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1 Introduction In recent years, the growth of statistics has made itself felt in almost every phase
of human activity. Statistics no longer consists merely of the collection of data and
their presentation in charts and tables; it is now considered to encompass the science
of basing inferences on observed data and the entire problem of making decisions
in the face of uncertainty. This covers considerable ground since uncertainties are
met when we flip a coin, when a dietician experiments with food additives, when an
actuary determines life insurance premiums, when a quality control engineer accepts
or rejects manufactured products, when a teacher compares the abilities of students,
when an economist forecasts trends, when a newspaper predicts an election, and
even when a physicist describes quantum mechanics.

It would be presumptuous to say that statistics, in its present state of devel-
opment, can handle all situations involving uncertainties, but new techniques are
constantly being developed and modern statistics can, at least, provide the frame-
work for looking at these situations in a logical and systematic fashion. In other
words, statistics provides the models that are needed to study situations involving
uncertainties, in the same way as calculus provides the models that are needed to
describe, say, the concepts of Newtonian physics.

The beginnings of the mathematics of statistics may be found in mid-eighteenth-
century studies in probability motivated by interest in games of chance. The theory
thus developed for “heads or tails” or “red or black” soon found applications in sit-
uations where the outcomes were “boy or girl,” “life or death,” or “pass or fail,” and
scholars began to apply probability theory to actuarial problems and some aspects
of the social sciences. Later, probability and statistics were introduced into physics
by L. Boltzmann, J. Gibbs, and J. Maxwell, and by this century they have found
applications in all phases of human endeavor that in some way involve an element
of uncertainty or risk. The names that are connected most prominently with the
growth of mathematical statistics in the first half of the twentieth century are those
of R. A. Fisher, J. Neyman, E. S. Pearson, and A. Wald. More recently, the work of
R. Schlaifer, L. J. Savage, and others has given impetus to statistical theories based
essentially on methods that date back to the eighteenth-century English clergyman
Thomas Bayes.

Mathematical statistics is a recognized branch of mathematics, and it can be
studied for its own sake by students of mathematics. Today, the theory of statistics is
applied to engineering, physics and astronomy, quality assurance and reliability, drug
development, public health and medicine, the design of agricultural or industrial
experiments, experimental psychology, and so forth. Those wishing to participate
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in such applications or to develop new applications will do well to understand the
mathematical theory of statistics. For only through such an understanding can appli-
cations proceed without the serious mistakes that sometimes occur. The applications
are illustrated by means of examples and a separate set of applied exercises, many
of them involving the use of computers. To this end, we have added at the end of the
chapter a discussion of how the theory of the chapter can be applied in practice.

We begin with a brief review of combinatorial methods and binomial
coefficients.

2 Combinatorial Methods

In many problems of statistics we must list all the alternatives that are possible in a
given situation, or at least determine how many different possibilities there are. In
connection with the latter, we often use the following theorem, sometimes called the
basic principle of counting, the counting rule for compound events, or the rule for

the multiplication of choices.

THEOREM 1. If an operation consists of two steps, of which the first can be
done in n1 ways and for each of these the second can be done in n2 ways,
then the whole operation can be done in n1·n2 ways.

Here, “operation” stands for any kind of procedure, process, or method of selection.
To justify this theorem, let us define the ordered pair (xi, yj) to be the outcome

that arises when the first step results in possibility xi and the second step results in
possibility yj. Then, the set of all possible outcomes is composed of the following
n1·n2 pairs:

(x1, y1), (x1, y2), . . . , (x1, yn2)

(x2, y1), (x2, y2), . . . , (x2, yn2)

. . .

. . .

. . .

(xn1 , y1), (xn1 , y2), . . . , (xn1 , yn2)

EXAMPLE 1

Suppose that someone wants to go by bus, train, or plane on a week’s vacation to one
of the five East North Central States. Find the number of different ways in which this
can be done.

Solution

The particular state can be chosen in n1 = 5 ways and the means of transportation
can be chosen in n2 = 3 ways. Therefore, the trip can be carried out in 5 · 3 = 15
possible ways. If an actual listing of all the possibilities is desirable, a tree diagram

like that in Figure 1 provides a systematic approach. This diagram shows that there
are n1 = 5 branches (possibilities) for the number of states, and for each of these
branches there are n2 = 3 branches (possibilities) for the different means of trans-
portation. It is apparent that the 15 possible ways of taking the vacation are repre-
sented by the 15 distinct paths along the branches of the tree.
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Figure 1. Tree diagram.

EXAMPLE 2

How many possible outcomes are there when we roll a pair of dice, one red and
one green?

Solution

The red die can land in any one of six ways, and for each of these six ways the green
die can also land in six ways. Therefore, the pair of dice can land in 6 · 6 = 36 ways.

Theorem 1 may be extended to cover situations where an operation consists of
two or more steps. In this case, we have the following theorem.
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THEOREM 2. If an operation consists of k steps, of which the first can be
done in n1 ways, for each of these the second step can be done in n2 ways,
for each of the first two the third step can be done in n3 ways, and so forth,
then the whole operation can be done in n1 ·n2 · . . . ·nk ways.

EXAMPLE 3

A quality control inspector wishes to select a part for inspection from each of four
different bins containing 4, 3, 5, and 4 parts, respectively. In how many different ways
can she choose the four parts?

Solution

The total number of ways is 4 · 3 · 5 · 4 = 240.

EXAMPLE 4

In how many different ways can one answer all the questions of a true–false test
consisting of 20 questions?

Solution

Altogether there are

2 · 2 · 2 · 2 · . . . · 2 · 2 = 220 = 1,048,576

different ways in which one can answer all the questions; only one of these corre-
sponds to the case where all the questions are correct and only one corresponds to
the case where all the answers are wrong.

Frequently, we are interested in situations where the outcomes are the different
ways in which a group of objects can be ordered or arranged. For instance, we might
want to know in how many different ways the 24 members of a club can elect a presi-
dent, a vice president, a treasurer, and a secretary, or we might want to know in how
many different ways six persons can be seated around a table. Different arrange-
ments like these are called permutations.

DEFINITION 1. PERMUTATIONS. A permutation is a distinct arrangement of n differ-

ent elements of a set.

EXAMPLE 5

How many permutations are there of the letters a, b, and c?

Solution

The possible arrangements are abc, acb, bac, bca, cab, and cba, so the number of
distinct permutations is six. Using Theorem 2, we could have arrived at this answer
without actually listing the different permutations. Since there are three choices to
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select a letter for the first position, then two for the second position, leaving only
one letter for the third position, the total number of permutations is 3 · 2 · 1 = 6.

Generalizing the argument used in the preceding example, we find that n distinct
objects can be arranged in n(n− 1)(n− 2) · . . . · 3 · 2 · 1 different ways. To simplify our
notation, we represent this product by the symbol n!, which is read “n factorial.”
Thus, 1! = 1, 2! = 2 · 1 = 2, 3! = 3 · 2 · 1 = 6, 4! = 4 · 3 · 2 · 1 = 24, 5! = 5 · 4 · 3 · 2 · 1 =
120, and so on. Also, by definition we let 0! = 1.

THEOREM 3. The number of permutations of n distinct objects is n!.

EXAMPLE 6

In how many different ways can the five starting players of a basketball team be
introduced to the public?

Solution

There are 5! = 5 · 4 · 3 · 2 · 1 = 120 ways in which they can be introduced.

EXAMPLE 7

The number of permutations of the four letters a, b, c, and d is 24, but what is the
number of permutations if we take only two of the four letters or, as it is usually put,
if we take the four letters two at a time?

Solution

We have two positions to fill, with four choices for the first and then three choices for
the second. Therefore, by Theorem 1, the number of permutations is 4 · 3 = 12.

Generalizing the argument that we used in the preceding example, we find that n

distinct objects taken r at a time, for r > 0, can be arranged in n(n− 1) · . . . ·
(n− r+ 1) ways. We denote this product by nPr, and we let nP0 = 1 by definition.
Therefore, we can state the following theorem.

THEOREM 4. The number of permutations of n distinct objects taken r at a
time is

nPr =
n!

(n− r)!

for r = 0, 1, 2, . . . , n.

Proof The formula nPr = n(n− 1) · . . . · (n− r+ 1) cannot be used for
r = 0, but we do have

nP0 =
n!

(n− 0)!
= 1

$
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For r = 1, 2, . . . , n, we have

nPr = n(n− 1)(n− 2) · . . . · (n− r− 1)

=
n(n− 1)(n− 2) · . . . · (n− r− 1)(n− r)!

(n− r)!

=
n!

(n− r)!

In problems concerning permutations, it is usually easier to proceed by using
Theorem 2 as in Example 7, but the factorial formula of Theorem 4 is somewhat
easier to remember. Many statistical software packages provide values of nPr and
other combinatorial quantities upon simple commands. Indeed, these quantities are
also preprogrammed in many hand-held statistical (or scientific) calculators.

EXAMPLE 8

Four names are drawn from among the 24 members of a club for the offices of pres-
ident, vice president, treasurer, and secretary. In how many different ways can this
be done?

Solution

The number of permutations of 24 distinct objects taken four at a time is

24P4 =
24!

20!
= 24 · 23 · 22 · 21 = 255,024

EXAMPLE 9

In how many ways can a local chapter of the American Chemical Society schedule
three speakers for three different meetings if they are all available on any of five
possible dates?

Solution

Since we must choose three of the five dates and the order in which they are chosen
(assigned to the three speakers) matters, we get

5P3 =
5!

2!
=

120

2
= 60

We might also argue that the first speaker can be scheduled in five ways, the sec-
ond speaker in four ways, and the third speaker in three ways, so that the answer is
5 · 4 · 3 = 60.

Permutations that occur when objects are arranged in a circle are called
circular permutations. Two circular permutations are not considered different (and
are counted only once) if corresponding objects in the two arrangements have the
same objects to their left and to their right. For example, if four persons are playing
bridge, we do not get a different permutation if everyone moves to the chair at his
or her right.
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EXAMPLE 10

How many circular permutations are there of four persons playing bridge?

Solution

If we arbitrarily consider the position of one of the four players as fixed, we can seat
(arrange) the other three players in 3! = 6 different ways. In other words, there are
six different circular permutations.

Generalizing the argument used in the preceding example, we obtain the follow-
ing theorem.

THEOREM 5. The number of permutations of n distinct objects arranged in
a circle is (n− 1)!.

We have been assuming until now that the n objects from which we select r

objects and form permutations are all distinct. Thus, the various formulas cannot be
used, for example, to determine the number of ways in which we can arrange the
letters in the word “book,” or the number of ways in which three copies of one novel
and one copy each of four other novels can be arranged on a shelf.

EXAMPLE 11

How many different permutations are there of the letters in the word “book”?

Solution

If we distinguish for the moment between the two o’s by labeling them o1 and o2,
there are 4! = 24 different permutations of the symbols b, o1, o2, and k. However, if
we drop the subscripts, then bo1ko2 and bo2ko1, for instance, both yield boko, and
since each pair of permutations with subscripts yields but one arrangement without
subscripts, the total number of arrangements of the letters in the word “book” is
24
2 = 12.

EXAMPLE 12

In how many different ways can three copies of one novel and one copy each of four
other novels be arranged on a shelf?

Solution

If we denote the three copies of the first novel by a1, a2, and a3 and the other four
novels by b, c, d, and e, we find that with subscripts there are 7! different permuta-
tions of a1, a2, a3, b, c, d, and e. However, since there are 3! permutations of a1, a2,
and a3 that lead to the same permutation of a, a, a, b, c, d, and e, we find that there
are only 7!

3! = 7 · 6 · 5 · 4 = 840 ways in which the seven books can be arranged on a
shelf.

Generalizing the argument that we used in the two preceding examples, we
obtain the following theorem.
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THEOREM 6. The number of permutations of n objects of which n1 are of
one kind, n2 are of a second kind, . . . , nk are of a kth kind, and
n1+n2+ · · ·+nk = n is

n!

n1! ·n2! · . . . ·nk!

EXAMPLE 13

In how many ways can two paintings by Monet, three paintings by Renoir, and two
paintings by Degas be hung side by side on a museum wall if we do not distinguish
between the paintings by the same artists?

Solution

Substituting n = 7, n1 = 2, n2 = 3, and n3 = 2 into the formula of Theorem 6, we get

7!

2! · 3! · 2!
= 210

There are many problems in which we are interested in determining the number
of ways in which r objects can be selected from among n distinct objects without

regard to the order in which they are selected.

DEFINITION 2. COMBINATIONS. A combination is a selection of r objects taken from

n distinct objects without regard to the order of selection.

EXAMPLE 14

In how many different ways can a person gathering data for a market research orga-
nization select three of the 20 households living in a certain apartment complex?

Solution

If we care about the order in which the households are selected, the answer is

20P3 = 20 · 19 · 18 = 6,840

but each set of three households would then be counted 3! = 6 times. If we do not
care about the order in which the households are selected, there are only
6,840

6
= 1,140 ways in which the person gathering the data can do his or her job.

Actually, “combination” means the same as “subset,” and when we ask for the
number of combinations of r objects selected from a set of n distinct objects, we are
simply asking for the total number of subsets of r objects that can be selected from
a set of n distinct objects. In general, there are r! permutations of the objects in a
subset of r objects, so that the nPr permutations of r objects selected from a set of
n distinct objects contain each subset r! times. Dividing nPr by r! and denoting the

result by the symbol
(

n
r

)

, we thus have the following theorem.
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THEOREM 7. The number of combinations of n distinct objects taken r at a
time is

(

n

r

)

=
n!

r!(n− r)!

for r = 0, 1, 2, . . . , n.

EXAMPLE 15

In how many different ways can six tosses of a coin yield two heads and four tails?

Solution

This question is the same as asking for the number of ways in which we can select
the two tosses on which heads is to occur. Therefore, applying Theorem 7, we find
that the answer is

(

6
2

)

=
6!

2! · 4!
= 15

This result could also have been obtained by the rather tedious process of enumer-
ating the various possibilities, HHTTTT, TTHTHT, HTHTTT, . . . , where H stands
for head and T for tail.

EXAMPLE 16

How many different committees of two chemists and one physicist can be formed
from the four chemists and three physicists on the faculty of a small college?

Solution

Since two of four chemists can be selected in

(

4
2

)

=
4!

2! · 2!
= 6 ways and one of

three physicists can be selected in

(

3
1

)

=
3!

1! · 2!
= 3 ways, Theorem 1 shows that the

number of committees is 6 · 3 = 18.

A combination of r objects selected from a set of n distinct objects may be con-
sidered a partition of the n objects into two subsets containing, respectively, the r

objects that are selected and the n− r objects that are left. Often, we are concerned
with the more general problem of partitioning a set of n distinct objects into k sub-
sets, which requires that each of the n objects must belong to one and only one of
the subsets.† The order of the objects within a subset is of no importance.

EXAMPLE 17

In how many ways can a set of four objects be partitioned into three subsets contain-
ing, respectively, two, one, and one of the objects?

†Symbolically, the subsets A1, A2, . . . , Ak constitute a partition of set A if A1 ∪A2 ∪ · · · ∪Ak = A and Ai ∩Aj =
Ø for all i Z j.

(
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Solution

Denoting the four objects by a, b, c, and d, we find by enumeration that there are
the following 12 possibilities:

ab|c|d ab|d|c ac|b|d ac|d|b
ad|b|c ad|c|b bc|a|d bc|d|a
bd|a|c bd|c|a cd|a|b cd|b|a

The number of partitions for this example is denoted by the symbol
(

4
2, 1, 1

)

= 12

where the number at the top represents the total number of objects and the numbers
at the bottom represent the number of objects going into each subset.

Had we not wanted to enumerate all the possibilities in the preceding example,
we could have argued that the two objects going into the first subset can be chosen in
(

4
2

)

= 6 ways, the object going into the second subset can then be chosen in

(

2
1

)

= 2

ways, and the object going into the third subset can then be chosen in

(

1
1

)

= 1 way.

Thus, by Theorem 2 there are 6 · 2 · 1 = 12 partitions. Generalizing this argument, we
have the following theorem.

THEOREM 8. The number of ways in which a set of n distinct objects can be
partitioned into k subsets with n1 objects in the first subset, n2 objects in
the second subset, . . . , and nk objects in the kth subset is

(

n

n1, n2, . . . , nk

)

=
n!

n1! ·n2! · . . . ·nk!

Proof Since the n1 objects going into the first subset can be chosen in
(

n
n1

)

ways, the n2 objects going into the second subset can then be chosen

in
(

n−n1
n2

)

ways, the n3 objects going into the third subset can then be

chosen in
(

n−n1−n2
n3

)

ways, and so forth, it follows by Theorem 2 that

the total number of partitions is

(

n

n1, n2, . . . , nk

)

=

(

n

n1

)

·

(

n− n1

n2

)

· . . . ·

(

n− n1− n2− · · ·− nk−1

nk

)

=
n!

n1! · (n− n1)!
·

(n− n1)!

n2! · (n− n1− n2)!

· . . . ·
(n− n1− n2− · · ·− nk−1)!

nk! · 0!

=
n!

n1! · n2! · . . . · nk!

 )



Introduction

EXAMPLE 18

In how many ways can seven businessmen attending a convention be assigned to one
triple and two double hotel rooms?

Solution

Substituting n = 7, n1 = 3, n2 = 2, and n3 = 2 into the formula of Theorem 8, we get

(

7
3, 2, 2

)

=
7!

3! · 2! · 2!
= 210

3 Binomial Coefficients

If n is a positive integer and we multiply out (x+ y)n term by term, each term will be
the product of x’s and y’s, with an x or a y coming from each of the n factors x+ y.
For instance, the expansion

(x+ y)3 = (x+ y)(x+ y)(x+ y)

= x · x · x+ x · x · y+ x · y · x+ x · y · y

+ y · x · x+ y · x · y+ y · y · x+ y · y · y

= x3+ 3x2y+ 3xy2+ y3

yields terms of the form x3, x2y, xy2, and y3. Their coefficients are 1, 3, 3, and 1, and

the coefficient of xy2, for example, is
(

3
2

)

= 3, the number of ways in which we can

choose the two factors providing the y’s. Similarly, the coefficient of x2y is
(

3
1

)

= 3,

the number of ways in which we can choose the one factor providing the y, and the

coefficients of x3 and y3 are
(

3
0

)

= 1 and
(

3
3

)

= 1.

More generally, if n is a positive integer and we multiply out (x+ y)n term by

term, the coefficient of xn−ryr is
(

n
r

)

, the number of ways in which we can choose

the r factors providing the y’s. Accordingly, we refer to
(

n
r

)

as a binomial coefficient.

Values of the binomial coefficients for n = 0, 1, . . . , 20 and r = 0, 1, . . . , 10 are given
in table Factorials and Binomial Coefficients of “Statistical Tables.” We can now
state the following theorem.

THEOREM 9.

(x+ y)n =
n
∑

r=0

(

n

r

)

xn−ryr for any positive integer n
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DEFINITION 3. BINOMIAL COEFFICIENTS. The coefficient of xn−ryr in the binomial

expansion of (x+ y)n is called the binomial coefficient
(n

r

)

.

The calculation of binomial coefficients can often be simplified by making use
of the three theorems that follow.

THEOREM 10. For any positive integers n and r = 0, 1, 2, . . . , n,

(

n

r

)

=

(

n

n− r

)

Proof We might argue that when we select a subset of r objects from a set
of n distinct objects, we leave a subset of n− r objects; hence, there are as
many ways of selecting r objects as there are ways of leaving (or selecting)
n− r objects. To prove the theorem algebraically, we write

(

n

n− r

)

=
n!

(n− r)![n− (n− r)]!
=

n!

(n− r)!r!

