally omitted for this
edition.

36. By what name did we refer to the t distribution with
ν = 1 degree of freedom?

37. This question has been intentionally omitted for this
edition.

38. Show that for ν2 > 2 the mean of the F distribution

is
ν2

ν2− 2
, making use of the definition of F in Theo-

rem 14 and the fact that for a random variable V having
the chi-square distribution with ν2 degrees of freedom,

E

(

1

V

)

=
1

ν2− 2
.

39. Verify that if X has an F distribution with ν1 and
ν2 degrees of freedom and ν2→q, the distribution of
Y = ν1X approaches the chi-square distribution with ν1

degrees of freedom.

40. Verify that if T has a t distribution with ν degrees of
freedom, then X = T2 has an F distribution with ν1 = 1
and ν2 = ν degrees of freedom.

41. If X has an F distribution with ν1 and ν2 degrees of

freedom, show that Y =
1

X
has an F distribution with ν2

and ν1 degrees of freedom.

42. Use the result of Exercise 41 to show that

f1−α,ν1,ν2
=

1

fα,ν2,ν1

43. Verify that if Y has a beta distribution with α =
ν1

2
and β =

ν2

2
, then

X =
ν2Y

ν1(1−Y)

has an F distribution with ν1 and ν2 degrees of freedom.

44. Show that the F distribution with 4 and 4 degrees of
freedom is given by

g(f ) =
{

6f (1+ f )−4 for f > 0

0 elsewhere

and use this density to find the probability that for inde-
pendent random samples of size n = 5 from normal pop-
ulations with the same variance, S2

1/S2
2 will take on a value

less than 1
2 or greater than 2.

7 Order Statistics

The sampling distributions presented so far in this chapter depend on the assumption
that the population from which the sample was taken has the normal distribution.
This assumption often is satisfied, at least approximately for large samples, as illus-
trated by the central limit theorem. However, small samples sometimes must be used
in practice, for example in statistical quality control or where taking and measuring
a sample is very expensive. In an effort to deal with the problem of small samples
in cases where it may be unreasonable to assume a normal population, statisti-
cians have developed nonparametric statistics, whose sampling distributions do not
depend upon any assumptions about the population from which the sample is taken.
Statistical inferences based upon such statistics are called nonparametric inference.
We will identify a class of nonparametric statistics called order statistics and discuss
their statistical properties.

Consider a random sample of size n from an infinite population with a continu-
ous density, and suppose that we arrange the values of X1, X2, . . ., and Xn according
to size. If we look upon the smallest of the x’s as a value of the random variable Y1,
the next largest as a value of the random variable Y2, the next largest after that as a
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value of the random variable Y3, . . ., and the largest as a value of the random vari-
able Yn, we refer to these Y’s as order statistics. In particular, Y1 is the first order
statistic, Y2 is the second order statistic, Y3 is the third order statistic, and so on. (We
are limiting this discussion to infinite populations with continuous densities so that
there is zero probability that any two of the x’s will be alike.)

To be more explicit, consider the case where n = 2 and the relationship between
the values of the X’s and the Y’s is

y1 = x1 and y2 = x2 when x1 < x2

y1 = x2 and y2 = x1 when x2 < x1

Similarly, for n = 3 the relationship between the values of the respective random
variables is

y1 = x1, y2 = x2, and y3 = x3, when x1 < x2 < x3

y1 = x1, y2 = x3, and y3 = x2, when x1 < x3 < x2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y1 = x3, y2 = x2, and y3 = x1, when x3 < x2 < x1

Let us now derive a formula for the probability density of the rth order statistic
for r = 1, 2, . . . , n.

THEOREM 16. For random samples of size n from an infinite population that
has the value f (x) at x, the probability density of the r th order statistic Yr

is given by

gr(yr) =
n!

(r− 1)!(n− r)!

[

∫ yr

−q

f (x) dx

]r−1

f (yr)

[

∫

q

yr

f (x) dx

]n−r

for −q< yr <q.

Proof Suppose that the real axis is divided into three intervals, one from
−q to yr, a second from yr to yr+h (where h is a positive constant), and
the third from yr+h to q. Since the population we are sampling has the
value f (x) at x, the probability that r− 1 of the sample values fall into the
first interval, 1 falls into the second interval, and n− r fall into the third
interval is

n!