=
n!

r!(n− r)!
=

(

n

r

)

Theorem 10 implies that if we calculate the binomial coefficients for
r = 0, 1, . . . , n

2 when n is even and for r = 0, 1, . . . , n−1
2 when n is odd, the remaining

binomial coefficients can be obtained by making use of the theorem.

EXAMPLE 19

Given

(

4
0

)

= 1,

(

4
1

)

= 4, and

(

4
2

)

= 6, find

(

4
3

)

and

(

4
4

)

.

Solution
(

4
3

)

=

(

4
4− 3

)

=

(

4
1

)

= 4 and

(

4
4

)

=

(

4
4− 4

)

=

(

4
0

)

= 1

EXAMPLE 20

Given

(

5
0

)

= 1,

(

5
1

)

= 5, and

(

5
2

)

= 10, find

(

5
3

)

,

(

5
4

)

, and

(

5
5

)

.

Solution
(

5
3

)

=

(

5
5− 3

)

=

(

5
2

)

= 10,

(

5
4

)

=

(

5
5− 4

)

=

(

5
1

)

= 5, and

(

5
5

)

=

(

5
5− 5

)

=

(

5
0

)

= 1

It is precisely in this fashion that Theorem 10 may have to be used in connection
with table Factorials and Binomial Coefficients of “Statistical Tables.”
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EXAMPLE 21

Find
(

20
12

)

and
(

17
10

)

.

Solution

Since
(

20
12

)

is not given in the table, we make use of the fact that
(

20
12

)

=
(

20
8

)

, look

up
(

20
8

)

, and get
(

20
12

)

= 125,970. Similarly, to find
(

17
10

)

, we make use of the fact

that
(

17
10

)

=
(

17
7

)

, look up
(

17
7

)

, and get
(

17
10

)

= 19,448.

THEOREM 11. For any positive integer n and r = 1, 2, . . . , n− 1,

(

n

r

)

=

(

n− 1
r

)

+

(

n− 1
r− 1

)

Proof Substituting x = 1 into (x+ y)n, let us write (1+ y)n = (1+ y)

(1+ y)n−1 = (1+ y)n−1+ y(1+ y)n−1 and equate the coefficient of yr in
(1+ y)n with that in (1+ y)n−1+ y(1+ y)n−1. Since the coefficient of yr in

(1+ y)n is
(

n
r

)

and the coefficient of yr in (1+ y)n−1+ y(1+ y)n−1 is the

sum of the coefficient of yr in (1+ y)n−1, that is,
(

n− 1
r

)

, and the coeffi-

cient of yr−1 in (1+ y)n−1, that is,
(

n− 1
r− 1

)

, we obtain

(

n

r

)

=

(

n− 1
r

)

+

(

n− 1
r− 1

)

which completes the proof.

Alternatively, take any one of the n objects. If it is not to be included among the

r objects, there are
(

n− 1
r

)

ways of selecting the r objects; if it is to be included, there

are
(

n− 1
r− 1

)

ways of selecting the other r− 1 objects. Therefore, there are
(

n− 1
r

)

+
(

n− 1
r− 1

)

ways of selecting the r objects, that is,

(

n

r

)

=

(

n− 1
r

)

+

(

n− 1
r− 1

)

Theorem 11 can also be proved by expressing the binomial coefficients on both
sides of the equation in terms of factorials and then proceeding algebraically, but we
shall leave this to the reader in Exercise 12.

An important application of Theorem 11 is a construct known as Pascal’s

triangle. When no table is available, it is sometimes convenient to determine bino-
mial coefficients by means of a simple construction. Applying Theorem 11, we can
generate Pascal’s triangle as follows:

 "
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this triangle, the first and last entries of each row are the numeral “1” each other
entry in any given row is obtained by adding the two entries in the preceding row
immediately to its left and to its right.

To state the third theorem about binomial coefficients, let us make the following

definition:
(

n
r

)

= 0 whenever n is a positive integer and r is a positive integer greater

than n. (Clearly, there is no way in which we can select a subset that contains more
elements than the whole set itself.)

THEOREM 12.
k
∑

r=0

(

m

r

)(

n

k− r

)

=

(

m+n

k

)

Proof Using the same technique as in the proof of Theorem 11, let us
prove this theorem by equating the coefficients of yk in the expressions
on both sides of the equation

(1+ y)m+n = (1+ y)m(1+ y)n

The coefficient of yk in (1+y)m+n is
(

m+n

k

)

, and the coefficient of yk in

(1+ y)m(1+ y)n =





(

m

0

)

+

(

m

1

)

y+ · · ·+

(

m

m

)

ym





*





(

n

0

)

+

(

n

1

)

y+ · · ·+

(

n

n

)

yn





is the sum of the products that we obtain by multiplying the constant
term of the first factor by the coefficient of yk in the second factor, the
coefficient of y in the first factor by the coefficient of yk−1 in the second
factor, . . . , and the coefficient of yk in the first factor by the constant term
of the second factor. Thus, the coefficient of yk in (1+ y)m(1+ y)n is

(

m

0

)(

n

k

)

+

(

m

1

)(

n

k− 1

)

+

(

m

2

)(

n

k− 2

)

+ · · ·+

(

m

k

)(

n

0

)

=
k
∑

r=0

(

m

r

)(

n

k− r

)

and this completes the proof.
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EXAMPLE 22

Verify Theorem 12 numerically for m = 2, n = 3, and k = 4.

Solution

Substituting these values, we get

(

2
0

)(

3
4

)

+

(

2
1

)(

3
3

)

+

(

2
2

)(

3
2

)

+

(

2
3

)(

3
1

)

+

(

2
4

)(

3
0

)

=

(

5
4

)

and since
(

3
4

)

,
(

2
3

)

, and
(

2
4

)

equal 0 according to the definition on the previous page,

the equation reduces to

(

2
1

)(

3
3

)

+

(

2
2

)(

3
2

)

=

(

5
4

)

which checks, since 2 · 1+ 1 · 3 = 5.

Using Theorem 8, we can extend our discussion to multinomial coefficients, that
is, to the coefficients that arise in the expansion of (x1+ x2+ · · ·+ xk)n. The multi-
nomial coefficient of the term x

r1
1 · x

r2
2 · . . . · xrk

k in the expansion of (x1+ x2+ · · ·+
xk)n is

(

n

r1, r2, . . . , rk

)

=
n!

r1! · r2! · . . . · rk!

EXAMPLE 23

What is the coefficient of x3
1x2x2

3 in the expansion of (x1+ x2+ x3)
6?

Solution

Substituting n = 6, r1 = 3, r2 = 1, and r3 = 2 into the preceding formula, we get

6!

3! · 1! · 2!
= 60

Exercises

1. An operation consists of two steps, of which the first
can be made in n1 ways. If the first step is made in the ith
way, the second step can be made in n2i ways.†

(a) Use a tree diagram to find a formula for the total num-
ber of ways in which the total operation can be made.

(b) A student can study 0, 1, 2, or 3 hours for a history
test on any given day. Use the formula obtained in part
(a) to verify that there are 13 ways in which the student
can study at most 4 hours for the test on two consecutive
days.

2. With reference to Exercise 1, verify that if n2i equals
the constant n2, the formula obtained in part (a) reduces
to that of Theorem 1.

3. With reference to Exercise 1, suppose that there is a
third step, and if the first step is made in the ith way and
the second step in the jth way, the third step can be made
in n3ij ways.
(a) Use a tree diagram to verify that the whole operation
can be made in

†The first subscript denotes the row to which a particular element belongs, and the second subscript denotes the column.
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n1
∑

i=1

n2i
∑

j=1

n3ij

different ways.

(b) With reference to part (b) of Exercise 1, use the for-
mula of part (a) to verify that there are 32 ways in which
the student can study at most 4 hours for the test on three
consecutive days.

4. Show that if n2i equals the constant n2 and n3ij equals
the constant n3, the formula of part (a) of Exercise 3
reduces to that of Theorem 2.

5. In a two-team basketball play-off, the winner is the first
team to win m games.
(a) Counting separately the number of play-offs requiring
m, m+ 1, . . . , and 2m− 1 games, show that the total num-
ber of different outcomes (sequences of wins and losses
by one of the teams) is

2

[

(

m− 1
m− 1

)

+
(

m
m− 1

)

+ · · ·+
(

2m− 2
m− 1

)

]

(b) How many different outcomes are there in a “2 out
of 3” play-off, a “3 out of 5” play-off, and a “4 out of 7”
play-off?

6. When n is large, n! can be approximated by means of
the expression

√
2πn

(

n

e

)n

called Stirling’s formula, where e is the base of natural
logarithms. (A derivation of this formula may be found in
the book by W. Feller cited among the references at the
end of this chapter.)
(a) Use Stirling’s formula to obtain approximations for
10! and 12!, and find the percentage errors of these
approximations by comparing them with the exact val-
ues given in table Factorials and Binomial Coefficients of
“Statistical Tables.”

(b) Use Stirling’s formula to obtain an approximation for
the number of 13-card bridge hands that can be dealt with
an ordinary deck of 52 playing cards.

7. Using Stirling’s formula (see Exercise 6) to approxi-
mate 2n! and n!, show that

(

2n
n

)

√
πn

22n
L 1

8. In some problems of occupancy theory we are con-
cerned with the number of ways in which certain distin-
guishable objects can be distributed among individuals,
urns, boxes, or cells. Find an expression for the number of
ways in which r distinguishable objects can be distributed
among n cells, and use it to find the number of ways in

which three different books can be distributed among the
12 students in an English literature class.

9. In some problems of occupancy theory we are con-
cerned with the number of ways in which certain indistin-
guishable objects can be distributed among individuals,
urns, boxes, or cells. Find an expression for the number
of ways in which r indistinguishable objects can be dis-
tributed among n cells, and use it to find the number of
ways in which a baker can sell five (indistinguishable)
loaves of bread to three customers. (Hint: We might argue
that L|LLL|L represents the case where the three cus-
tomers buy one loaf, three loaves, and one loaf, respec-
tively, and that LLLL||L represents the case where the
three customers buy four loaves, none of the loaves, and
one loaf. Thus, we must look for the number of ways
in which we can arrange the five L’s and the two verti-
cal bars.)

10. In some problems of occupancy theory we are con-
cerned with the number of ways in which certain indistin-
guishable objects can be distributed among individuals,
urns, boxes, or cells with at least one in each cell. Find
an expression for the number of ways in which r indistin-
guishable objects can be distributed among n cells with
at least one in each cell, and rework the numerical part
of Exercise 9 with each of the three customers getting at
least one loaf of bread.

11. Construct the seventh and eighth rows of Pascal’s tri-
angle and write the binomial expansions of (x+ y)6 and
(x+ y)7.

12. Prove Theorem 11 by expressing all the binomial
coefficients in terms of factorials and then simplifying
algebraically.

13. Expressing the binomial coefficients in terms of fac-
torials and simplifying algebraically, show that

(a)

(

n
r

)

=
n− r+ 1

r
·
(

n
r− 1

)

;

(b)

(

n
r

)

=
n

n− r
·
(

n− 1
r

)

;

(c) n

(

n− 1
r

)

= (r+ 1)

(

n
r+ 1

)

.

14. Substituting appropriate values for x and y into the
formula of Theorem 9, show that

(a)

n
∑

r=0

(

n
r

)

= 2n;

(b)

n
∑

r=0

(−1)r

(

n
r

)

= 0;

(c)

n
∑

r=0

(

n
r

)

(a− 1)r = an.
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15. Repeatedly applying Theorem 11, show that

(

n
r

)

=
r+1
∑

i=1

(

n− i
r− i+ 1

)

16. Use Theorem 12 to show that

n
∑

r=0

(

n
r

)2

=
(

2n
n

)

17. Show that
n
∑

r=0

r

(

n
r

)

= n2n−1 by setting x = 1 in The-

orem 9, then differentiating the expressions on both sides
with respect to y, and finally substituting y = 1.

18. Rework Exercise 17 by making use of part (a) of
Exercise 14 and part (c) of Exercise 13.

19. If n is not a positive integer or zero, the binomial
expansion of (1+ y)n yields, for −1 < y < 1, the infi-
nite series

1+
(

n
1

)

y+
(

n
2

)

y2+
(

n
3

)

y3+ · · ·+
(

n
r

)

yr+ · · ·

where

(

n
r

)

=
n(n− 1) · . . . · (n− r+ 1)

r!
for r = 1, 2, 3, . . . .

Use this generalized definition of binomial coefficients
to evaluate

(a)

(

1
2
4

)

and

(

−3
3

)

;

(b)
√

5 writing
√

5 = 2(1+ 1
4 )1/2 and using the first four

terms of the binomial expansion of (1+ 1
4 )1/2.

20. With reference to the generalized definition of bino-
mial coefficients in Exercise 19, show that

(a)

(

−1
r

)

= (−1)r;

(b)

(

−n
r

)

= (−1)r

(

n+ r− 1
r

)

for n > 0.

21. Find the coefficient of x2y3z3 in the expansion of
(x+ y+ z)8.

22. Find the coefficient of x3y2z3w in the expansion of
(2x+ 3y− 4z+w)9.

23. Show that

(

n
n1, n2, . . . , nk

)

=
(

n− 1
n1− 1, n2, . . . , nk

)

+
(

n− 1
n1, n2− 1, . . . , nk

)

+ · · ·

+
(

n− 1
n1, n2, . . . , nk− 1

)

by expressing all these multinomial coefficients in terms
of factorials and simplifying algebraically.

4 The Theory in Practice

Applications of the preceding theory of combinatorial methods and binomial coeffi-
cients are quite straightforward, and a variety of them have been given in Sections 2
and 3. The following examples illustrate further applications of this theory.

EXAMPLE 24

An assembler of electronic equipment has 20 integrated-circuit chips on her table,
and she must solder three of them as part of a larger component. In how many ways
can she choose the three chips for assembly?

Solution

Using Theorem 6, we obtain the result

20P3 = 20!/17! = 20 · 19 · 18 = 6,840

EXAMPLE 25

A lot of manufactured goods, presented for sampling inspection, contains 16 units.
In how many ways can 4 of the 16 units be selected for inspection?

 &



Introduction

Solution

According to Theorem 7,

(

16
4

)

= 16!/4!12! = 16 · 15 · 14 · 13/4 · 3 · 2 · 1 = 1,092 ways

Applied Exercises SECS. 1–4

24. A thermostat will call for heat 0, 1, or 2 times a night.
Construct a tree diagram to show that there are 10 differ-
ent ways that it can turn on the furnace for a total of 6
times over 4 nights.

25. On August 31 there are five wild-card terms in the
American League that can make it to the play-offs, and
only two will win spots. Draw a tree diagram which shows
the various possible play-off wild-card teams.

26. There are four routes, A, B, C, and D, between a per-
son’s home and the place where he works, but route B
is one-way, so he cannot take it on the way to work, and
route C is one-way, so he cannot take it on the way home.
(a) Draw a tree diagram showing the various ways the
person can go to and from work.

(b) Draw a tree diagram showing the various ways he
can go to and from work without taking the same route
both ways.

27. A person with $2 in her pocket bets $1, even money,
on the flip of a coin, and she continues to bet $1 as long
as she has any money. Draw a tree diagram to show the
various things that can happen during the first four flips
of the coin. After the fourth flip of the coin, in how many
of the cases will she be
(a) exactly even;

(b) exactly $2 ahead?

28. The pro at a golf course stocks two identical sets of
women’s clubs, reordering at the end of each day (for
delivery early the next morning) if and only if he has sold
them both. Construct a tree diagram to show that if he
starts on a Monday with two sets of the clubs, there are
altogether eight different ways in which he can make sales
on the first two days of that week.

29. Suppose that in a baseball World Series (in which the
winner is the first team to win four games) the National
League champion leads the American League champion
three games to two. Construct a tree diagram to show the
number of ways in which these teams may win or lose the
remaining game or games.

30. If the NCAA has applications from six universities
for hosting its intercollegiate tennis championships in two

consecutive years, in how many ways can they select the
hosts for these championships
(a) if they are not both to be held at the same university;

(b) if they may both be held at the same university?

31. Counting the number of outcomes in games of chance
has been a popular pastime for many centuries. This was
of interest not only because of the gambling that was
involved, but also because the outcomes of games of
chance were often interpreted as divine intent. Thus, it
was just about a thousand years ago that a bishop in what
is now Belgium determined that there are 56 different
ways in which three dice can fall provided one is inter-
ested only in the overall result and not in which die does
what. He assigned a virtue to each of these possibilities
and each sinner had to concentrate for some time on the
virtue that corresponded to his cast of the dice.
(a) Find the number of ways in which three dice can all
come up with the same number of points.

(b) Find the number of ways in which two of the three
dice can come up with the same number of points, while
the third comes up with a different number of points.

(c) Find the number of ways in which all three of the dice
can come up with a different number of points.

(d) Use the results of parts (a), (b), and (c) to verify
the bishop’s calculations that there are altogether 56
possibilities.

32. In a primary election, there are four candidates for
mayor, five candidates for city treasurer, and two candi-
dates for county attorney.
(a) In how many ways can a voter mark his ballot for all
three of these offices?

(b) In how many ways can a person vote if he exercises
his option of not voting for a candidate for any or all of
these offices?

33. The five finalists in the Miss Universe contest are Miss
Argentina, Miss Belgium, Miss U.S.A., Miss Japan, and
Miss Norway. In how many ways can the judges choose
(a) the winner and the first runner-up;

(b) the winner, the first runner-up, and the second
runner-up?
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34. A multiple-choice test consists of 15 questions, each
permitting a choice of three alternatives. In how many dif-
ferent ways can a student check off her answers to these
questions?

35. Determine the number of ways in which a distributor
can choose 2 of 15 warehouses to ship a large order.

36. The price of a European tour includes four stopovers
to be selected from among 10 cities. In how many differ-
ent ways can one plan such a tour
(a) if the order of the stopovers matters;

(b) if the order of the stopovers does not matter?

37. A carton of 15 light bulbs contains one that is defec-
tive. In how many ways can an inspector choose 3 of the
bulbs and
(a) get the one that is defective;

(b) not get the one that is defective?

38. In how many ways can a television director sched-
ule a sponsor’s six different commercials during the six
time slots allocated to commercials during a two-hour
program?

39. In how many ways can the television director of Exer-
cise 38 fill the six time slots for commercials if there are
three different sponsors and the commercial for each is to
be shown twice?

40. In how many ways can five persons line up to get on
a bus? In how many ways can they line up if two of the
persons refuse to follow each other?

41. In how many ways can eight persons form a circle for
a folk dance?

42. How many permutations are there of the letters in the
word
(a) “great”;

(b) “greet”?

43. How many distinct permutations are there of the let-
ters in the word “statistics”? How many of these begin
and end with the letter s?

44. A college team plays 10 football games during a sea-
son. In how many ways can it end the season with five
wins, four losses, and one tie?

45. If eight persons are having dinner together, in how
many different ways can three order chicken, four order
steak, and one order lobster?

46. In Example 4 we showed that a true–false test consist-
ing of 20 questions can be marked in 1,048,576 different
ways. In how many ways can each question be marked
true or false so that

(a) 7 are right and 13 are wrong;

(b) 10 are right and 10 are wrong;

(c) at least 17 are right?

47. Among the seven nominees for two vacancies on a
city council are three men and four women. In how many
ways can these vacancies be filled
(a) with any two of the seven nominees;

(b) with any two of the four women;

(c) with one of the men and one of the women?

48. A shipment of 10 television sets includes three that
are defective. In how many ways can a hotel purchase
four of these sets and receive at least two of the defective
sets?

49. Ms. Jones has four skirts, seven blouses, and three
sweaters. In how many ways can she choose two of the
skirts, three of the blouses, and one of the sweaters to take
along on a trip?