(r− 1)!1!(n− r)!

[

∫ yr

−q

f (x) dx

]r−1 [
∫ yr+h

yr

f (x) dx

][

∫

q

yr+h

f (x) dx

]n−r

according to the formula for the multinomial distribution. Using the mean-
value theorem for integrals from calculus, we have

∫ yr+h

yr

f (x) dx = f (ξ) · h where yr F ξ F yr+h
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and if we let h→ 0, we finally get

gr(yr) =
n!

(r− 1)!(n− r)!

[

∫ yr

−q

f (x) dx

]r−1

f (yr)

[

∫

q

yr

f (x) dx

]n−r

for −q< yr <q for the probability density of the rth order statistic.

In particular, the sampling distribution of Y1, the smallest value in a random
sample of size n, is given by

g1(y1) = n · f (y1)

[

∫

q

y1

f (x) dx

]n−1

for −q< y1 <q

while the sampling distribution of Yn, the largest value in a random sample of size
n, is given by

gn(yn) = n · f (yn)

[

∫ yn

−q

f (x) dx

]n−1

for −q< yn <q

Also, in a random sample of size n = 2m+ 1 the sample median X̃ is Ym+1, whose
sampling distribution is given by

h(x̃) =
(2m+ 1)!

m!m!

[

∫ x̃

−q

f (x) dx

]m

f (x̃)

[∫

q

x̃

f (x) dx

]m

for −q< x̃ <q

[For random samples of size n = 2m, the median is defined as 1
2 (Ym+Ym+1).]

In some instances it is possible to perform the integrations required to obtain
the densities of the various order statistics; for other populations there may be no
choice but to approximate these integrals by using numerical methods.

EXAMPLE 4

Show that for random samples of size n from an exponential population with the
parameter θ , the sampling distributions of Y1 and Yn are given by

g1(y1) =











n

θ
· e−ny1/θ for y1 > 0

0 elsewhere

and

gn(yn) =











n

θ
· e−yn/θ [1− e−yn/θ ]n−1 for yn > 0

0 elsewhere

and that, for random samples of size n = 2m+ 1 from this kind of population, the
sampling distribution of the median is given by

h(x̃) =















(2m+ 1)!

m!m!θ
· e−x̃(m+1)/θ [1− e−x̃/θ ]m for x̃ > 0

0 elsewhere
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Solution

The integrations required to obtain these results are straightforward, and they will
be left to the reader in Exercise 45.

The following is an interesting result about the sampling distribution of the
median, which holds when the population density is continuous and nonzero at the

population median µ̃, which is such that
∫ µ̃

−q
f (x) dx = 1

2 .

THEOREM 17. For large n, the sampling distribution of the median for ran-
dom samples of size 2n+ 1 is approximately normal with the mean µ̃ and

the variance
1

8[f (µ̃)]2n
.

Note that for random samples of size 2n+ 1 from a normal population we have
µ = µ̃, so

f (µ̃) = f (µ) =
1

σ
√

2π

and the variance of the median is approximately
πσ 2

4n
. If we compare this with the

variance of the mean, which for random samples of size 2n+ 1 from an infinite pop-

ulation is
σ 2

2n+ 1
, we find that for large samples from normal populations the mean

is more reliable than the median; that is, the mean is subject to smaller chance fluc-
tuations than the median.

Exercises

45. Verify the results of Example 4, that is, the sampling

distributions of Y1, Yn, and X̃ shown there for random
samples from an exponential population.

46. Find the sampling distributions of Y1 and Yn for ran-
dom samples of size n from a continuous uniform popu-
lation with α = 0 and β = 1.

47. Find the sampling distribution of the median for ran-
dom samples of size 2m+ 1 from the population of Exer-
cise 46.

48. Find the mean and the variance of the sampling dis-
tribution of Y1 for random samples of size n from the
population of Exercise 46.

49. Find the sampling distributions of Y1 and Yn for ran-
dom samples of size n from a population having the beta
distribution with α = 3 and β = 2.

50. Find the sampling distribution of the median for ran-
dom samples of size 2m+ 1 from the population of Exer-
cise 49.

51. Find the sampling distribution of Y1 for random sam-
ples of size n = 2 taken
(a) without replacement from the finite population that
consists of the first five positive integers;

(b) with replacement from the same population.
(Hint: Enumerate all possibilities.)

52. Duplicate the method used in the proof of Theo-
rem 16 to show that the joint density of Y1 and Yn is
given by

g(y1, yn) = n(n− 1)f (y1)f (yn)

[

∫ yn

y1

f (x) dx

]n−2

for −q< y1 < yn <q

and g(y1, yn) = 0 elsewhere.

(a) Use this result to find the joint density of Y1 and
Yn for random samples of size n from an exponen-
tial population.

(b) Use this result to find the joint density of Y1 and Yn

for the population of Exercise 46.

53. With reference to part (b) of Exercise 52, find the
covariance of Y1 and Yn.

54. Use the formula for the joint density of Y1 and Yn

shown in Exercise 52 and the transformation technique of
several variables to find an expression for the joint den-
sity of Y1 and the sample range R = Yn−Y1.
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55. Use the result of Exercise 54 and that of part (a) of
Exercise 52 to find the sampling distribution of R for ran-
dom samples of size n from an exponential population.

56. Use the result of Exercise 54 to find the sampling dis-
tribution of R for random samples of size n from the
continuous uniform population of Exercise 46.

57. Use the result of Exercise 56 to find the mean and
the variance of the sampling distribution of R for random
samples of size n from the continuous uniform population
of Exercise 46.

58. There are many problems, particularly in industrial
applications, in which we are interested in the proportion
of a population that lies between certain limits. Such lim-
its are called tolerance limits. The following steps lead to
the sampling distribution of the statistic P, which is the
proportion of a population (having a continuous density)
that lies between the smallest and the largest values of a
random sample of size n.
(a) Use the formula for the joint density of Y1 and Yn

shown in Exercise 52 and the transformation technique
of several variables to show that the joint density of Y1

and P, whose values are given by

p =
∫ yn

y1

f (x) dx

is
h(y1, p) = n(n− 1)f (y1)p

n−2

(b) Use the result of part (a) and the transformation tech-
nique of several variables to show that the joint density of
P and W, whose values are given by

w =
∫ y1

−q

f (x) dx

is
ϕ(w, p) = n(n− 1)pn−2

for w > 0, p > 0, w+p < 1, and ϕ(w, p) = 0 elsewhere.

(c) Use the result of part (b) to show that the marginal
density of P is given by

g(p) =
{

n(n− 1)pn−2(1−p) for 0 < p < 1

0 elsewhere

This is the desired density of the proportion of the popu-
lation that lies between the smallest and the largest values
of a random sample of size n, and it is of interest to note
that it does not depend on the form of the population
distribution.

59. Use the result of Exercise 58 to show that, for the ran-
dom variable P defined there,

E(P) =
n− 1

n+ 1
and var(P) =

2(n− 1)

(n+ 1)2(n+ 2)

What can we conclude from this about the distribution of
P when n is large?

8 The Theory in Practice

More on Random Samples

While it is practically impossible to take a purely random sample, there are several
methods that can be employed to assure that a sample is close enough to random-
ness to be useful in representing the distribution from which it came. In selecting
a sample from a production line, systematic sampling can be used to select units at
evenly spaced periods of time or having evenly spaced run numbers. In selecting
a random sample from products in a warehouse, a two-stage sampling process can
be used, numbering the containers and using a random device, such as a set of ran-
dom numbers generated by a computer, to choose the containers. Then, a second
set of random numbers can be used to select the unit or units in each container to
be included in the sample. There are many other methods, employing mechanical
devices or computer-generated random numbers, that can be used to aid in selecting
a random sample.

Selection of a sample that reasonably can be regarded as random sometimes
requires ingenuity, but it always requires care. Care should be taken to assure that
only the specified distribution is represented. Thus, if a sample of product is meant
to represent an entire production line, it should not be taken from the first shift
only. Care should be taken to assure independence of the observations. Thus, the
production-line sample should not be taken from a “chunk” of products produced at
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about the same time; they represent the same set of conditions and settings, and the
resulting observations are closely related to each other. Human judgment in select-
ing samples usually includes personal bias, often unconscious, and such judgments
should be avoided. Whenever possible, the use of mechanical devices or random
numbers is preferable to methods involving personal choice.