50. How many different bridge hands are possible con-
taining five spades, three diamonds, three clubs, and two
hearts?

51. Find the number of ways in which one A, three B’s,
two C’s, and one F can be distributed among seven stu-
dents taking a course in statistics.

52. An art collector, who owns 10 paintings by famous
artists, is preparing her will. In how many different ways
can she leave these paintings to her three heirs?

53. A baseball fan has a pair of tickets for six different
home games of the Chicago Cubs. If he has five friends
who like baseball, in how many different ways can he take
one of them along to each of the six games?

54. At the end of the day, a bakery gives everything that
is unsold to food banks for the needy. If it has 12 apple
pies left at the end of a given day, in how many different
ways can it distribute these pies among six food banks for
the needy?

55. With reference to Exercise 54, in how many differ-
ent ways can the bakery distribute the 12 apple pies
if each of the six food banks is to receive at least
one pie?

56. On a Friday morning, the pro shop of a tennis club
has 14 identical cans of tennis balls. If they are all sold
by Sunday night and we are interested only in how many
were sold on each day, in how many different ways could
the tennis balls have been sold on Friday, Saturday, and
Sunday?

57. Rework Exercise 56 given that at least two of the cans
of tennis balls were sold on each of the three days.
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Answers to Odd-Numbered Exercises

1 (a)

n
∑

i=1

n2ni
.

5 (b) 6, 20, and 70.

9

(

r+n− 1
r

)

and 21.

11 Seventh row: 1, 6, 15, 20, 15, 6, 1; Eighth row: 1, 7, 21, 35,
35, 27, 7, 1.

19 (a) −15
384 and −10; (b) 2.230.

21 560.

27 (a) 5; (b) 4.

31 (a) 6; (b) 30; (c) 20; (d) 56.

33 (a) 20; (b) 60.

35 (a) 105.

37 (a) 91; (b) 364.

39 90.

41 5040.

43 50,400 and 3360.

45 280.

47 (a) 21; (b) 6; (c) 12.

49 630.

51 420.

53 15,625.

55 462.

57 45.
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1 Introduction Historically, the oldest way of defining probabilities, the classical probability con-

cept, applies when all possible outcomes are equally likely, as is presumably the case
in most games of chance. We can then say that if there are N equally likely possibili-

ties, of which one must occur and n are regarded as favorable, or as a “success,” then

the probability of a “success” is given by the ratio n
N .

EXAMPLE 1

What is the probability of drawing an ace from an ordinary deck of 52 playing cards?

Solution

Since there are n = 4 aces among the N = 52 cards, the probability of drawing
an ace is 4

52 = 1
13 . (It is assumed, of course, that each card has the same chance of

being drawn.)

Although equally likely possibilities are found mostly in games of chance, the
classical probability concept applies also in a great variety of situations where gam-
bling devices are used to make random selections—when office space is assigned to
teaching assistants by lot, when some of the families in a township are chosen in such
a way that each one has the same chance of being included in a sample study, when
machine parts are chosen for inspection so that each part produced has the same
chance of being selected, and so forth.

A major shortcoming of the classical probability concept is its limited applica-
bility, for there are many situations in which the possibilities that arise cannot all
be regarded as equally likely. This would be the case, for instance, if we are con-
cerned with the question whether it will rain on a given day, if we are concerned
with the outcome of an election, or if we are concerned with a person’s recovery
from a disease.

Among the various probability concepts, most widely held is the frequency inter-

pretation, according to which the probability of an event (outcome or happening) is
the proportion of the time that events of the same kind will occur in the long run.
If we say that the probability is 0.84 that a jet from Los Angeles to San Francisco
will arrive on time, we mean (in accordance with the frequency interpretation) that
such flights arrive on time 84 percent of the time. Similarly, if the weather bureau

From Chapter 2 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright  2014 by Pearson Education, Inc.
All rights reserved.
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predicts that there is a 30 percent chance for rain (that is, a probability of 0.30), this
means that under the same weather conditions it will rain 30 percent of the time.
More generally, we say that an event has a probability of, say, 0.90, in the same sense
in which we might say that our car will start in cold weather 90 percent of the time.
We cannot guarantee what will happen on any particular occasion—the car may start
and then it may not—but if we kept records over a long period of time, we should
find that the proportion of “successes” is very close to 0.90.

The approach to probability that we shall use in this chapter is the axiomatic

approach, in which probabilities are defined as “mathematical objects” that behave
according to certain well-defined rules. Then, any one of the preceding probability
concepts, or interpretations, can be used in applications as long as it is consistent
with these rules.

2 Sample Spaces

Since all probabilities pertain to the occurrence or nonoccurrence of events, let us
explain first what we mean here by event and by the related terms experiment, out-

come, and sample space.
It is customary in statistics to refer to any process of observation or measure-

ment as an experiment. In this sense, an experiment may consist of the simple pro-
cess of checking whether a switch is turned on or off; it may consist of counting the
imperfections in a piece of cloth; or it may consist of the very complicated process
of determining the mass of an electron. The results one obtains from an experi-
ment, whether they are instrument readings, counts, “yes” or “no” answers, or values
obtained through extensive calculations, are called the outcomes of the experiment.

DEFINITION 1. SAMPLE SPACE. The set of all possible outcomes of an experiment is

called the sample space and it is usually denoted by the letter S. Each outcome

in a sample space is called an element of the sample space, or simply a sample
point.

If a sample space has a finite number of elements, we may list the elements in
the usual set notation; for instance, the sample space for the possible outcomes of
one flip of a coin may be written

S = {H, T}

where H and T stand for head and tail. Sample spaces with a large or infinite number
of elements are best described by a statement or rule; for example, if the possible
outcomes of an experiment are the set of automobiles equipped with satellite radios,
the sample space may be written

S = {x|x is an automobile with a satellite radio}

This is read “S is the set of all x such that x is an automobile with a satellite radio.”
Similarly, if S is the set of odd positive integers, we write

S = {2k + 1|k = 0, 1, 2, . . .}

How we formulate the sample space for a given situation will depend on the
problem at hand. If an experiment consists of one roll of a die and we are interested
in which face is turned up, we would use the sample space
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S1 = {1, 2, 3, 4, 5, 6}

However, if we are interested only in whether the face turned up is even or odd, we
would use the sample space

S2 = {even, odd}

This demonstrates that different sample spaces may well be used to describe an
experiment. In general, it is desirable to use sample spaces whose elements cannot

be divided (partitioned or separated) into more primitive or more elementary kinds

of outcomes. In other words, it is preferable that an element of a sample space not

represent two or more outcomes that are distinguishable in some way. Thus, in the
preceding illustration S1 would be preferable to S2.

EXAMPLE 2

Describe a sample space that might be appropriate for an experiment in which we
roll a pair of dice, one red and one green. (The different colors are used to emphasize
that the dice are distinct from one another.)

Solution

The sample space that provides the most information consists of the 36 points given by

S1 = {(x, y)|x = 1, 2, . . . , 6; y = 1, 2, . . . , 6}

where x represents the number turned up by the red die and y represents the number
turned up by the green die. A second sample space, adequate for most purposes
(though less desirable in general as it provides less information), is given by

S2 = {2, 3, 4, . . . , 12}

where the elements are the totals of the numbers turned up by the two dice.

Sample spaces are usually classified according to the number of elements that
they contain. In the preceding example the sample spaces S1 and S2 contained a
finite number of elements; but if a coin is flipped until a head appears for the first
time, this could happen on the first flip, the second flip, the third flip, the fourth flip,
. . ., and there are infinitely many possibilities. For this experiment we obtain the
sample space

S = {H, TH, TTH, TTTH, TTTTH, . . .}

with an unending sequence of elements. But even here the number of elements can
be matched one-to-one with the whole numbers, and in this sense the sample space
is said to be countable. If a sample space contains a finite number of elements or an
infinite though countable number of elements, it is said to be discrete.

The outcomes of some experiments are neither finite nor countably infinite. Such
is the case, for example, when one conducts an investigation to determine the dis-
tance that a certain make of car will travel over a prescribed test course on 5 liters
of gasoline. If we assume that distance is a variable that can be measured to any
desired degree of accuracy, there is an infinity of possibilities (distances) that can-
not be matched one-to-one with the whole numbers. Also, if we want to measure
the amount of time it takes for two chemicals to react, the amounts making up the
sample space are infinite in number and not countable. Thus, sample spaces need
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not be discrete. If a sample space consists of a continuum, such as all the points of
a line segment or all the points in a plane, it is said to be continuous. Continuous
sample spaces arise in practice whenever the outcomes of experiments are measure-
ments of physical properties, such as temperature, speed, pressure, length, . . ., that
are measured on continuous scales.

3 Events In many problems we are interested in results that are not given directly by a specific
element of a sample space.

EXAMPLE 3

With reference to the first sample space S1 on the previous page, describe the event
A that the number of points rolled with the die is divisible by 3.

Solution

Among 1, 2, 3, 4, 5, and 6, only 3 and 6 are divisible by 3. Therefore, A is represented
by the subset {3, 6} of the sample space S1.

EXAMPLE 4

With reference to the sample space S1 of Example 2, describe the event B that the
total number of points rolled with the pair of dice is 7.

Solution

Among the 36 possibilities, only (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1) yield
a total of 7. So, we write

B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

Note that in Figure 1 the event of rolling a total of 7 with the two dice is represented
by the set of points inside the region bounded by the dotted line.

1

2

3

4

5

6

1 2 3 4 5
Red die

Green
die

6

Figure 1. Rolling a total of 7 with a pair of dice.
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In the same way, any event (outcome or result) can be identified with a collection
of points, which constitute a subset of an appropriate sample space. Such a subset
consists of all the elements of the sample space for which the event occurs, and in
probability and statistics we identify the subset with the event.

DEFINITION 2. EVENT. An event is a subset of a sample space.

EXAMPLE 5

If someone takes three shots at a target and we care only whether each shot is a hit
or a miss, describe a suitable sample space, the elements of the sample space that
constitute event M that the person will miss the target three times in a row, and the
elements of event N that the person will hit the target once and miss it twice.

Solution

If we let 0 and 1 represent a miss and a hit, respectively, the eight possibilities (0, 0, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), and (1, 1, 1) may be displayed
as in Figure 2. Thus, it can be seen that

M = {(0, 0, 0)}

and

N = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(0, 1, 1)

(0, 1, 0)

(0, 0, 0)

(0, 0, 1)
(1, 0, 1)

(1, 1, 1)

(1, 0, 0)

(1, 1, 0)

Third
shot

First
shot

Second
shot

Figure 2. Sample space for Example 5.

EXAMPLE 6

Construct a sample space for the length of the useful life of a certain electronic
component and indicate the subset that represents the event F that the component
fails before the end of the sixth year.
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Solution

If t is the length of the component’s useful life in years, the sample space may be
written S = {t|t G 0}, and the subset F = {t|0 F t < 6} is the event that the component
fails before the end of the sixth year.

According to our definition, any event is a subset of an appropriate sample
space, but it should be observed that the converse is not necessarily true. For dis-
crete sample spaces, all subsets are events, but in the continuous case some rather
abstruse point sets must be excluded for mathematical reasons. This is discussed fur-
ther in some of the more advanced texts listed among the references at the end of
this chapter.

In many problems of probability we are interested in events that are actually
combinations of two or more events, formed by taking unions, intersections, and
complements. Although the reader must surely be familiar with these terms, let us
review briefly that, if A and B are any two subsets of a sample space S, their union
A ∪ B is the subset of S that contains all the elements that are either in A, in B,
or in both; their intersection A ∩ B is the subset of S that contains all the elements
that are in both A and B; and the complement A′ of A is the subset of S that con-
tains all the elements of S that are not in A. Some of the rules that control the
formation of unions, intersections, and complements may be found in Exercises 1
through 4.

Sample spaces and events, particularly relationships among events, are often
depicted by means of Venn diagrams, in which the sample space is represented by
a rectangle, while events are represented by regions within the rectangle, usually by
circles or parts of circles. For instance, the shaded regions of the four Venn diagrams
of Figure 3 represent, respectively, event A, the complement of event A, the union
of events A and B, and the intersection of events A and B. When we are dealing
with three events, we usually draw the circles as in Figure 4. Here, the regions are
numbered 1 through 8 for easy reference.

Figure 3. Venn diagrams.
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Figure 4. Venn diagram.

Figure 5. Diagrams showing special relationships among events.

To indicate special relationships among events, we sometimes draw diagrams
like those of Figure 5. Here, the one on the left serves to indicate that events A and
B are mutually exclusive.

DEFINITION 3. MUTUALLY EXCLUSIVE EVENTS. Two events having no elements in com-

mon are said to be mutually exclusive.

When A and B are mutually exclusive, we write A ∩ B = ∅, where ∅ denotes
the empty set, which has no elements at all. The diagram on the right serves to
indicate that A is contained in B, and symbolically we express this by writing
A ( B.

Exercises

1. Use Venn diagrams to verify that
(a) (A ∪ B)∪ C is the same event as A ∪ (B ∪ C);

(b) A ∩ (B ∪ C) is the same event as (A ∩ B)∪ (A ∩ C);

(c) A ∪ (B ∩ C) is the same event as (A ∪ B)∩ (A ∪ C).

2. Use Venn diagrams to verify the two De Morgan laws:
(a) (A ∩ B)′ = A′ ∪ B′; (b) (A ∪ B)′ = A′ ∩ B′.

3. Use Venn diagrams to verify that
(a) (A ∩ B)∪ (A ∩ B′) = A;

(b) (A ∩ B)∪ (A ∩ B′)∪ (A′ ∩ B) = A ∪ B;

(c) A ∪ (A′ ∩ B) = A ∪ B.

4. Use Venn diagrams to verify that if A is contained in
B, then A ∩ B = A and A ∩ B′ = ∅.
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4 The Probability of an Event

To formulate the postulates of probability, we shall follow the practice of denoting
events by means of capital letters, and we shall write the probability of event A as
P(A), the probability of event B as P(B), and so forth. The following postulates of
probability apply only to discrete sample spaces, S.

POSTULATE 1 The probability of an event is a nonnegative real number;
that is, P(A) G 0 for any subset A of S.

POSTULATE 2 P(S) = 1.
POSTULATE 3 If A1, A2, A3, . . ., is a finite or infinite sequence of mutually

exclusive events of S, then

P(A1 ∪ A2 ∪ A3 ∪ · · · ) = P(A1)+ P(A2)+ P(A3)+ · · ·

Postulates per se require no proof, but if the resulting theory is to be applied,
we must show that the postulates are satisfied when we give probabilities a “real”
meaning. Let us illustrate this in connection with the frequency interpretation; the
relationship between the postulates and the classical probability concept will be
discussed below, while the relationship between the postulates and subjective prob-
abilities is left for the reader to examine in Exercises 16 and 82.

Since proportions are always positive or zero, the first postulate is in complete
agreement with the frequency interpretation. The second postulate states indirectly
that certainty is identified with a probability of 1; after all, it is always assumed that
one of the possibilities in S must occur, and it is to this certain event that we assign
a probability of 1. As far as the frequency interpretation is concerned, a probability
of 1 implies that the event in question will occur 100 percent of the time or, in other
words, that it is certain to occur.

Taking the third postulate in the simplest case, that is, for two mutually exclusive
events A1 and A2, it can easily be seen that it is satisfied by the frequency interpreta-
tion. If one event occurs, say, 28 percent of the time, another event occurs 39 percent
of the time, and the two events cannot both occur at the same time (that is, they are
mutually exclusive), then one or the other will occur 28 + 39 = 67 percent of the
time. Thus, the third postulate is satisfied, and the same kind of argument applies
when there are more than two mutually exclusive events.

Before we study some of the immediate consequences of the postulates of prob-
ability, let us emphasize the point that the three postulates do not tell us how to
assign probabilities to events; they merely restrict the ways in which it can be done.

EXAMPLE 7

An experiment has four possible outcomes, A, B, C, and D, that are mutually exclu-
sive. Explain why the following assignments of probabilities are not permissible:

(a) P(A) = 0.12, P(B) = 0.63, P(C) = 0.45, P(D) = −0.20;

(b) P(A) = 9
120 , P(B) = 45

120 , P(C) = 27
120 , P(D) = 46

120 .

Solution

(a) P(D) = −0.20 violates Postulate 1;

(b) P(S) = P(A ∪ B ∪ C ∪ D) = 9
120 + 45

120 + 27
120 + 46

120 = 127
120 Z 1, and this violates

Postulate 2.
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Of course, in actual practice probabilities are assigned on the basis of past expe-
rience, on the basis of a careful analysis of all underlying conditions, on the basis
of subjective judgments, or on the basis of assumptions—sometimes the assumption
that all possible outcomes are equiprobable.

To assign a probability measure to a sample space, it is not necessary to specify
the probability of each possible subset. This is fortunate, for a sample space with as
few as 20 possible outcomes has already 220 = 1,048,576 subsets, and the number
of subsets grows very rapidly when there are 50 possible outcomes, 100 possible
outcomes, or more. Instead of listing the probabilities of all possible subsets, we
often list the probabilities of the individual outcomes, or sample points of S, and
then make use of the following theorem.

THEOREM 1. If A is an event in a discrete sample space S, then P(A) equals
the sum of the probabilities of the individual outcomes comprising A.

Proof Let O1, O2, O3, . . ., be the finite or infinite sequence of outcomes
that comprise the event A. Thus,

A = O1 ∪ O2 ∪ O3 · · ·

and since the individual outcomes, the O’s, are mutually exclusive, the
third postulate of probability yields

P(A) = P(O1)+ P(O2)+ P(O3)+ · · ·

This completes the proof.

To use this theorem, we must be able to assign probabilities to the individual
outcomes of experiments. How this is done in some special situations is illustrated
by the following examples.

EXAMPLE 8

If we twice flip a balanced coin, what is the probability of getting at least one head?

Solution

The sample space is S = {HH, HT, TH, TT}, where H and T denote head and tail.
Since we assume that the coin is balanced, these outcomes are equally likely and we
assign to each sample point the probability 1

4 . Letting A denote the event that we
will get at least one head, we get A = {HH, HT, TH} and

P(A) = P(HH)+ P(HT)+ P(TH)

=
1

4
+

1

4
+

1

4

=
3

4
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EXAMPLE 9

A die is loaded in such a way that each odd number is twice as likely to occur as each
even number. Find P(G), where G is the event that a number greater than 3 occurs
on a single roll of the die.

Solution

The sample space is S = {1, 2, 3, 4, 5, 6}. Hence, if we assign probability w to each
even number and probability 2w to each odd number, we find that 2w + w + 2w +
w + 2w + w = 9w = 1 in accordance with Postulate 2. It follows that w = 1

9 and

P(G) =
1

9
+

2

9
+

1

9
=

4

9

If a sample space is countably infinite, probabilities will have to be assigned to
the individual outcomes by means of a mathematical rule, preferably by means of a
formula or equation.

EXAMPLE 10

If, for a given experiment, O1, O2, O3, . . ., is an infinite sequence of outcomes, ver-
ify that

P(Oi) =
(

1

2

)i

for i = 1, 2, 3, . . .

is, indeed, a probability measure.

Solution

Since the probabilities are all positive, it remains to be shown that P(S) = 1. Getting

P(S) =
1

2
+

1

4
+

1

8
+

1

16
+ · · ·

and making use of the formula for the sum of the terms of an infinite geometric
progression, we find that

P(S) =
1
2

1 − 1
2

= 1

In connection with the preceding example, the word “sum” in Theorem 1 will
have to be interpreted so that it includes the value of an infinite series.

The probability measure of Example 10 would be appropriate, for example, if
Oi is the event that a person flipping a balanced coin will get a tail for the first time
on the ith flip of the coin. Thus, the probability that the first tail will come on the
third, fourth, or fifth flip of the coin is

(
1

2

)3

+
(

1

2

)4

+
(

1

2

)5

=
7

32

and the probability that the first tail will come on an odd-numbered flip of the coin is

(
1

2

)1

+
(

1

2

)3

+
(

1

2

)5

+ · · · =
1
2

1 − 1
4

=
2

3
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Here again we made use of the formula for the sum of the terms of an infinite geo-
metric progression.

If an experiment is such that we can assume equal probabilities for all the sample
points, as was the case in Example 8, we can take advantage of the following special
case of Theorem 1.

THEOREM 2. If an experiment can result in any one of N different equally
likely outcomes, and if n of these outcomes together constitute event A,
then the probability of event A is

P(A) =
n

N

Proof Let O1, O2, . . . , ON represent the individual outcomes in S, each

with probability
1

N
. If A is the union of n of these mutually exclusive

outcomes, and it does not matter which ones, then

P(A) = P(O1 ∪ O2 ∪ · · · ∪ On)

= P(O1)+ P(O2)+ · · · + P(On)

=
1

N
+

1

N
+ · · · +

1

N
︸ ︷︷ ︸

n terms

=
n

N

Observe that the formula P(A) =
n

N
of Theorem 2 is identical with the one for

the classical probability concept (see below). Indeed, what we have shown here is
that the classical probability concept is consistent with the postulates of
probability—it follows from the postulates in the special case where the individual
outcomes are all equiprobable.

EXAMPLE 11

A five-card poker hand dealt from a deck of 52 playing cards is said to be a full house
if it consists of three of a kind and a pair. If all the five-card hands are equally likely,
what is the probability of being dealt a full house?

Solution

The number of ways in which we can be dealt a particular full house, say three kings

and two aces, is
(

4
3

) (
4
2

)

. Since there are 13 ways of selecting the face value for the

three of a kind and for each of these there are 12 ways of selecting the face value for
the pair, there are altogether

n = 13 · 12 ·
(

4
3

)(

4
2

)

different full houses. Also, the total number of equally likely five-card poker
hands is
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N =
(

52
5

)

and it follows by Theorem 2 that the probability of getting a full house is

P(A) =
n

N
=

13 · 12

(

4
3

)(

4
2

)

(

52
5

) = 0.0014

5 Some Rules of Probability

Based on the three postulates of probability, we can derive many other rules that
have important applications. Among them, the next four theorems are immediate
consequences of the postulates.

THEOREM 3. If A and A′ are complementary events in a sample space S, then

P(A′) = 1 − P(A)

Proof In the second and third steps of the proof that follows, we make
use of the definition of a complement, according to which A and A′ are
mutually exclusive and A ∪ A′ = S. Thus, we write

1 = P(S) (by Postulate 2)

= P(A ∪ A′)

= P(A)+ P(A′) (by Postulate 3)

and it follows that P(A′) = 1 − P(A).

In connection with the frequency interpretation, this result implies that if an
event occurs, say, 37 percent of the time, then it does not occur 63 percent of
the time.

THEOREM 4. P(∅) = 0 for any sample space S.

Proof Since S and ∅ are mutually exclusive and S ∪∅ = S in accordance
with the definition of the empty set ∅, it follows that

P(S) = P(S ∪∅)

= P(S)+ P(∅) (by Postulate 3)

and, hence, that P(∅) = 0.

It is important to note that it does not necessarily follow from P(A) = 0 that
A = ∅. In practice, we often assign 0 probability to events that, in colloquial terms,

$ 
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would not happen in a million years. For instance, there is the classical example that
we assign a probability of 0 to the event that a monkey set loose on a typewriter will
type Plato’s Republic word for word without a mistake. The fact that P(A) = 0 does
not imply that A = ∅ is of relevance, especially, in the continuous case.

THEOREM 5. If A and B are events in a sample space S and A ( B, then
P(A) F P(B).

Proof Since A ( B, we can write

B = A ∪ (A′ ∩ B)

as can easily be verified by means of a Venn diagram. Then, since A and
A′ ∩ B are mutually exclusive, we get

P(B) = P(A)+ P(A′ ∩ B) (by Postulate 3)

G P(A) (by Postulate 1)

In words, this theorem states that if A is a subset of B, then P(A) cannot be
greater than P(B). For instance, the probability of drawing a heart from an ordinary
deck of 52 playing cards cannot be greater than the probability of drawing a red card.
Indeed, the probability of drawing a heart is 1

4 , compared with 1
2 , the probability of

drawing a red card.

THEOREM 6. 0 F P(A) F 1 for any event A.

Proof Using Theorem 5 and the fact that ∅( A ( S for any event A in S,
we have

P(∅) F P(A) F P(S)

Then, P(∅) = 0 and P(S) = 1 leads to the result that

0 F P(A) F 1

The third postulate of probability is sometimes referred to as the special addi-

tion rule; it is special in the sense that events A1, A2, A3, . . ., must all be mutually
exclusive. For any two events A and B, there exists the general addition rule, or the
inclusion–exclusion principle:

THEOREM 7. If A and B are any two events in a sample space S, then

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B)

Proof Assigning the probabilities a, b, and c to the mutually exclusive
events A ∩ B, A ∩ B′, and A′ ∩ B as in the Venn diagram of Figure 6, we
find that

P(A ∪ B) = a + b + c

= (a + b)+ (c + a)− a

= P(A)+ P(B)− P(A ∩ B)

$$
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A B

b a c

Figure 6. Venn diagram for proof of Theorem 7.

EXAMPLE 12

In a large metropolitan area, the probabilities are 0.86, 0.35, and 0.29, respectively,
that a family (randomly chosen for a sample survey) owns a color television set, a
HDTV set, or both kinds of sets. What is the probability that a family owns either or
both kinds of sets?

Solution

If A is the event that a family in this metropolitan area owns a color television set
and B is the event that it owns a HDTV set, we have P(A) = 0.86, P(B) = 0.35, and
P(A ∩ B) = 0.29; substitution into the formula of Theorem 7 yields

P(A ∪ B) = 0.86 + 0.35 − 0.29

= 0.92

EXAMPLE 13

Near a certain exit of I-17, the probabilities are 0.23 and 0.24, respectively, that
a truck stopped at a roadblock will have faulty brakes or badly worn tires. Also,
the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes
and/or badly worn tires. What is the probability that a truck stopped at this roadblock
will have faulty brakes as well as badly worn tires?

Solution

If B is the event that a truck stopped at the roadblock will have faulty brakes and T

is the event that it will have badly worn tires, we have P(B) = 0.23, P(T) = 0.24, and
P(B ∪ T) = 0.38; substitution into the formula of Theorem 7 yields

0.38 = 0.23 + 0.24 − P(B ∩ T)

Solving for P(B ∩ T), we thus get

P(B ∩ T) = 0.23 + 0.24 − 0.38 = 0.09

Repeatedly using the formula of Theorem 7, we can generalize this addition rule
so that it will apply to any number of events. For instance, for three events we obtain
the following theorem.
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THEOREM 8. If A, B, and C are any three events in a sample space S, then

P(A ∪ B ∪ C) = P(A)+ P(B)+ P(C)− P(A ∩ B)− P(A ∩ C)

− P(B ∩ C)+ P(A ∩ B ∩ C)

Proof Writing A ∪ B ∪ C as A ∪ (B ∪ C) and using the formula of Theo-
rem 7 twice, once for P[A ∪ (B ∪ C)] and once for P(B ∪ C), we get

P(A ∪ B ∪ C) = P[A ∪ (B ∪ C)]

= P(A)+ P(B ∪ C)− P[A ∩ (B ∪ C)]

= P(A)+ P(B)+ P(C)− P(B ∩ C)

− P[A ∩ (B ∪ C)]

Then, using the distributive law that the reader was asked to verify in part
(b) of Exercise 1, we find that

P[A ∩ (B ∪ C)] = P[(A ∩ B)∪ (A ∩ C)]

= P(A ∩ B)+ P(A ∩ C)− P[(A ∩ B)∩ (A ∩ C)]

= P(A ∩ B)+ P(A ∩ C)− P(A ∩ B ∩ C)

and hence that

P(A ∪ B ∪ C) = P(A)+ P(B)+ P(C)− P(A ∩ B)− P(A ∩ C)

− P(B ∩ C)+ P(A ∩ B ∩ C)

(In Exercise 12 the reader will be asked to give an alternative proof of this the-
orem, based on the method used in the text to prove Theorem 7.)

EXAMPLE 14

If a person visits his dentist, suppose that the probability that he will have his teeth
cleaned is 0.44, the probability that he will have a cavity filled is 0.24, the probability
that he will have a tooth extracted is 0.21, the probability that he will have his teeth
cleaned and a cavity filled is 0.08, the probability that he will have his teeth cleaned
and a tooth extracted is 0.11, the probability that he will have a cavity filled and
a tooth extracted is 0.07, and the probability that he will have his teeth cleaned,
a cavity filled, and a tooth extracted is 0.03. What is the probability that a person
visiting his dentist will have at least one of these things done to him?

Solution

If C is the event that the person will have his teeth cleaned, F is the event that he
will have a cavity filled, and E is the event that he will have a tooth extracted, we
are given P(C) = 0.44, P(F) = 0.24, P(E) = 0.21, P(C ∩ F) = 0.08, P(C ∩ E) = 0.11,
P(F ∩ E) = 0.07, and P(C ∩ F ∩ E) = 0.03, and substitution into the formula of
Theorem 8 yields

P(C ∪ F ∪ E) = 0.44 + 0.24 + 0.21 − 0.08 − 0.11 − 0.07 + 0.03

= 0.66
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Exercises

5. Use parts (a) and (b) of Exercise 3 to show that
(a) P(A) G P(A ∩ B);

(b) P(A) F P(A ∪ B).

6. Referring to Figure 6, verify that

P(A ∩ B′) = P(A)− P(A ∩ B)

7. Referring to Figure 6 and letting P(A′ ∩ B′) = d, ver-
ify that

P(A′ ∩ B′) = 1 − P(A)− P(B)+ P(A ∩ B)

8. The event that “A or B but not both” will occur can be
written as

(A ∩ B′)∪ (A′ ∩ B)

Express the probability of this event in terms of P(A),
P(B), and P(A ∩ B).

9. Use the formula of Theorem 7 to show that
(a) P(A ∩ B) F P(A)+ P(B);

(b) P(A ∩ B) G P(A)+ P(B)− 1.

10. Use the Venn diagram of Figure 7 with the prob-
abilities a, b, c, d, e, f , and g assigned to A ∩ B ∩ C,
A ∩ B ∩ C′, . . ., and A ∩ B′ ∩ C′ to show that if P(A) =
P(B) = P(C) = 1, then P(A ∩ B ∩ C) = 1. [Hint: Start
with the argument that since P(A) = 1, it follows that
e = c = f = 0.]

11. Give an alternative proof of Theorem 7 by making
use of the relationships A ∪ B = A ∪ (A′ ∩ B) and B =
(A ∩ B)∪ (A′ ∩ B).

12. Use the Venn diagram of Figure 7 and the method by
which we proved Theorem 7 to prove Theorem 8.

A B

C

g e

d c

b

a

f

Figure 7. Venn diagram for Exercises 10, 12, and 13.

13. Duplicate the method of proof used in Exercise 12 to
show that

P(A ∪ B ∪ C ∪ D) = P(A)+ P(B)+ P(C)+ P(D)

− P(A ∩ B)− P(A ∩ C)− P(A ∩ D)

− P(B ∩ C)− P(B ∩ D)− P(C ∩ D)

+ P(A ∩ B ∩ C)+ P(A ∩ B ∩ D)

+ P(A ∩ C ∩ D)+ P(B ∩ C ∩ D)

− P(A ∩ B ∩ C ∩ D)

(Hint: With reference to the Venn diagram of Figure 7,
divide each of the eight regions into two parts, designat-
ing one to be inside D and the other outside D and letting
a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, and p be the probabili-
ties associated with the resulting 16 regions.)

14. Prove by induction that

P(E1 ∪ E2 ∪ · · · ∪ En) F

n
∑

i=1

P(Ei)

for any finite sequence of events E1, E2, . . ., and En.

15. The odds that an event will occur are given by the
ratio of the probability that the event will occur to the
probability that it will not occur, provided neither proba-
bility is zero. Odds are usually quoted in terms of positive
integers having no common factor. Show that if the odds
are A to B that an event will occur, its probability is

p =
A

A + B

16. Subjective probabilities may be determined by expos-
ing persons to risk-taking situations and finding the odds
at which they would consider it fair to bet on the outcome.
The odds are then converted into probabilities by means
of the formula of Exercise 15. For instance, if a person
feels that 3 to 2 are fair odds that a business venture will
succeed (or that it would be fair to bet $30 against $20

that it will succeed), the probability is
3

3 + 2
= 0.6 that

the business venture will succeed. Show that if subjective
probabilities are determined in this way, they satisfy
(a) Postulate 1;

(b) Postulate 2.

See also Exercise 82.
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6 Conditional Probability

Difficulties can easily arise when probabilities are quoted without specification of
the sample space. For instance, if we ask for the probability that a lawyer makes
more than $75,000 per year, we may well get several different answers, and they may
all be correct. One of them might apply to all those who are engaged in the private
practice of law, another might apply to lawyers employed by corporations, and so
forth. Since the choice of the sample space (that is, the set of all possibilities under
consideration) is by no means always self-evident, it often helps to use the symbol
P(A|S) to denote the conditional probability of event A relative to the sample space
S or, as we also call it, “the probability of A given S.” The symbol P(A|S) makes it
explicit that we are referring to a particular sample space S, and it is preferable to
the abbreviated notation P(A) unless the tacit choice of S is clearly understood. It is
also preferable when we want to refer to several sample spaces in the same example.
If A is the event that a person makes more than $75,000 per year, G is the event that
a person is a law school graduate, L is the event that a person is licensed to practice
law, and E is the event that a person is actively engaged in the practice of law, then
P(A|G) is the probability that a law school graduate makes more than $75,000 per
year, P(A|L) is the probability that a person licensed to practice law makes more
than $75,000 per year, and P(A|E) is the probability that a person actively engaged
in the practice of law makes more than $75,000 per year.

Some ideas connected with conditional probabilities are illustrated in the fol-
lowing example.

EXAMPLE 15

A consumer research organization has studied the services under warranty provided
by the 50 new-car dealers in a certain city, and its findings are summarized in the
following table.

Good service

under warranty

Poor service

under warranty

In business 10 years or more 16 4

In business less than 10 years 10 20

If a person randomly selects one of these new-car dealers, what is the probability that
he gets one who provides good service under warranty? Also, if a person randomly
selects one of the dealers who has been in business for 10 years or more, what is the
probability that he gets one who provides good service under warranty?

Solution

By “randomly” we mean that, in each case, all possible selections are equally likely,
and we can therefore use the formula of Theorem 2. If we let G denote the selection
of a dealer who provides good service under warranty, and if we let n(G) denote
the number of elements in G and n(S) the number of elements in the whole sample
space, we get

P(G) =
n(G)

n(S)
=

16 + 10

50
= 0.52

This answers the first question.
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For the second question, we limit ourselves to the reduced sample space, which
consists of the first line of the table, that is, the 16 + 4 = 20 dealers who have been
in business 10 years or more. Of these, 16 provide good service under warranty, and
we get

P(G|T) =
16

20
= 0.80

where T denotes the selection of a dealer who has been in business 10 years or
more. This answers the second question and, as should have been expected, P(G|T)

is considerably higher than P(G).

Since the numerator of P(G|T) is n(T ∩ G) = 16 in the preceding example, the
number of dealers who have been in business for 10 years or more and provide good
service under warranty, and the denominator is n(T), the number of dealers who
have been in business 10 years or more, we can write symbolically

P(G|T) =
n(T ∩ G)

n(T)

Then, if we divide the numerator and the denominator by n(S), the total number of
new-car dealers in the given city, we get

P(G|T) =
n(T∩G)

n(S)

n(T)
n(S)

=
P(T ∩ G)

P(T)

and we have, thus, expressed the conditional probability P(G|T) in terms of two
probabilities defined for the whole sample space S.

Generalizing from the preceding, let us now make the following definition of
conditional probability.

DEFINITION 4. CONDITIONAL PROBABILITY. If A and B are any two events in a sample

space S and P(A)Z 0, the conditional probability of B given A is

P(B|A) =
P(A ∩ B)

P(A)

EXAMPLE 16

With reference to Example 15, what is the probability that one of the dealers who
has been in business less than 10 years will provide good service under warranty?

Solution

Since P(T ′ ∩ G) =
10

50
= 0.20 and P(T ′) =

10 + 20

50
= 0.60, substitution into the

formula yields

P(G|T ′) =
P(T ′ ∩ G)

P(T ′)
=

0.20

0.60
=

1

3
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Although we introduced the formula for P(B|A) by means of an example in
which the possibilities were all equally likely, this is not a requirement for its use.

EXAMPLE 17

With reference to the loaded die of Example 9, what is the probability that the num-
ber of points rolled is a perfect square? Also, what is the probability that it is a
perfect square given that it is greater than 3?

Solution

If A is the event that the number of points rolled is greater than 3 and B is the event
that it is a perfect square, we have A = {4, 5, 6}, B = {1, 4}, and A ∩ B = {4}. Since
the probabilities of rolling a 1, 2, 3, 4, 5, or 6 with the die are 2

9 , 1
9 , 2

9 , 1
9 , 2

9 , and 1
9 , we

find that the answer to the first question is

P(B) =
2

9
+

1

9
=

1

3

To determine P(B|A), we first calculate

P(A ∩ B) =
1

9
and P(A) =

1

9
+

2

9
+

1

9
=

4

9

Then, substituting into the formula of Definition 4, we get

P(B|A) =
P(A ∩ B)

P(A)
=

1

9
4

9

=
1

4

To verify that the formula of Definition 4 has yielded the “right” answer in the
preceding example, we have only to assign probability v to the two even numbers
in the reduced sample space A and probability 2v to the odd number, such that the
sum of the three probabilities is equal to 1. We thus have v + 2v + v = 1, v = 1

4 , and,

hence, P(B|A) = 1
4 as before.

EXAMPLE 18

A manufacturer of airplane parts knows from past experience that the probability
is 0.80 that an order will be ready for shipment on time, and it is 0.72 that an order
will be ready for shipment on time and will also be delivered on time. What is the
probability that such an order will be delivered on time given that it was ready for
shipment on time?

Solution

If we let R stand for the event that an order is ready for shipment on time and D be
the event that it is delivered on time, we have P(R) = 0.80 and P(R ∩ D) = 0.72, and
it follows that

P(D|R) =
P(R ∩ D)

P(R)
=

0.72

0.80
= 0.90
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Thus, 90 percent of the shipments will be delivered on time provided they are shipped
on time. Note that P(R|D), the probability that a shipment that is delivered on time
was also ready for shipment on time, cannot be determined without further informa-
tion; for this purpose we would also have to know P(D).

If we multiply the expressions on both sides of the formula of Definition 4 by
P(A), we obtain the following multiplication rule.

THEOREM 9. If A and B are any two events in a sample space S and P(A)Z 0,
then

P(A ∩ B) = P(A) · P(B|A)

In words, the probability that A and B will both occur is the product of the probabil-
ity of A and the conditional probability of B given A. Alternatively, if P(B)Z 0, the
probability that A and B will both occur is the product of the probability of B and
the conditional probability of A given B; symbolically,

P(A ∩ B) = P(B) · P(A|B)

To derive this alternative multiplication rule, we interchange A and B in the formula
of Theorem 9 and make use of the fact that A ∩ B = B ∩ A.

EXAMPLE 19

If we randomly pick two television sets in succession from a shipment of 240 tele-
vision sets of which 15 are defective, what is the probability that they will both
be defective?