The Assumption of Normality

It is not unusual to expect that errors are made in taking and recording observa-
tions. This phenomenon was described by early nineteenth-century astronomers who
noted that different observers obtained somewhat different results when determin-
ing the location of a star.

Observational error can arise from one or both of two sources, random error,
or statistical error, and bias. Random errors occur as the result of many imper-
fections of measurement; among these imperfections are imprecise markings on
measurement scales, parallax (not viewing readings straight on) errors in setting up
apparatus, slight differences in materials, expansion and contraction, minor changes
in ambient conditions, and so forth. Bias occurs when there is a relatively consistent
error, such as not obtaining a representative sample in a survey, using a measuring
instrument that is not properly calibrated, and recording errors.

Errors involving bias can be corrected by discerning the source of the error and
making appropriate “fixes” to eliminate the bias. Random error, however, is some-
thing we must live with, as no human endeavor can be made perfect in applications.
Let us assume, however, that the many individual sources of random error, known
or unknown, are additive. In fact this is usually the case, at least to a good approxi-
mation. Then we can write

X = µ+E1+E2+ · · ·+En

where the random variable X is an observed value, µ is the “true” value of the obser-
vation, and the Ei are the n random errors that affect the value of the observation.
We shall assume that

E(X) = µ+E(E1)+E(E2)+ · · ·+E(En) = µ

In other words, we are assuming that the random errors have a mean of zero, at least
in the long run. We also can write

var(X) = (µ+E1+E2+ · · ·+En) = nσ 2

In other words, the variance of the sum of the random errors is nσ 2.
It follows that X = µ+E, where E is the sample mean of the errors E1, E2, . . . ,

En, and σ 2
X = σ 2/n. The central limit theorem given by Theorem 3 allows us to

conclude that

Z =
X −µ

σ
√

n

is a random variable whose distribution as n→q is the standard normal distribution.
It is not difficult to see from this argument that most repeated measurements

of the same phenomenon are, at least approximately, normally distributed. It is this
conclusion that underscores the importance of the chi-square, t, and F distributions
in applications that are based on the assumption of data from normally distributed
populations. It also demonstrates why the normal distribution is of major importance
in statistics.
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Applied Exercises SECS. 1–3

In the following exercises it is assumed that all samples are
drawn without replacement unless otherwise specified.

60. How many different samples of size n = 3 can be
drawn from a finite population of size

(a) N = 12; (b) N = 20; (c) N = 50?

61. What is the probability of each possible sample if
(a) a random sample of size n = 4 is to be drawn from a
finite population of size N = 12;

(b) a random sample of size n = 5 is to be drawn from a
finite population of size N = 22?

62. If a random sample of size n = 3 is drawn from a finite
population of size N = 50, what is the probability that a
particular element of the population will be included in
the sample?

63. For random samples from an infinite population, what
happens to the standard error of the mean if the sample
size is
(a) increased from 30 to 120;

(b) increased from 80 to 180;

(c) decreased from 450 to 50;

(d) decreased from 250 to 40?

64. Find the value of the finite population correction fac-

tor
N−n

N− 1
for

(a) n = 5 and N = 200;

(b) n = 50 and N = 300;

(c) n = 200 and N = 800.

65. A random sample of size n = 100 is taken from an
infinite population with the mean µ = 75 and the vari-
ance σ 2 = 256.
(a) Based on Chebyshev’s theorem, with what probabil-
ity can we assert that the value we obtain for X will fall
between 67 and 83?

(b) Based on the central limit theorem, with what proba-
bility can we assert that the value we obtain for X will fall
between 67 and 83?

66. A random sample of size n = 81 is taken from an infi-
nite population with the mean µ = 128 and the standard
deviation σ = 6.3. With what probability can we assert
that the value we obtain for X will not fall between 126.6
and 129.4 if we use
(a) Chebyshev’s theorem;

(b) the central limit theorem?

67. Rework part (b) of Exercise 66, assuming that the
population is not infinite but finite and of size N = 400.

68. A random sample of size n = 225 is to be taken from
an exponential population with θ = 4. Based on the cen-
tral limit theorem, what is the probability that the mean
of the sample will exceed 4.5?

69. A random sample of size n = 200 is to be taken from
a uniform population with α = 24 and β = 48. Based on
the central limit theorem, what is the probability that the
mean of the sample will be less than 35?