Solution

If we assume equal probabilities for each selection (which is what we mean by “ran-
domly” picking the sets), the probability that the first set will be defective is 15

240 , and
the probability that the second set will be defective given that the first set is defec-
tive is 14

239 . Thus, the probability that both sets will be defective is 15
240 · 14

239 = 7
1,912 .

This assumes that we are sampling without replacement; that is, the first set is not
replaced before the second set is selected.

EXAMPLE 20

Find the probabilities of randomly drawing two aces in succession from an ordinary
deck of 52 playing cards if we sample

(a) without replacement;

(b) with replacement.

Solution

(a) If the first card is not replaced before the second card is drawn, the probability
of getting two aces in succession is

4

52
·

3

51
=

1

221
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(b) If the first card is replaced before the second card is drawn, the corresponding
probability is

4

52
·

4

52
=

1

169

In the situations described in the two preceding examples there is a definite
temporal order between the two events A and B. In general, this need not be the
case when we write P(A|B) or P(B|A). For instance, we could ask for the probabil-
ity that the first card drawn was an ace given that the second card drawn (without
replacement) is an ace—the answer would also be 3

51 .
Theorem 9 can easily be generalized so that it applies to more than two events;

for instance, for three events we have the following theorem.

THEOREM 10. If A, B, and C are any three events in a sample space S such
that P(A ∩ B)Z 0, then

P(A ∩ B ∩ C) = P(A) · P(B|A) · P(C|A ∩ B)

Proof Writing A ∩ B ∩ C as (A ∩ B)∩ C and using the formula of Theo-
rem 9 twice, we get

P(A ∩ B ∩ C) = P[(A ∩ B)∩ C]

= P(A ∩ B) · P(C|A ∩ B)

= P(A) · P(B|A) · P(C|A ∩ B)

EXAMPLE 21

A box of fuses contains 20 fuses, of which 5 are defective. If 3 of the fuses are selected
at random and removed from the box in succession without replacement, what is the
probability that all 3 fuses are defective?

Solution

If A is the event that the first fuse is defective, B is the event that the second fuse
is defective, and C is the event that the third fuse is defective, then P(A) = 5

20 ,

P(B|A) = 4
19 , P(C|A ∩ B) = 3

18 , and substitution into the formula yields

P(A ∩ B ∩ C) =
5

20
·

4

19
·

3

18

=
1

114

Further generalization of Theorems 9 and 10 to k events is straightforward, and
the resulting formula can be proved by mathematical induction.
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7 Independent Events

Informally speaking, two events A and B are independent if the occurrence or nonoc-
currence of either one does not affect the probability of the occurrence of the other.
For instance, in the preceding example the selections would all have been indepen-
dent had each fuse been replaced before the next one was selected; the probability
of getting a defective fuse would have remained 5

20 .
Symbolically, two events A and B are independent if P(B|A) = P(B) and

P(A|B) = P(A), and it can be shown that either of these equalities implies the other
when both of the conditional probabilities exist, that is, when neither P(A) nor P(B)
equals zero (see Exercise 21).

Now, if we substitute P(B) for P(B|A) into the formula of Theorem 9, we get

P(A ∩ B) = P(A) · P(B|A)

= P(A) · P(B)

and we shall use this as our formal definition of independence.

DEFINITION 5. INDEPENDENCE. Two events A and B are independent if and only if

P(A ∩ B) = P(A) · P(B)

Reversing the steps, we can also show that Definition 5 implies the definition of inde-
pendence that we gave earlier.

If two events are not independent, they are said to be dependent. In the deriva-
tion of the formula of Definition 5, we assume that P(B|A) exists and, hence, that
P(A)Z 0. For mathematical convenience, we shall let the definition apply also when
P(A) = 0 and/or P(B) = 0.

EXAMPLE 22

A coin is tossed three times and the eight possible outcomes, HHH, HHT, HTH,
THH, HTT, THT, TTH, and TTT, are assumed to be equally likely. If A is the event
that a head occurs on each of the first two tosses, B is the event that a tail occurs
on the third toss, and C is the event that exactly two tails occur in the three tosses,
show that

(a) events A and B are independent;

(b) events B and C are dependent.

Solution

Since

A = {HHH, HHT}

B = {HHT, HTT, THT, TTT}

C = {HTT, THT, TTH}

A ∩ B = {HHT}

B ∩ C = {HTT, THT}
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the assumption that the eight possible outcomes are all equiprobable yields
P(A) = 1

4 , P(B) = 1
2 , P(C) = 3

8 , P(A ∩ B) = 1
8 , and P(B ∩ C) = 1

4 .

(a) Since P(A) · P(B) = 1
4 · 1

2 = 1
8 = P(A ∩ B), events A and B are independent.

(b) Since P(B) · P(C) = 1
2 · 3

8 = 3
16 Z P(B ∩ C), events B and C are not inde-

pendent.

In connection with Definition 5, it can be shown that if A and B are independent,
then so are A and B′, A′ and B, and A′ and B′. For instance, consider the following
theorem.

THEOREM 11. If A and B are independent, then A and B′ are also indepen-
dent.

Proof Since A = (A ∩ B)∪ (A ∩ B′), as the reader was asked to show in
part (a) of Exercise 3, A ∩ B and A ∩ B′ are mutually exclusive, and A and
B are independent by assumption, we have

P(A) = P[(A ∩ B)∪ (A ∩ B′)]

= P(A ∩ B)+ P(A ∩ B′)

= P(A) · P(B)+ P(A ∩ B′)

It follows that

P(A ∩ B′) = P(A)− P(A) · P(B)

= P(A) · [1 − P(B)]

= P(A) · P(B′)

and hence that A and B′ are independent.

In Exercises 22 and 23 the reader will be asked to show that if A and B are
independent, then A′ and B are independent and so are A′ and B′, and if A and B

are dependent, then A and B′ are dependent.
To extend the concept of independence to more than two events, let us make the

following definition.

DEFINITION 6. INDEPENDENCE OF MORE THAN TWO EVENTS. Events A1, A2, . . . , and

Ak are independent if and only if the probability of the intersections of any 2, 3,

. . . , or k of these events equals the product of their respective probabilities.

For three events A, B, and C, for example, independence requires that

P(A ∩ B) = P(A) · P(B)

P(A ∩ C) = P(A) · P(C)

P(B ∩ C) = P(B) · P(C)
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and
P(A ∩ B ∩ C) = P(A) · P(B) · P(C)

It is of interest to note that three or more events can be pairwise independent

without being independent.

EXAMPLE 23

Figure 8 shows a Venn diagram with probabilities assigned to its various regions.
Verify that A and B are independent, A and C are independent, and B and C are
independent, but A, B, and C are not independent.

Solution

As can be seen from the diagram, P(A) = P(B) = P(C) = 1
2 , P(A ∩ B) =

P(A ∩ C) = P(B ∩ C) = 1
4 , and P(A ∩ B ∩ C) = 1

4 . Thus,

P(A) · P(B) =
1

4
= P(A ∩ B)

P(A) · P(C) =
1

4
= P(A ∩ C)

P(B) · P(C) =
1

4
= P(B ∩ C)

but

P(A) · P(B) · P(C) =
1

8
Z P(A ∩ B ∩ C)

A B

C

1
4

1
4

1
4

1
4

Figure 8. Venn diagram for Example 23.

Incidentally, the preceding example can be given a “real” interpretation by con-
sidering a large room that has three separate switches controlling the ceiling lights.
These lights will be on when all three switches are “up” and hence also when one
of the switches is “up” and the other two are “down.” If A is the event that the first
switch is “up,” B is the event that the second switch is “up,” and C is the event that
the third switch is “up,” the Venn diagram of Figure 8 shows a possible set of prob-
abilities associated with the switches being “up” or “down” when the ceiling lights
are on.
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It can also happen that P(A ∩ B ∩ C) = P(A) · P(B) · P(C) without A, B, and C

being pairwise independent—this the reader will be asked to verify in Exercise 24.
Of course, if we are given that certain events are independent, the probability

that they will all occur is simply the product of their respective probabilities.

EXAMPLE 24

Find the probabilities of getting

(a) three heads in three random tosses of a balanced coin;

(b) four sixes and then another number in five random rolls of a balanced die.

Solution

(a) The probability of a head on each toss is
1

2
and the three outcomes are inde-

pendent. Thus we can multiply, obtaining

1

2
·

1

2
·

1

2
=

1

8

(b) The probability of a six on each toss is
1

6
; thus the probability of tossing a

number other than 6 is
5

6
. Inasmuch as the tosses are independent, we can

multiply the respective probabilities to obtain

1

6
·

1

6
·

1

6
·

1

6
·

5

6
=

5

7, 776

8 Bayes’ Theorem

In many situations the outcome of an experiment depends on what happens in var-
ious intermediate stages. The following is a simple example in which there is one
intermediate stage consisting of two alternatives:

EXAMPLE 25

The completion of a construction job may be delayed because of a strike. The prob-
abilities are 0.60 that there will be a strike, 0.85 that the construction job will be
completed on time if there is no strike, and 0.35 that the construction job will be
completed on time if there is a strike. What is the probability that the construction
job will be completed on time?

Solution

If A is the event that the construction job will be completed on time and B is the
event that there will be a strike, we are given P(B) = 0.60, P(A|B′) = 0.85, and
P(A|B) = 0.35. Making use of the formula of part (a) of Exercise 3, the fact that A ∩
B and A ∩ B′ are mutually exclusive, and the alternative form of the multiplication
rule, we can write

P(A) = P[(A ∩ B)∪ (A ∩ B′)]

= P(A ∩ B)+ P(A ∩ B′)

= P(B) · P(A|B)+ P(B′) · P(A|B′)
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Then, substituting the given numerical values, we get

P(A) = (0.60)(0.35)+ (1 − 0.60)(0.85)

= 0.55

An immediate generalization of this kind of situation is the case where the
intermediate stage permits k different alternatives (whose occurrence is denoted by
B1, B2, . . . , Bk). It requires the following theorem, sometimes called the rule of total

probability or the rule of elimination.

THEOREM 12. If the events B1, B2, . . . , and Bk constitute a partition of the
sample space S and P(Bi)Z 0 for i = 1, 2, . . . , k, then for any event A in S

P(A) =
k
∑

i=1

P(Bi) · P(A|Bi)

The B’s constitute a partition of the sample space if they are pairwise mutually exclu-
sive and if their union equals S. A formal proof of Theorem 12 consists, essentially,
of the same steps we used in Example 25, and it is left to the reader in Exercise 32.

EXAMPLE 26

The members of a consulting firm rent cars from three rental agencies: 60 percent
from agency 1, 30 percent from agency 2, and 10 percent from agency 3. If 9 percent
of the cars from agency 1 need an oil change, 20 percent of the cars from agency 2
need an oil change, and 6 percent of the cars from agency 3 need an oil change, what
is the probability that a rental car delivered to the firm will need an oil change?

Solution

If A is the event that the car needs an oil change, and B1, B2, and B3 are the events
that the car comes from rental agencies 1, 2, or 3, we have P(B1) = 0.60, P(B2) =
0.30, P(B3) = 0.10, P(A|B1) = 0.09, P(A|B2) = 0.20, and P(A|B3) = 0.06. Substi-
tuting these values into the formula of Theorem 12, we get

P(A) = (0.60)(0.09)+ (0.30)(0.20)+ (0.10)(0.06)

= 0.12

Thus, 12 percent of all the rental cars delivered to this firm will need an oil change.

With reference to the preceding example, suppose that we are interested in
the following question: If a rental car delivered to the consulting firm needs an oil
change, what is the probability that it came from rental agency 2? To answer ques-
tions of this kind, we need the following theorem, called Bayes’ theorem:
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THEOREM 13. If B1, B2, . . . , Bk constitute a partition of the sample space
S and P(Bi)Z 0 for i = 1, 2, . . . , k, then for any event A in S such that
P(A)Z 0

P(Br|A) =
P(Br) · P(A|Br)

k∑

i=1

P(Bi) · P(A|Bi)

for r = 1, 2, . . . , k.

In words, the probability that event A was reached via the rth branch
of the tree diagram of Figure 9, given that it was reached via one of
its k branches, is the ratio of the probability associated with the rth
branch to the sum of the probabilities associated with all k branches of
the tree.

Proof Writing P(Br|A) =
P(A ∩ Br)

P(A)
in accordance with the definition

of conditional probability, we have only to substitute P(Br) · P(A|Br) for
P(A ∩ Br) and the formula of Theorem 12 for P(A).

P(B 1
)

P(B2)

P(B
k)

B1

B2

etc. etc.

A

A

A

P(B1) ? P(AuB1)
P(AuB1)

P(AuB2)

P(AuBk)

P(B2) ? P(AuB2)

P(Bk) ? P(AuBk)
Bk

Figure 9. Tree diagram for Bayes’ theorem.

EXAMPLE 27

With reference to Example 26, if a rental car delivered to the consulting firm needs
an oil change, what is the probability that it came from rental agency 2?

Solution

Substituting the probabilities on the previous page into the formula of Theorem 13,
we get

P(B2|A) =
(0.30)(0.20)

(0.60)(0.09)+ (0.30)(0.20)+ (0.10)(0.06)

=
0.060

0.120

= 0.5

Observe that although only 30 percent of the cars delivered to the firm come from
agency 2, 50 percent of those requiring an oil change come from that agency.
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EXAMPLE 28

A rare but serious disease, D, has been found in 0.01 percent of a certain population.
A test has been developed that will be positive, p, for 98 percent of those who have
the disease and be positive for only 3 percent of those who do not have the disease.
Find the probability that a person tested as positive does not have the disease.

Solution

Let D and p represent the events that a person randomly selected from the given
population, respectively, does not have the disease and is found negative for the dis-
ease by the test. Substituting the given probabilities into the formula of Theorem 13,
we get

P(D|p) =
P(D)P(p|D)

P(D)P(p|D)+ P(D)P(p|D)
=

0.9999 · 0.03

0.0001 · 0.98 + 0.9999 · 0.03
= 0.997

This example demonstrates the near impossibility of finding a test for a rare disease
that does not have an unacceptably high probability of false positives.

Although Bayes’ theorem follows from the postulates of probability and the
definition of conditional probability, it has been the subject of extensive controversy.
There can be no question about the validity of Bayes’ theorem, but considerable
arguments have been raised about the assignment of the prior probabilities P(Bi).
Also, a good deal of mysticism surrounds Bayes’ theorem because it entails a “back-
ward,” or “inverse,” sort of reasoning, that is, reasoning “from effect to cause.” For
instance, in Example 27, needing an oil change is the effect and coming from agency
2 of is a possible cause.

Exercises

17. Show that the postulates of probability are satisfied
by conditional probabilities. In other words, show that if
P(B)Z 0, then
(a) P(A|B) G 0;

(b) P(B|B) = 1;

(c) P(A1 ∪ A2 ∪ . . . |B) = P(A1|B)+ P(A2|B)+ · · · for
any sequence of mutually exclusive events A1, A2, . . ..

18. Show by means of numerical examples that P(B|A)+
P(B|A′)
(a) may be equal to 1;

(b) need not be equal to 1.

19. Duplicating the method of proof of Theorem 10,
show that P(A∩B∩C∩D) = P(A) ·P(B|A) ·P(C|A∩B) ·
P(D|A ∩ B ∩ C) provided that P(A ∩ B ∩ C)Z 0.

20. Given three events A, B, and C such that
P(A ∩ B ∩ C)Z 0 and P(C|A ∩ B) = P(C|B), show that
P(A|B ∩ C) = P(A|B).

21. Show that if P(B|A) = P(B) and P(B)Z 0, then
P(A|B) = P(A).

22. Show that if events A and B are independent, then
(a) events A′ and B are independent;

(b) events A′ and B′ are independent.

23. Show that if events A and B are dependent, then
events A and B′ are dependent.

24. Refer to Figure 10 to show that P(A ∩ B ∩ C) =
P(A) · P(B) · P(C) does not necessarily imply that A, B,
and C are all pairwise independent.

25. Refer to Figure 10 to show that if A is independent
of B and A is independent of C, then B is not necessarily
independent of C.

26. Refer to Figure 10 to show that if A is independent of
B and A is independent of C, then A is not necessarily
independent of B ∪ C.

27. If events A, B, and C are independent, show that
(a) A and B ∩ C are independent;

(b) A and B ∪ C are independent.

28. If P(A|B)< P(A), prove that P(B|A)< P(B).
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C

0.06 0.18

0.06 0.14

0.24

0.24

0.06

0.02

Figure 10. Diagram for Exercises 24, 25, and 26.

29. If A1, A2, . . . , An are independent events, prove that

P(A1 ∪ A2 ∪ · · · ∪ An) = 1 −{1 − P(A1)} ·

{1 − P(A2)} . . . {1 − P(An)}

30. Show that 2k − k − 1 conditions must be satisfied for
k events to be independent.

31. For any event A, show that A and ∅ are
independent.

32. Prove Theorem 12 by making use of the following
generalization of the distributive law given in part (b) of
Exercise 1:

A∩ (B1∪B2∪· · ·∪Bk)=(A∩B1)∪(A∩B2)∪· · ·∪(A∩Bk)

33. Suppose that a die has n sides numbered i = 1,
2, . . . , n. Assume that the probability of it coming up on
the side numbered i is the same for each value of i. The die
is rolled n times (assume independence) and a “match” is
defined to be the occurrence of side i on the ith roll. Prove
that the probability of at least one match is given by

1 −
(

n − 1

n

)n

= 1 −
(

1 −
1

n

)n

34. Show that P(A ∪ B)Ú 1 − P(A′)− P(B′) for any two
events A and B defined in the sample space S. (Hint: Use
Venn diagrams.)

9 The Theory in Practice

The word “probability” is a part of everyday language, but it is difficult to define this
word without using the word “probable” or its synonym “likely” in the definition.∗

To illustrate, Webster’s Third New International Dictionary defines “probability” as
“the quality or state of being probable.” If the concept of probability is to be used
in mathematics and scientific applications, we require a more exact, less circular,
definition.

The postulates of probability given in Section 4 satisfy this criterion. Together
with the rules given in Section 5, this definition lends itself to calculations of proba-
bilities that “make sense” and that can be verified experimentally. The entire theory
of statistics is based on the notion of probability. It seems remarkable that the entire
structure of probability and, therefore of statistics, can be built on the relatively
straightforward foundation given in this chapter.

Probabilities were first considered in games of chance, or gambling. Players of
various games of chance observed that there seemed to be “rules” that governed
the roll of dice or the results of spinning a roulette wheel. Some of them went as far
as to postulate some of these rules entirely on the basis of experience. But differ-
ences arose among gamblers about probabilities, and they brought their questions
to the noted mathematicians of their day. With this motivation, the modern theory
of probability began to be developed.

Motivated by problems associated with games of chance, the theory of prob-
ability first was developed under the assumption of equal likelihood, expressed in
Theorem 2. Under this assumption one only had to count the number of “success-
ful” outcomes and divide by the total number of “possible” outcomes to arrive at
the probability of an event.

The assumption of equal likelihood fails when we attempt, for example, to find
the probability that a trifecta at the race track will pay off. Here, the different horses
have different probabilities of winning, and we are forced to rely on a different
method of evaluating probabilities. It is common to take into account the various

∗From MERRIAM-WEBSTER’S COLLEGIATE DICTIONARY, ELEVENTH EDITION. Copyright  2012
by Merriam-Webster, Incorporated (www.Merriam-Webster.com). Reprinted with permission.
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horses’ records in previous races, calculating each horse’s probability of winning by
dividing its number of wins by the number of starts. This idea gives rise to the fre-

quency interpretation of probabilities, which interprets the probability of an event to
be the proportion of times the event has occurred in a long series of repeated exper-
iments. Application of the frequency interpretation requires a well-documented his-
tory of the outcomes of an event over a large number of experimental trials. In the
absence of such a history, a series of experiments can be planned and their results
observed. For example, the probability that a lot of manufactured items will have at
most three defectives is estimated to be 0.90 if, in 90 percent of many previous lots
produced to the same specifications by the same process, the number of defectives
was three or less.

A more recently employed method of calculating probabilities is called the sub-

jective method. Here, a personal or subjective assessment is made of the probability
of an event which is difficult or impossible to estimate in any other way. For exam-
ple, the probability that the major stock market indexes will go up in a given future
period of time cannot be estimated very well using the frequency interpretation
because economic and world conditions rarely replicate themselves very closely. As
another example, juries use this method when determining the guilt or innocence of
a defendant “beyond a reasonable doubt.” Subjective probabilities should be used
only when all other methods fail, and then only with a high level of skepticism.

An important application of probability theory relates to the theory of reliabil-

ity. The reliability of a component or system can be defined as follows.

DEFINITION 7. RELIABILITY. The reliability of a product is the probability that it

will function within specified limits for a specified period of time under specified

environmental conditions.

Thus, the reliability of a “standard equipment” automobile tire is close to 1 for 10,000
miles of operation on a passenger car traveling within the speed limits on paved
roads, but it is close to zero for even short distances at the Indianapolis “500.”

The reliability of a system of components can be calculated from the reliabil-
ities of the individual components if the system consists entirely of components
connected in series, or in parallel, or both. A series system is one in which all com-
ponents are so interrelated that the entire system will fail if any one (or more) of its
components fails. A parallel system will fail only if all its components fail. An exam-
ple of a series system is a string of Christmas lights connected electrically “in series.”
If one bulb fails, the entire string will fail to light. Parallel systems are sometimes
called “redundant” systems. For example, if the hydraulic system on a commercial
aircraft that lowers the landing wheels fails, they may be lowered manually with a
crank.

We shall assume that the components connected in a series system are indepen-
dent; that is, the performance of one part does not affect the reliability of the others.
Under this assumption, the reliability of a parallel system is given by an extension of
Definition 5. Thus, we have the following theorem.

THEOREM 14. The reliability of a series system consisting of n independent
components is given by

Rs =
n
∏

i=1

Ri

where Ri is the reliability of the ith component.

Proof The proof follows immediately by iterating in Definition 5.

(%



Probability

Theorem 14 vividly demonstrates the effect of increased complexity on reliability.
For example, if a series system has 5 components, each with a reliability of 0.970,
the reliability of the entire system is only (0.970)5 = 0.859. If the system complexity
were increased so it now has 10 such components, the reliability would be reduced
to (0.970)10 = 0.738.

One way to improve the reliability of a series system is to introduce parallel
redundancy by replacing some or all of its components by several components con-
nected in parallel. If a system consists of n independent components connected in
parallel, it will fail to function only if all components fail. Thus, for the ith com-
ponent, the probability of failure is Fi = 1 − Ri, called the “unreliability” of the
component. Again applying Definition 5, we obtain the following theorem.

THEOREM 15. The reliability of a parallel system consisting of n indepen-
dent components is given by

Rp = 1 −
n
∏

i=1

(1 − Ri)

Proof The proof of this theorem is identical to that of Theorem 14, with
(1 − Ri) replacing Ri.

EXAMPLE 29

Consider the system diagramed in Figure 11, which consists of eight components
having the reliabilities shown in the figure. Find the reliability of the system.

Solution

The parallel subsystem C, D, E can be replaced by an equivalent component, C′

having the reliability 1 − (1 − 0.70)3 = 0.973. Likewise, F, G can be replaced by F ′

having the reliability 1 − (1 − 0.75)2 = 0.9375. Thus, the system is reduced to the par-
allel system A, B, C′, F ′, H, having the reliability (0.95)(0.99)(0.973)(0.9375)(0.90) =
0.772.

BA

0.95 0.99

C

0.70

D

0.70

E

0.70

H

0.90

F

0.75

G

0.75

Figure 11. Combination of series and parallel systems.
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Applied Exercises SECS. 1–3

35. If S = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 3, 5, 7}, B =
{6, 7, 8, 9}, C = {2, 4, 8}, and D = {1, 5, 9}, list the elements
of the subsets of S corresponding to the following events:

(a) A′ ∩ B; (b) (A′ ∩ B)∩ C; (c) B′ ∪ C;

(d) (B′ ∪ C)∩ D; (e) A′ ∩ C; (f) (A′ ∩ C)∩ D.

36. An electronics firm plans to build a research labora-
tory in Southern California, and its management has to
decide between sites in Los Angeles, San Diego, Long
Beach, Pasadena, Santa Barbara, Anaheim, Santa Mon-
ica, and Westwood. If A represents the event that they
will choose a site in San Diego or Santa Barbara, B repre-
sents the event that they will choose a site in San Diego or
Long Beach, C represents the event that they will choose
a site in Santa Barbara or Anaheim, and D represents
the event that they will choose a site in Los Angeles or
Santa Barbara, list the elements of each of the following
subsets of the sample space, which consists of the eight
site selections:

(a) A′; (b) D′; (c) C ∩ D;

(d) B ∩ C; (e) B ∪ C; (f) A ∪ B;

(g) C ∪ D; (h) (B ∪ C)′; (i) B′ ∩ C′.

37. Among the eight cars that a dealer has in his show-
room, Car 1 is new and has air-conditioning, power steer-
ing, and bucket seats; Car 2 is one year old and has air-
conditioning, but neither power steering nor bucket seats;
Car 3 is two years old and has air-conditioning and power
steering, but no bucket seats; Car 4 is three years old
and has air-conditioning, but neither power steering nor
bucket seats; Car 5 is new and has no air-conditioning, no
power steering, and no bucket seats; Car 6 is one year
old and has power steering, but neither air-conditioning
nor bucket seats; Car 7 is two years old and has no air-
conditioning, no power steering, and no bucket seats; and
Car 8 is three years old, and has no air-conditioning, but
has power steering as well as bucket seats. If a customer
buys one of these cars and the event that he chooses a
new car, for example, is represented by the set {Car 1,
Car 5}, indicate similarly the sets that represent the
events that
(a) he chooses a car without air-conditioning;

(b) he chooses a car without power steering;

(c) he chooses a car with bucket seats;

(d) he chooses a car that is either two or three years old.

38. With reference to Exercise 37, state in words what
kind of car the customer will choose, if his choice is
given by
(a) the complement of the set of part (a);

(b) the union of the sets of parts (b) and (c);

(c) the intersection of the sets of parts (c) and (d);

(d) the intersection of parts (b) and (c) of this exercise.

39. If Ms. Brown buys one of the houses advertised for
sale in a Seattle newspaper (on a given Sunday), T is the
event that the house has three or more baths, U is the
event that it has a fireplace, V is the event that it costs
more than $200,000, and W is the event that it is new,
describe (in words) each of the following events:

(a) T ′; (b) U′; (c) V′;

(d) W′; (e) T ∩ U; (f) T ∩ V;

(g) U′ ∩ V; (h) V ∪ W; (i) V′ ∪ W;

(j) T ∪ U; (k) T ∪ V; (l) V ∩ W.

40. A resort hotel has two station wagons, which it uses
to shuttle its guests to and from the airport. If the larger
of the two station wagons can carry five passengers and
the smaller can carry four passengers, the point (0, 3)
represents the event that at a given moment the larger
station wagon is empty while the smaller one has three
passengers, the point (4, 2) represents the event that at
the given moment the larger station wagon has four pas-
sengers while the smaller one has two passengers, . . . ,
draw a figure showing the 30 points of the corresponding
sample space. Also, if E stands for the event that at least
one of the station wagons is empty, F stands for the event
that together they carry two, four, or six passengers, and
G stands for the event that each carries the same num-
ber of passengers, list the points of the sample space that
correspond to each of the following events:

(a) E; (b) F; (c) G;

(d) E ∪ F; (e) E ∩ F; (f) F ∪ G;

(g) E ∪ F ′; (h) E ∩ G′; (i) F ′ ∩ E′.

41. A coin is tossed once. Then, if it comes up heads, a
die is thrown once; if the coin comes up tails, it is tossed
twice more. Using the notation in which (H, 2), for exam-
ple, denotes the event that the coin comes up heads and
then the die comes up 2, and (T, T, T) denotes the event
that the coin comes up tails three times in a row, list
(a) the 10 elements of the sample space S;

(b) the elements of S corresponding to event A that
exactly one head occurs;

(c) the elements of S corresponding to event B that at
least two tails occur or a number greater than 4 occurs.

42. An electronic game contains three components
arranged in the series–parallel circuit shown in Figure 12.
At any given time, each component may or may not be
operative, and the game will operate only if there is a
continuous circuit from P to Q. Let A be the event
that the game will operate; let B be the event that
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P Q

y

x

z

Figure 12. Diagram for Exercise 42.

the game will operate though component x is not oper-
ative; and let C be the event that the game will operate
though component y is not operative. Using the notation
in which (0, 0, 1), for example, denotes that component z
is operative but components x and y are not,
(a) list the elements of the sample space S and also the
elements of S corresponding to events A, B, and C;

(b) determine which pairs of events, A and B, A and C, or
B and C, are mutually exclusive.

43. An experiment consists of rolling a die until a 3
appears. Describe the sample space and determine
(a) how many elements of the sample space correspond
to the event that the 3 appears on the kth roll of the die;

(b) how many elements of the sample space correspond
to the event that the 3 appears not later than the kth roll
of the die.

44. Express symbolically the sample space S that consists
of all the points (x, y) on or in the circle of radius 3 cen-
tered at the point (2, −3).

45. If S = {x|0 < x < 10}, M = {x|3 < x F 8}, and N =
{x|5 < x < 10}, find

(a) M ∪ N; (b) M ∩ N;

(c) M ∩ N′; (d) M′ ∪ N.

46. In Figure 13, L is the event that a driver has liability
insurance and C is the event that she has collision insur-
ance. Express in words what events are represented by
regions 1, 2, 3, and 4.

2 1 3

4

L C

Figure 13. Venn diagram for Exercise 46.

47. With reference to Exercise 46 and Figure 13, what
events are represented by
(a) regions 1 and 2 together;

(b) regions 2 and 4 together;

(c) regions 1, 2, and 3 together;

(d) regions 2, 3, and 4 together?

48. In Figure 14, E, T, and N are the events that a car
brought to a garage needs an engine overhaul, transmis-
sion repairs, or new tires. Express in words the events
represented by
(a) region 1;

(b) region 3;

(c) region 7;

(d) regions 1 and 4 together;

(e) regions 2 and 5 together;

(f) regions 3, 5, 6, and 8 together.

7 2

1

6 8

5

4 3

E T

N

Figure 14. Venn diagram for Exercise 48.

49. With reference to Exercise 48 and Figure 14, list the
region or combinations of regions representing the events
that a car brought to the garage needs
(a) transmission repairs, but neither an engine overhaul
nor new tires;

(b) an engine overhaul and transmission repairs;

(c) transmission repairs or new tires, but not an
engine overhaul;

(d) new tires.

50. A market research organization claims that, among
500 shoppers interviewed, 308 regularly buy Product X,
266 regularly buy Product Y, 103 regularly buy both, and
59 buy neither on a regular basis. Using a Venn diagram
and filling in the number of shoppers associated with the
various regions, check whether the results of this study
should be questioned.

51. In a group of 200 college students, 138 are enrolled
in a course in psychology, 115 are enrolled in a course in
sociology, and 91 are enrolled in both. How many of these
students are not enrolled in either course? (Hint: Draw a
suitable Venn diagram and fill in the numbers associated
with the various regions.)

52. Among 120 visitors to Disneyland, 74 stayed for at
least 3 hours, 86 spent at least $20, 64 went on the Mat-
terhorn ride, 60 stayed for at least 3 hours and spent at
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least $20, 52 stayed for at least 3 hours and went on the
Matterhorn ride, 54 spent at least $20 and went on the
Matterhorn ride, and 48 stayed for at least 3 hours, spent
at least $20, and went on the Matterhorn ride. Drawing a
Venn diagram with three circles (like that of Figure 4) and
filling in the numbers associated with the various regions,
find how many of the 120 visitors to Disneyland
(a) stayed for at least 3 hours, spent at least $20, but did
not go on the Matterhorn ride;

(b) went on the Matterhorn ride, but stayed less than 3
hours and spent less than $20;

(c) stayed less than 3 hours, spent at least $20, but did not
go on the Matterhorn ride.

SECS. 4–5

53. An experiment has five possible outcomes, A, B, C, D,
and E, that are mutually exclusive. Check whether the fol-
lowing assignments of probabilities are permissible and
explain your answers:
(a) P(A) = 0.20, P(B) = 0.20, P(C) = 0.20, P(D) = 0.20,
and P(E) = 0.20;

(b) P(A) = 0.21, P(B) = 0.26, P(C) = 0.58, P(D) = 0.01,
and P(E) = 0.06;

(c) P(A) = 0.18, P(B) = 0.19, P(C) = 0.20, P(D) = 0.21,
and P(E) = 0.22;

(d) P(A) = 0.10, P(B) = 0.30, P(C) = 0.10, P(D) = 0.60,
and P(E) = −0.10;

(e) P(A) = 0.23, P(B) = 0.12, P(C) = 0.05, P(D) = 0.50,
and P(E) = 0.08.

54. If A and B are mutually exclusive, P(A) = 0.37, and
P(B) = 0.44, find

(a) P(A′); (b) P(B′); (c) P(A ∪ B);

(d) P(A ∩ B); (e) P(A ∩ B′); (f) P(A′ ∩ B′).

55. Explain why there must be a mistake in each of the
following statements:
(a) The probability that Jean will pass the bar examina-
tion is 0.66 and the probability that she will not pass is
−0.34.

(b) The probability that the home team will win an
upcoming football game is 0.77, the probability that it will
tie the game is 0.08, and the probability that it will win or
tie the game is 0.95.

(c) The probabilities that a secretary will make 0, 1, 2, 3, 4,
or 5 or more mistakes in typing a report are, respectively,
0.12, 0.25, 0.36, 0.14, 0.09, and 0.07.

(d) The probabilities that a bank will get 0, 1, 2, or 3 or
more bad checks on any given day are, respectively, 0.08,
0.21, 0.29, and 0.40.

56. The probabilities that the serviceability of a new
X-ray machine will be rated very difficult, difficult, aver-
age, easy, or very easy are, respectively, 0.12, 0.17, 0.34,
0.29, and 0.08. Find the probabilities that the serviceabil-
ity of the machine will be rated

(a) difficult or very difficult;

(b) neither very difficult nor very easy;

(c) average or worse;

(d) average or better.

57. Suppose that each of the 30 points of the sample space
of Exercise 40 is assigned the probability 1

30 . Find the
probabilities that at a given moment
(a) at least one of the station wagons is empty;

(b) each of the two station wagons carries the same num-
ber of passengers;

(c) the larger station wagon carries more passengers than
the smaller station wagon;

(d) together they carry at least six passengers.

58. A hat contains 20 white slips of paper numbered from
1 through 20, 10 red slips of paper numbered from 1
through 10, 40 yellow slips of paper numbered from 1
through 40, and 10 blue slips of paper numbered from 1
through 10. If these 80 slips of paper are thoroughly shuf-
fled so that each slip has the same probability of being
drawn, find the probabilities of drawing a slip of paper
that is
(a) blue or white;

(b) numbered 1, 2, 3, 4, or 5;

(c) red or yellow and also numbered 1, 2, 3, or 4;

(d) numbered 5, 15, 25, or 35;

(e) white and numbered higher than 12 or yellow and
numbered higher than 26.

59. A police department needs new tires for its patrol
cars and the probabilities are 0.15, 0.24, 0.03, 0.28, 0.22,
and 0.08, respectively, that it will buy Uniroyal tires,
Goodyear tires, Michelin tires, General tires, Goodrich
tires, or Armstrong tires. Find the probabilities that it
will buy
(a) Goodyear or Goodrich tires;

(b) Uniroyal, Michelin, or Goodrich tires;

(c) Michelin or Armstrong tires;

(d) Uniroyal, Michelin, General, or Goodrich tires.

60. Two cards are randomly drawn from a deck of 52
playing cards. Find the probability that both cards will be
greater than 3 and less than 8.

61. Four candidates are seeking a vacancy on a school
board. If A is twice as likely to be elected as B, and B
and C are given about the same chance of being elected,
while C is twice as likely to be elected as D, what are the
probabilities that
(a) C will win;

(b) A will not win?

62. In a poker game, five cards are dealt at random from
an ordinary deck of 52 playing cards. Find the probabili-
ties of getting
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(a) two pairs (any two distinct face values occurring
exactly twice);

(b) four of a kind (four cards of equal face value).

63. In a game of Yahtzee, five balanced dice are rolled
simultaneously. Find the probabilities of getting
(a) two pairs;

(b) three of a kind;

(c) a full house (three of a kind and a pair);

(d) four of a kind.

64. Explain on the basis of the various rules of
Exercises 5 through 9 why there is a mistake in each of
the following statements:
(a) The probability that it will rain is 0.67, and the proba-
bility that it will rain or snow is 0.55.

(b) The probability that a student will get a passing grade
in English is 0.82, and the probability that she will get a
passing grade in English and French is 0.86.

(c) The probability that a person visiting the San Diego
Zoo will see the giraffes is 0.72, the probability that he
will see the bears is 0.84, and the probability that he will
see both is 0.52.

65. Among the 78 doctors on the staff of a hospital, 64
carry malpractice insurance, 36 are surgeons, and 34 of
the surgeons carry malpractice insurance. If one of these
doctors is chosen by lot to represent the hospital staff at
an A.M.A. convention (that is, each doctor has a proba-
bility of 1

78 of being selected), what is the probability that
the one chosen is not a surgeon and does not carry mal-
practice insurance?

66. A line segment of length l is divided by a point
selected at random within the segment. What is the prob-
ability that it will divide the line segment in a ratio greater
than 1:2? What is the probability that it will divide the
segment exactly in half?

67. A right triangle has the legs 3 and 4 units, respectively.
Find the probability that a line segment, drawn at random
parallel to the hypotenuse and contained entirely in the
triangle, will divide the triangle so that the area between
the line and the vertex opposite the hypotenuse will equal
at least half the area of the triangle.

68. For married couples living in a certain suburb, the
probability that the husband will vote in a school board
election is 0.21, the probability that the wife will vote in
the election is 0.28, and the probability that they will both
vote is 0.15. What is the probability that at least one of
them will vote?

69. Given P(A) = 0.59, P(B) = 0.30, and P(A ∩ B) =
0.21, find

(a) P(A ∪ B); (b) P(A ∩ B′);

(c) P(A′ ∪ B′); (d) P(A′ ∩ B′).

70. At Roanoke College it is known that 1
3 of the stu-

dents live off campus. It is also known that 5
9 of the stu-

dents are from within the state of Virginia and that 3
4

of the students are from out of state or live on campus.
What is the probability that a student selected at ran-
dom from Roanoke College is from out of state and lives
on campus?

71. A biology professor has two graduate assistants help-
ing her with her research. The probability that the older
of the two assistants will be absent on any given day is
0.08, the probability that the younger of the two will be
absent on any given day is 0.05, and the probability that
they will both be absent on any given day is 0.02. Find the
probabilities that
(a) either or both of the graduate assistants will be absent
on any given day;

(b) at least one of the two graduate assistants will not be
absent on any given day;

(c) only one of the two graduate assistants will be absent
on any given day.