70. A random sample of size 64 is taken from a normal
population with µ = 51.4 and σ = 6.8. What is the prob-
ability that the mean of the sample will
(a) exceed 52.9;

(b) fall between 50.5 and 52.3;

(c) be less than 50.6?

71. A random sample of size 100 is taken from a normal
population with σ = 25. What is the probability that the
mean of the sample will differ from the mean of the pop-
ulation by 3 or more either way?

72. Independent random samples of sizes 400 are taken
from each of two populations having equal means and the
standard deviations σ1 = 20 and σ2 = 30. Using Cheby-
shev’s theorem and the result of Exercise 2, what can we
assert with a probability of at least 0.99 about the value
we will get for X1−X2? (By “independent” we mean
that the samples satisfy the conditions of Exercise 2.)

73. Assume that the two populations of Exercise 72 are
normal and use the result of Exercise 3 to find k such that

P(−k < X1−X2 < k) = 0.99

74. Independent random samples of sizes n1 = 30 and
n2 = 50 are taken from two normal populations hav-
ing the means µ1 = 78 and µ2 = 75 and the variances
σ 2

1 = 150 and σ 2
2 = 200. Use the results of Exercise 3 to

find the probability that the mean of the first sample will
exceed that of the second sample by at least 4.8.

75. The actual proportion of families in a certain city who
own, rather than rent, their home is 0.70. If 84 families in
this city are interviewed at random and their responses to
the question of whether they own their home are looked
upon as values of independent random variables hav-
ing identical Bernoulli distributions with the parameter
θ = 0.70, with what probability can we assert that the
value we obtain for the sample proportion 2̂ will fall
between 0.64 and 0.76, using the result of Exercise 4 and
(a) Chebyshev’s theorem;

(b) the central limit theorem?

76. The actual proportion of men who favor a certain
tax proposal is 0.40 and the corresponding proportion
for women is 0.25; n1 = 500 men and n2 = 400
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women are interviewed at random, and their individual
responses are looked upon as the values of independent
random variables having Bernoulli distributions with the
respective parameters θ1 = 0.40 and θ2 = 0.25. What
can we assert, according to Chebyshev’s theorem, with
a probability of at least 0.9375 about the value we will
get for 2̂1− 2̂2, the difference between the two sample
proportions of favorable responses? Use the result of
Exercise 5.

SECS. 4–6

(In Exercises 78 through 83, refer to Tables IV, V, and VI
of “Statistical Tables.”)

77. Integrate the appropriate chi-square density to find
the probability that the variance of a random sample of
size 5 from a normal population with σ 2 = 25 will fall
between 20 and 30.

78. The claim that the variance of a normal population
is σ 2 = 25 is to be rejected if the variance of a random
sample of size 16 exceeds 54.668 or is less than 12.102.
What is the probability that this claim will be rejected
even though σ 2 = 25?

79. The claim that the variance of a normal population is
σ 2 = 4 is to be rejected if the variance of a random sam-
ple of size 9 exceeds 7.7535. What is the probability that
this claim will be rejected even though σ 2 = 4?

80. A random sample of size n = 25 from a normal pop-
ulation has the mean x = 47 and the standard deviation
s = 7. If we base our decision on the statistic of Theo-
rem 13, can we say that the given information supports
the conjecture that the mean of the population is µ = 42?

81. A random sample of size n = 12 from a normal pop-
ulation has the mean x = 27.8 and the variance s2 = 3.24.
If we base our decision on the statistic of Theorem 13, can
we say that the given information supports the claim that
the mean of the population is µ = 28.5?

82. If S1 and S2 are the standard deviations of indepen-
dent random samples of sizes n1 = 61 and n2 = 31 from
normal populations with σ 2

1 = 12 and σ 2
2 = 18, find

P(S2
1/S2

2 > 1.16).

83. If S2
1 and S2

2 are the variances of independent random
samples of sizes n1 = 10 and n2 = 15 from normal popu-
lations with equal variances, find P(S2

1/S2
2 < 4.03).

84. Use a computer program to verify the five entries
in Table IV of “Statistical Tables” corresponding to 11
degrees of freedom.

85. Use a computer program to verify the eight entries
in Table V of “Statistical Tables” corresponding to 21
degrees of freedom.