72. Suppose that if a person visits Disneyland, the prob-
ability that he will go on the Jungle Cruise is 0.74, the
probability that he will ride the Monorail is 0.70, the prob-
ability that he will go on the Matterhorn ride is 0.62, the
probability that he will go on the Jungle Cruise and ride
the Monorail is 0.52, the probability that he will go on the
Jungle Cruise as well as the Matterhorn ride is 0.46, the
probability that he will ride the Monorail and go on the
Matterhorn ride is 0.44, and the probability that he will
go on all three of these rides is 0.34. What is the proba-
bility that a person visiting Disneyland will go on at least
one of these three rides?

73. Suppose that if a person travels to Europe for the
first time, the probability that he will see London is 0.70,
the probability that he will see Paris is 0.64, the proba-
bility that he will see Rome is 0.58, the probability that
he will see Amsterdam is 0.58, the probability that he
will see London and Paris is 0.45, the probability that he
will see London and Rome is 0.42, the probability that
he will see London and Amsterdam is 0.41, the probabil-
ity that he will see Paris and Rome is 0.35, the probability
that he will see Paris and Amsterdam is 0.39, the proba-
bility that he will see Rome and Amsterdam is 0.32, the
probability that he will see London, Paris, and Rome is
0.23, the probability that he will see London, Paris, and
Amsterdam is 0.26, the probability that he will see Lon-
don, Rome, and Amsterdam is 0.21, the probability that
he will see Paris, Rome, and Amsterdam is 0.20, and the
probability that he will see all four of these cities is 0.12.
What is the probability that a person traveling to Europe
for the first time will see at least one of these four cities?
(Hint: Use the formula of Exercise 13.)
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74. Use the formula of Exercise 15 to convert each of the
following odds to probabilities:
(a) If three eggs are randomly chosen from a carton of 12
eggs of which 3 are cracked, the odds are 34 to 21 that at
least one of them will be cracked.

(b) If a person has eight $1 bills, five $5 bills, and one $20
bill, and randomly selects three of them, the odds are 11
to 2 that they will not all be $1 bills.

(c) If we arbitrarily arrange the letters in the word “nest,”
the odds are 5 to 1 that we will not get a meaningful word
in the English language.

75. Use the definition of “odds” given in Exercise 15 to
convert each of the following probabilities to odds:
(a) The probability that the last digit of a car’s license
plate is a 2, 3, 4, 5, 6, or 7 is 6

10 .

(b) The probability of getting at least two heads in four
flips of a balanced coin is 11

16 .

(c) The probability of rolling “7 or 11” with a pair of bal-
anced dice is 2

9 .

SECS. 6–8

76. There are 90 applicants for a job with the news depart-
ment of a television station. Some of them are college
graduates and some are not; some of them have at least
three years’ experience and some have not, with the exact
breakdown being

College
graduates

Not
college
graduates

At least three years’ experience 18 9

Less than three years’ experience 36 27

If the order in which the applicants are interviewed by
the station manager is random, G is the event that the
first applicant interviewed is a college graduate, and T is
the event that the first applicant interviewed has at least
three years’ experience, determine each of the following
probabilities directly from the entries and the row and
column totals of the table:

(a) P(G); (b) P(T ′); (c) P(G ∩ T);

(d) P(G′ ∩ T ′); (e) P(T|G); (f) P(G′|T ′).

77. Use the results of Exercise 76 to verify that

(a) P(T|G) = P(G∩T)
P(G)

;

(b) P(G′|T ′) = P(G′∩T′)
P(T′) .

78. With reference to Exercise 65, what is the probability
that the doctor chosen to represent the hospital staff at
the convention carries malpractice insurance given that
he or she is a surgeon?

79. With reference to Exercise 68, what is the probability
that a husband will vote in the election given that his wife
is going to vote?

80. With reference to Exercise 70, what is the probability
that one of the students will be living on campus given
that he or she is from out of state?

81. A bin contains 100 balls, of which 25 are red, 40 are
white, and 35 are black. If two balls are selected from the
bin without replacement, what is the probability that one
will be red and one will be white?

82. If subjective probabilities are determined by the
method suggested in Exercise 16, the third postulate of
probability may not be satisfied. However, proponents
of the subjective probability concept usually impose this
postulate as a consistency criterion; in other words, they
regard subjective probabilities that do not satisfy the pos-
tulate as inconsistent.
(a) A high school principal feels that the odds are 7 to 5
against her getting a $1,000 raise and 11 to 1 against her
getting a $2,000 raise. Furthermore, she feels that it is an
even-money bet that she will get one of these raises or
the other. Discuss the consistency of the corresponding
subjective probabilities.

(b) Asked about his political future, a party official
replies that the odds are 2 to 1 that he will not run for
the House of Representatives and 4 to 1 that he will not
run for the Senate. Furthermore, he feels that the odds
are 7 to 5 that he will run for one or the other. Are the
corresponding probabilities consistent?

83. If we let x = the number of spots facing up when a
pair of dice is cast, then we can use the sample space S2 of
Example 2 to describe the outcomes of the experiment.
(a) Find the probability of each outcome in S2.

(b) Verify that the sum of these probabilities is 1.

84. There are two Porsches in a road race in Italy, and a
reporter feels that the odds against their winning are 3
to 1 and 5 to 3. To be consistent (see Exercise 82), what
odds should the reporter assign to the event that either
car will win?

85. Using a computer program that can generate random
integers on the interval (0, 9) with equal probabilities,
generate 1,000 such integers and use the frequency inter-
pretation to estimate the probability that such a randomly
chosen integer will have a value less than 1.

86. Using the method of Exercise 85, generate a second
set of 1,000 random integers on (0, 9). Estimate the prob-
ability that A: an integer selected at random from the first
set will be less than 1 or B: an integer selected at random
from the second set will be less than 1
(a) using the frequency interpretation of probabilities;

(b) using Theorem 7 and P(A ∩ B) = 1
81 .
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87. It is felt that the probabilities are 0.20, 0.40, 0.30,
and 0.10 that the basketball teams of four universities,
T, U, V, and W, will win their conference championship.
If university U is placed on probation and declared
ineligible for the championship, what is the probabil-
ity that university T will win the conference champi-
onship?

88. With reference to Exercise 72, find the probabilities
that a person who visits Disneyland will
(a) ride the Monorail given that he will go on the Jun-
gle Cruise;

(b) go on the Matterhorn ride given that he will go on the
Jungle Cruise and ride the Monorail;

(c) not go on the Jungle Cruise given that he will ride the
Monorail and/or go on the Matterhorn ride;

(d) go on the Matterhorn ride and the Jungle Cruise given
that he will not ride the Monorail.

(Hint: Draw a Venn diagram and fill in the probabilities
associated with the various regions.)

89. Crates of eggs are inspected for blood clots by ran-
domly removing three eggs in succession and examining
their contents. If all three eggs are good, the crate is
shipped; otherwise it is rejected. What is the probability
that a crate will be shipped if it contains 120 eggs, of which
10 have blood clots?

90. The probability of surviving a certain transplant oper-
ation is 0.55. If a patient survives the operation, the prob-
ability that his or her body will reject the transplant within
a month is 0.20. What is the probability of surviving both
of these critical stages?

91. Suppose that in Vancouver, B.C., the probability that
a rainy fall day is followed by a rainy day is 0.80 and the
probability that a sunny fall day is followed by a rainy
day is 0.60. Find the probabilities that a rainy fall day is
followed by
(a) a rainy day, a sunny day, and another rainy day;

(b) two sunny days and then a rainy day;

(c) two rainy days and then two sunny days;

(d) rain two days later.

[Hint: In part (c) use the formula of Exercise 19.]

92. Use the formula of Exercise 19 to find the probability
of randomly choosing (without replacement) four healthy
guinea pigs from a cage containing 20 guinea pigs, of
which 15 are healthy and 5 are diseased.

93. A sharpshooter hits a target with probability 0.75.
Assuming independence, find the probabilities of getting
(a) a hit followed by two misses;

(b) two hits and a miss in any order.

94. A balanced die is tossed twice. If A is the event that
an even number comes up on the first toss, B is the event
that an even number comes up on the second toss, and C
is the event that both tosses result in the same number,
are the events A, B, and C
(a) pairwise independent;

(b) independent?

95. A shipment of 1,000 parts contains 1 percent defective
parts. Find the probability that
(a) the first four parts chosen arbitrarily for inspection are
nondefective;

(b) the first defective part found will be on the fourth
inspection.

96. A coin is loaded so that the probabilities of heads and
tails are 0.52 and 0.48, respectively. If the coin is tossed
three times, what are the probabilities of getting
(a) all heads;

(b) two tails and a head in that order?

97. If 5 of a company’s 10 delivery trucks do not meet
emission standards and 3 of them are chosen for inspec-
tion, what is the probability that none of the trucks cho-
sen will meet emission standards?

98. Medical records show that one out of 10 persons in
a certain town has a thyroid deficiency. If 12 persons in
this town are randomly chosen and tested, what is the
probability that at least one of them will have a thy-
roid deficiency?

99. If a person randomly picks 4 of the 15 gold coins a
dealer has in stock, and 6 of the coins are counterfeits,
what is the probability that the coins picked will all be
counterfeits?

100. A department store that bills its charge-account cus-
tomers once a month has found that if a customer pays
promptly one month, the probability is 0.90 that he or
she will also pay promptly the next month; however, if
a customer does not pay promptly one month, the prob-
ability that he or she will pay promptly the next month is
only 0.40. (Assume that the probability of paying or not
paying on any given month depends only on the outcome
of the previous month.)
(a) What is the probability that a customer who pays
promptly one month will also pay promptly the next
three months?

(b) What is the probability that a customer who does not
pay promptly one month will also not pay promptly the
next two months and then make a prompt payment the
month after that?

101. With reference to Figure 15, verify that events A, B,
C, and D are independent. Note that the region repre-
senting A consists of two circles, and so do the regions
representing B and C.
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1
18

1
9

1
9

1
9

1
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1
36

1
36

1
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1
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Figure 15. Diagram for Exercise 101.

102. At an electronics plant, it is known from past expe-
rience that the probability is 0.84 that a new worker who
has attended the company’s training program will meet
the production quota, and that the corresponding prob-
ability is 0.49 for a new worker who has not attended
the company’s training program. If 70 percent of all new
workers attend the training program, what is the proba-
bility that a new worker will meet the production quota?

103. It is known from experience that in a certain indus-
try 60 percent of all labor–management disputes are over
wages, 15 percent are over working conditions, and 25
percent are over fringe issues. Also, 45 percent of the
disputes over wages are resolved without strikes, 70 per-
cent of the disputes over working conditions are resolved
without strikes, and 40 percent of the disputes over fringe
issues are resolved without strikes. What is the probabil-
ity that a labor–management dispute in this industry will
be resolved without a strike?

104. In a T-maze, a rat is given food if it turns left and an
electric shock if it turns right. On the first trial there is
a 50–50 chance that a rat will turn either way; then, if it
receives food on the first trial, the probability is 0.68 that
it will turn left on the next trial, and if it receives a shock
on the first trial, the probability is 0.84 that it will turn left
on the next trial. What is the probability that a rat will
turn left on the second trial?

105. With reference to Exercise 103, what is the probabil-
ity that if a labor–management dispute in this industry is
resolved without a strike, it was over wages?

106. The probability that a one-car accident is due to
faulty brakes is 0.04, the probability that a one-car acci-
dent is correctly attributed to faulty brakes is 0.82, and

the probability that a one-car accident is incorrectly
attributed to faulty brakes is 0.03. What is the probabil-
ity that
(a) a one-car accident will be attributed to faulty brakes;

(b) a one-car accident attributed to faulty brakes was
actually due to faulty brakes?

107. With reference to Example 25, suppose that we dis-
cover later that the job was completed on time. What is
the probability that there had been a strike?

108. In a certain community, 8 percent of all adults over
50 have diabetes. If a health service in this community
correctly diagnoses 95 percent of all persons with dia-
betes as having the disease and incorrectly diagnoses 2
percent of all persons without diabetes as having the dis-
ease, find the probabilities that
(a) the community health service will diagnose an adult
over 50 as having diabetes;

(b) a person over 50 diagnosed by the health service as
having diabetes actually has the disease.

109. An explosion at a construction site could have
occurred as the result of static electricity, malfunctioning
of equipment, carelessness, or sabotage. Interviews with
construction engineers analyzing the risks involved led
to the estimates that such an explosion would occur with
probability 0.25 as a result of static electricity, 0.20 as a
result of malfunctioning of equipment, 0.40 as a result of
carelessness, and 0.75 as a result of sabotage. It is also
felt that the prior probabilities of the four causes of the
explosion are 0.20, 0.40, 0.25, and 0.15. Based on all this
information, what is
(a) the most likely cause of the explosion;

(b) the least likely cause of the explosion?
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110. A mail-order house employs three stock clerks, U,
V, and W, who pull items from shelves and assemble
them for subsequent verification and packaging. U makes
a mistake in an order (gets a wrong item or the wrong
quantity) one time in a hundred, V makes a mistake in
an order five times in a hundred, and W makes a mistake
in an order three times in a hundred. If U, V, and W fill,
respectively, 30, 40, and 30 percent of all orders, what are
the probabilities that
(a) a mistake will be made in an order;

(b) if a mistake is made in an order, the order was filled
by U;

(c) if a mistake is made in an order, the order was filled
by V?

111. An art dealer receives a shipment of five old paint-
ings from abroad, and, on the basis of past experience,
she feels that the probabilities are, respectively, 0.76, 0.09,
0.02, 0.01, 0.02, and 0.10 that 0, 1, 2, 3, 4, or all 5 of them
are forgeries. Since the cost of authentication is fairly
high, she decides to select one of the five paintings at ran-
dom and send it away for authentication. If it turns out
that this painting is a forgery, what probability should she
now assign to the possibility that all the other paintings
are also forgeries?

112. To get answers to sensitive questions, we sometimes
use a method called the randomized response technique.
Suppose, for instance, that we want to determine what
percentage of the students at a large university smoke
marijuana. We construct 20 flash cards, write “I smoke
marijuana at least once a week” on 12 of the cards, where
12 is an arbitrary choice, and “I do not smoke marijuana
at least once a week” on the others. Then, we let each stu-
dent (in the sample interviewed) select one of the 20 cards
at random and respond “yes” or “no” without divulging
the question.
(a) Establish a relationship between P(Y), the probabil-
ity that a student will give a “yes” response, and P(M),
the probability that a student randomly selected at that
university smokes marijuana at least once a week.

(b) If 106 of 250 students answered “yes” under these
conditions, use the result of part (a) and 106

250 as an esti-
mate of P(Y) to estimate P(M).

SEC. 9

113. A series system consists of three components, each
having the reliability 0.95, and three components, each
having the reliability 0.99. Find the reliability of the
system.

114. Find the reliability of a series systems having five
components with reliabilities 0.995, 0.990, 0.992, 0.995,
and 0.998, respectively.

115. What must be the reliability of each component in a
series system consisting of six components that must have
a system reliability of 0.95?

116. Referring to Exercise 115, suppose now that there
are 10 components, and the system reliability must be
0.90.

117. Suppose a system consists of four components, con-
nected in parallel, having the reliabilities 0.8, 0.7, 0.7, and
0.65, respectively. Find the system reliability.

118. Referring to Exercise 117, suppose now that the sys-
tem has five components with reliabilities 0.85, 0.80, 0.65,
0.60, and 0.70, respectively. Find the system reliability.

119. A system consists of two components having the reli-
abilities 0.95 and 0.90, connected in series to two parallel
subsystems, the first containing four components, each
having the reliability 0.60, and the second containing two
components, each having the reliability 0.75. Find the sys-
tem reliability.

120. A series system consists of two components having
the reliabilities 0.98 and 0.99, respectively, connected to a
parallel subsystem containing five components having the
reliabilities 0.75, 0.60, 0.65, 0.70, and 0.60, respectively.
Find the system reliability.
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Answers to Odd-Numbered Exercises

35 (a) {6, 8, 9}; (b) {8}; (c) {1, 2, 3, 4, 5, 8}; (d) {1, 5};
(e) {2, 4, 8}; (f) Ø.

37 (a) {Car 5, Car 6, Car 7, Car 8};
(b) {Car 2, Car 4, Car 5, Car 7}; (c) {Car 1, Car 8};
(d) {Car 3, Car 4, Car 7, Car 8}.
39 (a) The house has fewer than three baths. (b) The house
does not have a fireplace. (c) The house does not cost more
than $200,000. (d) The house is not new. (e) The house has
three or more baths and a fireplace. (f) The house has three
or more baths and costs more than $200,000. (g) The house
costs more than $200,000 but has no fireplace. (h) The house
is new or costs more than $200,000. (i) The house is new or
costs at most $200,000. (j) The house has three or more baths
and/or a fireplace. (k) The house has three or more baths
and/or costs more than $200,000. (l) The house is new and
costs more than $200,000.

41 (a) (H,1), (H,2), (H,3), (H,4), (H,5), (H,6), (T,H,H),
(T,H,T), (T,T,H), and (T,T,T); (b) (H,1), (H,2), (H,3),
(H,4), (H,5), (H,6), (T,H,T), and (T,T,H); (c) (H,5), (H,6),
(T,H,T), (T,T,H), and (T,T,T).

43 (a) 5k−1; (b)
5k − 1

4
.

45 (a) (x|3 < x < 10); (b) (x|15 < x ≤ 8); (c) (x|3 < x ≤ 5); (d)

(x|0 < x ≤ 3) or (5 < x < 10).

47 (a) The event that a driver has liability insurance. (b) The
event that a driver does not have collision insurance. (c) The
event that a driver has liability insurance or collision insur-
ance, but not both. (d) The event that a driver does not have
both kinds of insurance.

49 (a) Region 5; (b) regions 1 and 2 together; (c) regions
3, 5, and 6 together; (d) regions 1, 3, 4, and 6 together.

51 38.

53 (a) Permissible; (b) not permissible because the sum
of the probabilities exceeds 1; (c) permissible; (d) not
permissible because P(E) is negative; (e) not permissible
because the sum of the probabilities is less than 1.

55 (a) The probability that she cannot pass cannot be neg-
ative. (b) 0.77 + 0.08 = 0.85 Z 0.95; (c) 0.12 + 0.25 + 0.36 +
0.14 + 0.09 + 0.07=1.03 > 1; (d) 0.08 + 0.21 + 0.29 + 0.40=
0.98 < 1.

57 (a) 1
3 ; (b) 1

6 ; (c) 1
2 ; (d) 1

3 .

59 (a) 0.46; (b) 0.40; (c) 0.11 (d) 0.68.

61 (a) 2
9 ; (b) 5

9 .

63 (a) 25
108 ; (b) 25

162 ; (c) 25
648 ; (d) 25

1296 .

65 2
13 .

67 1 −
√

2
2 .

69 (a) 0.68; (b) 0.38; (c) 0.79; (d) 0.32.

71 (a) 0.11; (b) 0.98; (c) 0.09.

73 0.94.

75 (a) 3 to 2; (b) 11 to 5; (c) 7 to 2 against it.

77 (a) 1
3 ; (b) 3

7 .

79 15
28 .

81 (a) 0.2; (b) 20
99 .

83
Outcome 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

87 1
3 .

89 0.7685.

91 (a) 0.096; (b) 0.048; (c) 0.0512; (d) 0.76.

93 (a) 3
64 ; (b) 27

64 .

95 (a) Required probability = 0.9606; exact probability =
0.9605; (b) required probability = 0.0097 (assuming inde-
pendence); exact probability = 0.0097.

97 1
12 .

99 1
91 .

103 0.475.

105 0.5684.

107 0.3818.

109 (a) Most likely cause is sabotage (P = 0.3285);
(b) least likely cause is static electricity (P = 0.1460).

111 0.6757.

113 0.832.

115 0.991.

117 0.9937.