86. Use a computer program to verify the five values of
f0.05 in Table VI of “Statistical Tables” corresponding to
7 and 6 to 10 degrees of freedom.

87. Use a computer program to verify the six values of
f0.01 in Table VI of “Statistical Tables” corresponding to
ν1 = 15 and ν2 = 12, 13, . . . , 17.

SEC. 7

88. Find the probability that in a random sample of size
n = 4 from the continuous uniform population of Exer-
cise 46, the smallest value will be at least 0.20.

89. Find the probability that in a random sample of size
n = 3 from the beta population of Exercise 77, the largest
value will be less than 0.90.

90. Use the result of Exercise 56 to find the probability
that the range of a random sample of size n = 5 from the
given uniform population will be at least 0.75.

91. Use the result of part (c) of Exercise 58 to find the
probability that in a random sample of size n = 10 at least
80 percent of the population will lie between the smallest
and largest values.

92. Use the result of part (c) of Exercise 58 to set up an
equation in n whose solution will give the sample size that
is required to be able to assert with probability 1−α that
the proportion of the population contained between the
smallest and largest sample values is at least p. Show that
for p = 0.90 and α = 0.05 this equation can be written as

(0.90)n−1 =
1

2n+ 18

This kind of equation is difficult to solve, but it can be
shown that an approximate solution for n is given by

1

2
+

1

4
·

1+p

1−p
·χ2

α,4

where χ2
α,4 must be looked up in Table V of “Statistical

Tables”. Use this method to find an approximate solution
of the equation for p = 0.90 and α = 0.05.

SEC. 8

93. Cans of food, stacked in a warehouse, are sampled
to determine the proportion of damaged cans. Explain
why a sample that includes only the top can in each stack
would not be a random sample.

94. An inspector chooses a sample of parts coming from
an automated lathe by visually inspecting all parts, and
then including 10 percent of the “good” parts in the sam-
ple with the use of a table of random digits.
(a) Why does this method not produce a random sample
of the production of the lathe?

(b) Of what population can this be considered to be a ran-
dom sample?

95. Sections of aluminum sheet metal of various lengths,
used for construction of airplane fuselages, are lined up
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on a conveyor belt that moves at a constant speed. A
sample is selected by taking whatever section is passing
in front of a station at five-minute intervals. Explain why
this sample may not be random; that is, it is not an accu-
rate representation of the population of all aluminum
sections.

96. A process error may cause the oxide thicknesses on
the surface of a silicon wafer to be “wavy,” with a constant
difference between the wave heights. What precautions
are necessary in taking a random sample of oxide thick-
nesses at various positions on the wafer to assure that the
observations are independent?
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Answers to Odd-Numbered Exercises

11 When we sample with replacement from a finite popu-
lation, we satisfy the conditions for random sampling from
an infinite population; that is, the random variables are inde-
pendent and identically distributed.

17 µ = 13.0; σ 2 = 25.6.

19 s2 = 4.

29 21.9% and 5.53%.

47 h(x̃) =
(2m+ 1)!

m!m!
x̃(1− x̃)m for 0 < x < 1; h(x̃) = 0 else-

where.

49 g1(y1) = 12ny2
1
(1− y1)(1− 4y1)3.

51 (a)
y1 1 2 3 4

g1(y1) 4
10

3
10

2
10

1
10

(b)
y1 1 2 3 4 5

g1(y1) 9
25

7
25

5
25

3
25

1
25

53
1

(n+ 1)2(n+ 2)
.

55 f (R) =
n− 1

θ
e−R/θ [1− e−R/θ ]n−2 for R > 0; f (R) = 0

elsewhere.

57 E(R) =
n− 1

n+ 1
; σ 2 =

2(n− 1)

(n+ 1)2(n+ 2)
.

61 (a) 1
495

; (b) 1
77 .

63 (a) It is divided by 2. (b) It is divided by 1.5. (c) It is
multiplied by 3. (d) It is multiplied by 2.5.

65 (a) 0.96; (b) 0.9999994.

67 0.0250.

69 0.0207.

71 0.2302.

73 4.63.

75 (a) 0.3056; (b) 0.7698.

77 0.216.

79 0.5.

81 t = −1.347; the data support the claim.

83 0.99.

89 0.851.

91 0.6242.
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