119 0.781.
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1 Random Variables

In most applied problems involving probabilities we are interested only in a partic-
ular aspect (or in two or a few particular aspects) of the outcomes of experiments.
For instance, when we roll a pair of dice we are usually interested only in the total,
and not in the outcome for each die; when we interview a randomly chosen married
couple we may be interested in the size of their family and in their joint income, but
not in the number of years they have been married or their total assets; and when we
sample mass-produced light bulbs we may be interested in their durability or their
brightness, but not in their price.

In each of these examples we are interested in numbers that are associated with
the outcomes of chance experiments, that is, in the values taken on by random vari-

ables. In the language of probability and statistics, the total we roll with a pair of dice
is a random variable, the size of the family of a randomly chosen married couple and
their joint income are random variables, and so are the durability and the brightness
of a light bulb randomly picked for inspection.

To be more explicit, consider Figure 1, which pictures the sample space for an
experiment in which we roll a pair of dice, and let us assume that each of the 36
possible outcomes has the probability 1

36 . Note, however, that in Figure 1 we have
attached a number to each point: For instance, we attached the number 2 to the point
(1, 1), the number 6 to the point (1, 5), the number 8 to the point (6, 2), the number
11 to the point (5, 6), and so forth. Evidently, we associated with each point the value
of a random variable, that is, the corresponding total rolled with the pair of dice.

Since “associating a number with each point (element) of a sample space” is
merely another way of saying that we are “defining a function over the points of a
sample space,” let us now make the following definition.

From Chapter 3 of John E. Freund’s Mathematical Statistics with Applications,
Eighth Edition. Irwin Miller, Marylees Miller. Copyright  2014 by Pearson Education, Inc.
All rights reserved.
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1
2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

1

2

3

4

5

6

2 3 4 5 6
Red die

Green
die

Figure 1. The total number of points rolled with a pair of dice.

DEFINITION 1. RANDOM VARIABLE. If S is a sample space with a probability measure

and X is a real-valued function defined over the elements of S, then X is called a

random variable.†

In this chapter we shall denote random variables by capital letters and their values
by the corresponding lowercase letters; for instance, we shall write x to denote a
value of the random variable X.

With reference to the preceding example and Figure 1, observe that the random
variable X takes on the value 9, and we write X = 9 for the subset

{(6, 3), (5, 4), (4, 5), (3, 6)}

of the sample space S. Thus, X = 9 is to be interpreted as the set of elements of S

for which the total is 9 and, more generally, X = x is to be interpreted as the set of
elements of the sample space for which the random variable X takes on the value x.
This may seem confusing, but it reminds one of mathematicians who say “f (x) is a
function of x” instead of “f (x) is the value of a function at x.”

EXAMPLE 1

Two socks are selected at random and removed in succession from a drawer contain-
ing five brown socks and three green socks. List the elements of the sample space, the
corresponding probabilities, and the corresponding values w of the random variable
W, where W is the number of brown socks selected.

†Instead of “random variable,” the terms “chance variable,” “stochastic variable,” and “variate” are also used in
some books.
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Solution

If B and G stand for brown and green, the probabilities for BB, BG, GB, and GG

are, respectively, 5
8 ·

4
7 =

5
14 , 5

8 ·
3
7 =

15
56 , 3

8 ·
5
7 =

15
56 , and 3

8 ·
2
7 =

3
28 , and the results are

shown in the following table:

Element of

sample space Probability w

BB
5

14
2

BG
15

56
1

GB
15

56
1

GG
3

28
0

Also, we can write P(W = 2) = 5
14 , for example, for the probability of the event that

the random variable W will take on the value 2.

EXAMPLE 2

A balanced coin is tossed four times. List the elements of the sample space that are
presumed to be equally likely, as this is what we mean by a coin being balanced, and
the corresponding values x of the random variable X, the total number of heads.

Solution

If H and T stand for heads and tails, the results are as shown in the following table:

Element of

sample space Probability x

HHHH
1

16
4

HHHT
1

16
3

HHTH
1

16
3

HTHH
1

16
3

THHH
1

16
3

HHTT
1

16
2

HTHT
1

16
2

 "
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Element of

sample space Probability x

HTTH
1

16
2

THHT
1

16
2

THTH
1

16
2

TTHH
1

16
2

HTTT
1

16
1

THTT
1

16
1

TTHT
1

16
1

TTTH
1

16
1

TTTT
1

16
0

Thus, we can write P(X = 3) = 4
16 , for example, for the probability of the event that

the random variable X will take on the value 3.

The fact that Definition 1 is limited to real-valued functions does not impose any
restrictions. If the numbers we want to assign to the outcomes of an experiment are
complex numbers, we can always look upon the real and the imaginary parts sepa-
rately as values taken on by two random variables. Also, if we want to describe the
outcomes of an experiment quantitatively, say, by giving the color of a person’s hair,
we can arbitrarily make the descriptions real-valued by coding the various colors,
perhaps by representing them with the numbers 1, 2, 3, and so on.

In all of the examples of this section we have limited our discussion to discrete
sample spaces, and hence to discrete random variables, namely, random variables
whose range is finite or countably infinite. Continuous random variables defined
over continuous sample spaces will be taken up in Section 3.

2 Probability Distributions

As we already saw in Examples 1 and 2, the probability measure defined over a dis-
crete sample space automatically provides the probabilities that a random variable
will take on any given value within its range.

For instance, having assigned the probability 1
36 to each element of the sam-

ple space of Figure 1, we immediately find that the random variable X, the total
rolled with the pair of dice, takes on the value 9 with probability 4

36 ; as described in
Section 1, X = 9 contains four of the equally likely elements of the sample space.
The probabilities associated with all possible values of X are shown in the follow-
ing table:

 #
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x P(X = x)

2
1

36

3
2

36

4
3

36

5
4

36

6
5

36

7
6

36

8
5

36

9
4

36

10
3

36

11
2

36

12
1

36

Instead of displaying the probabilities associated with the values of a random
variable in a table, as we did in the preceding illustration, it is usually preferable to
give a formula, that is, to express the probabilities by means of a function such that
its values, f (x), equal P(X = x) for each x within the range of the random variable
X. For instance, for the total rolled with a pair of dice we could write

f (x) =
6− |x− 7|

36
for x = 2, 3, . . . , 12

as can easily be verified by substitution. Clearly,

f (2) =
6− |2− 7|

36
=

6− 5

36
=

1

36

f (3) =
6− |3− 7|

36
=

6− 4

36
=

2

36
. . . . . . . . . . . . . . . . . . . . .

f (12) =
6− |12− 7|

36
=

6− 5

36
=

1

36

and all these values agree with the ones shown in the preceding table.

DEFINITION 2. PROBABILITY DISTRIBUTION. If X is a discrete random variable, the

function given by f(x) = P(X = x) for each x within the range of X is called the

probability distribution of X.

 $
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Based on the postulates of probability, we obtain the following theorem.

THEOREM 1. A function can serve as the probability distribution of a dis-
crete random variable X if and only if its values, f (x), satisfy the conditions

1. f (x) G 0 for each value within its domain;

2.
∑

x
f (x) = 1, where the summation extends over all the values within

its domain.

EXAMPLE 3

Find a formula for the probability distribution of the total number of heads obtained
in four tosses of a balanced coin.

Solution

Based on the probabilities in the table, we find that P(X = 0) = 1
16 , P(X = 1) =

4
16 , P(X = 2) = 6

16 , P(X = 3) = 4
16 , and P(X = 4) = 1

16 . Observing that the
numerators of these five fractions, 1, 4, 6, 4, and 1, are the binomial coefficients
(

4
0

)

,

(

4
1

)

,

(

4
2

)

,

(

4
3

)

, and

(

4
4

)

, we find that the formula for the probability distri-

bution can be written as

f (x) =

(

4
x

)

16
for x = 0, 1, 2, 3, 4

EXAMPLE 4

Check whether the function given by

f (x) =
x+ 2

25
for x = 1, 2, 3, 4, 5

can serve as the probability distribution of a discrete random variable.

Solution

Substituting the different values of x, we get f (1) = 3
25 , f (2) = 4

25 , f (3) = 5
25 ,

f (4) = 6
25 , and f (5) = 7

25 . Since these values are all nonnegative, the first condition
of Theorem 1 is satisfied, and since

f (1)+ f (2)+ f (3)+ f (4)+ f (5) =
3

25
+

4

25
+

5

25
+

6

25
+

7

25

= 1

the second condition of Theorem 1 is satisfied. Thus, the given function can serve as
the probability distribution of a random variable having the range {1, 2, 3, 4, 5}. Of
course, whether any given random variable actually has this probability distribution
is an entirely different matter.

In some problems it is desirable to present probability distributions graphi-
cally, and two kinds of graphical presentations used for this purpose are shown in
Figures 2 and 3. The one shown in Figure 2, called a probability histogram, repre-
sents the probability distribution of Example 3. The height of each rectangle equals
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0 1 2

Number of heads

3 4
x

f (x)

6
16

4
16

1
16

Figure 2. Probability histogram.

0 1 2

Number of heads

3 4
x

f (x)

6
16

4
16

1
16

Figure 3. Bar chart.

the probability that X takes on the value that corresponds to the midpoint of its
base. By representing 0 with the interval from −0.5 to 0.5, 1 with the interval from
0.5 to 1.5, . . ., and 4 with the interval from 3.5 to 4.5, we are, so to speak, “spreading”
the values of the given discrete random variable over a continuous scale.

Since each rectangle of the probability histogram of Figure 2 has unit width, we
could have said that the areas of the rectangles, rather than their heights, equal the

 %
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corresponding probabilities. There are certain advantages to identifying the areas
of the rectangles with the probabilities, for instance, when we wish to approximate
the graph of a discrete probability distribution with a continuous curve. This can be
done even when the rectangles of a probability histogram do not all have unit width
by adjusting the heights of the rectangles or by modifying the vertical scale.

The graph of Figure 3 is called a bar chart, but it is also referred to as a his-
togram. As in Figure 2, the height of each rectangle, or bar, equals the probability of
the corresponding value of the random variable, but there is no pretense of having
a continuous horizontal scale. Sometimes, as shown in Figure 4, we use lines (rect-
angles with no width) instead of the rectangles, but we still refer to the graphs as
probability histograms.

In this chapter, histograms and bar charts are used mainly in descriptive statis-
tics to convey visually the information provided by a probability distribution or a
distribution of actual data (see Section 8).

There are many problems in which it is of interest to know the probability that
the value of a random variable is less than or equal to some real number x. Thus,
let us write the probability that X takes on a value less than or equal to x as F(x) =
P(X F x) and refer to this function defined for all real numbers x as the distribution

function, or the cumulative distribution, of X.

0 1 2

Number of heads

3 4
x

f (x)

6
16

4
16

1
16

Figure 4. Probability histogram.

DEFINITION 3. DISTRIBUTION FUNCTION. If X is a discrete random variable, the func-

tion given by

F(x) = P(X ≤ x) =
∑

t≤x

f (t) for −q< x<q

where f(t) is the value of the probability distribution of X at t, is called the distri-
bution function, or the cumulative distribution of X.
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Based on the postulates of probability and some of their immediate consequences,
we obtain the following theorem.

THEOREM 2. The values F(x) of the distribution function of a discrete ran-
dom variable X satisfy the conditions

1. F(−q) = 0 and F(q) = 1;

2. if a<b, then F(a) F F(b) for any real numbers a and b.

If we are given the probability distribution of a discrete random variable, the
corresponding distribution function is generally easy to find.

EXAMPLE 5

Find the distribution function of the total number of heads obtained in four tosses
of a balanced coin.

Solution

Given f (0) = 1
16 , f (1) = 4

16 , f (2) = 6
16 , f (3) = 4

16 , and f (4) = 1
16 from Example 3, it

follows that

F(0) = f (0) =
1

16

F(1) = f (0)+ f (1) =
5

16

F(2) = f (0)+ f (1)+ f (2) =
11

16

F(3) = f (0)+ f (1)+ f (2)+ f (3) =
15

16
F(4) = f (0)+ f (1)+ f (2)+ f (3)+ f (4) = 1

Hence, the distribution function is given by

F(x) =







































































0 for x< 0
1

16
for 0 F x< 1

5

16
for 1 F x< 2

11

16
for 2 F x< 3

15

16
for 3 F x< 4

1 for x G 4

Observe that this distribution function is defined not only for the values taken on
by the given random variable, but for all real numbers. For instance, we can write
F(1.7) = 5

16 and F(100) = 1, although the probabilities of getting “at most 1.7 heads”
or “at most 100 heads” in four tosses of a balanced coin may not be of any real
significance.
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EXAMPLE 6

Find the distribution function of the random variable W of Example 1 and plot
its graph.

Solution

Based on the probabilities given in the table in Section 1, we can write f (0) =
3
28 , f (1) = 15

56 +
15
56 =

15
28 , and f (2) = 5

14 , so that

F(0) = f (0) =
3

28

F(1) = f (0)+ f (1) =
9

14

F(2) = f (0)+ f (1)+ f (2) = 1

Hence, the distribution function of W is given by

F(w) =











































0 for w< 0

3

28
for 0 F w< 1

9

14
for 1 F w< 2

1 for w G 2

The graph of this distribution function, shown in Figure 5, was obtained by first plot-
ting the points (w, F(w)) for w = 0, 1, and 2 and then completing the step function
as indicated. Note that at all points of discontinuity the distribution function takes
on the greater of the two values, as indicated by the heavy dots in Figure 5.

Figure 5. Graph of the distribution function of Example 6.
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We can also reverse the process illustrated in the two preceding examples, that
is, obtain values of the probability distribution of a random variable from its distri-
bution function. To this end, we use the following result.

THEOREM 3. If the range of a random variable X consists of the values x1<

x2< x3< · · ·< xn, then f (x1) = F(x1) and

f (xi) = F(xi)−F(xi−1) for i = 2, 3, . . . , n

EXAMPLE 7

If the distribution function of X is given by

F(x) =















































































































































































0 for x< 2

1

36
for 2 F x< 3

3

36
for 3 F x< 4

6

36
for 4 F x< 5

10

36
for 5 F x< 6

15

36
for 6 F x< 7

21

36
for 7 F x< 8

26

36
for 8 F x< 9

30

36
for 9 F x< 10

33

36
for 10 F x< 11

35

36
for 11 F x< 12

1 for x G 12

find the probability distribution of this random variable.

Solution

Making use of Theorem 3, we get f (2) = 1
36 , f (3) = 3

36 −
1
36 = 2

36 , f (4) = 6
36 −

3
36 =

3
36 , f (5) = 10

36 −
6

36 =
4
36 , . . . , f (12) = 1− 35

36 =
1
36 , and comparison with the

probabilities in the table in Section 2 reveals that the random variable with which
we are concerned here is the total number of points rolled with a pair of dice.

In the remainder of this chapter we will be concerned with continuous ran-
dom variables and their distributions and with problems relating to the simultaneous
occurrence of the values of two or more random variables.
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Exercises

1. For each of the following, determine whether the
given values can serve as the values of a probability dis-
tribution of a random variable with the range x = 1, 2, 3,
and 4:

(a) f (1) = 0.25, f (2) = 0.75, f (3) = 0.25, and f (4) =

−0.25;

(b) f (1) = 0.15, f (2) = 0.27, f (3) = 0.29, and f (4) = 0.29;

(c) f (1) =
1

19
, f (2) =

10

19
, f (3) =

2

19
, and f (4) =

5

19
.

2. For each of the following, determine whether the given
function can serve as the probability distribution of a ran-
dom variable with the given range:

(a) f (x) =
x− 2

5
for x = 1, 2, 3, 4, 5;

(b) f (x) =
x2

30
for x = 0, 1, 2, 3, 4;

(c) f (x) =
1

5
for x = 0, 1, 2, 3, 4, 5.

3. Verify that f (x) =
2x

k(k+ 1)
for x = 1, 2, 3, . . . , k can

serve as the probability distribution of a random variable
with the given range.

4. For each of the following, determine c so that the func-
tion can serve as the probability distribution of a random
variable with the given range:

(a) f (x) = cx for x = 1, 2, 3, 4, 5;

(b) f (x) = c

(

5

x

)

for x = 0, 1, 2, 3, 4, 5;

(c) f (x) = cx2 for x = 1, 2, 3, . . . , k;

(d) f (x) = c

(

1

4

)x

for x = 1, 2, 3, . . . .

5. For what values of k can

f (x) = (1−k)kx

serve as the values of the probability distribution of a
random variable with the countably infinite range x =
0, 1, 2, . . .?

6. Show that there are no values of c such that

f (x) =
c

x

can serve as the values of the probability distribution
of a random variable with the countably infinite range
x = 1, 2, 3, . . . .

7. Construct a probability histogram for each of the fol-
lowing probability distributions:

(a) f (x) =





2

x









4

3− x









6

3





for x = 0, 1, 2;

(b) f (x) =
(

5

x

)(

1

5

)x (
4

5

)5−x

for x = 0, 1, 2, 3, 4, 5.

8. Prove Theorem 2.

9. For each of the following, determine whether the given
values can serve as the values of a distribution function of
a random variable with the range x = 1, 2, 3, and 4:
(a) F(1) = 0.3, F(2) = 0.5, F(3) = 0.8, and F(4) = 1.2;

(b) F(1) = 0.5, F(2) = 0.4, F(3) = 0.7, and F(4) = 1.0;

(c) F(1) = 0.25, F(2) = 0.61, F(3) = 0.83, and
F(4) = 1.0.

10. Find the distribution function of the random variable
of part (a) of Exercise 7 and plot its graph.

11. If X has the distribution function

F(x) =































































0 for x< 1

1

3
for 1 F x< 4

1

2
for 4 F x< 6

5

6
for 6 F x< 10

1 for x G 10

find
(a) P(2<X F 6);

(b) P(X = 4);

(c) the probability distribution of X.

12. Find the distribution function of the random variable
that has the probability distribution

f (x) =
x

15
for x = 1, 2, 3, 4, 5
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13. If X has the distribution function

F(x) =































































0 for x<−1

1

4
for −1 F x< 1

1

2
for 1 F x< 3

3

4
for 3 F x< 5

1 for x G 5

find

(a) P(X F 3); (b) P(X = 3); (c) P(X < 3);

(d) P(X G 1); (e) P(−0.4<X < 4); (f) P(X = 5).

14. With reference to Example 4, verify that the values of
the distribution function are given by

F(x) =
x2+ 5x

50

for x = 1, 2, 3, 4, and 5.

15. With reference to Theorem 3, verify that

(a) P(X > xi) = 1−F(xi) for i = 1, 2, 3, . . . , n;

(b) P(X G xi) = 1−F(xi−1) for i = 2, 3, . . . , n,

and P(X G x1) = 1.

3 Continuous Random Variables

In Section 1 we introduced the concept of a random variable as a real-valued func-
tion defined over the points of a sample space with a probability measure, and in
Figure 1 we illustrated this by assigning the total rolled with a pair of dice to each
of the 36 equally likely points of the sample space. In the continuous case, where
random variables can take on values on a continuous scale, the procedure is very
much the same. The outcomes of experiments are represented by the points on line
segments or lines, and the values of random variables are numbers appropriately
assigned to the points by means of rules or equations. When the value of a ran-
dom variable is given directly by a measurement or observation, we generally do
not bother to distinguish between the value of the random variable (the measure-
ment that we obtain) and the outcome of the experiment (the corresponding point
on the real axis). Thus, if an experiment consists of determining the actual content of
a 230-gram jar of instant coffee, the result itself, say, 225.3 grams, is the value of the
random variable with which we are concerned, and there is no real need to add that
the sample space consists of a certain continuous interval of points on the positive
real axis.

The problem of defining probabilities in connection with continuous sample
spaces and continuous random variables involves some complications. To illustrate,
let us consider the following situation.

EXAMPLE 8

Suppose that we are concerned with the possibility that an accident will occur on a
freeway that is 200 kilometers long and that we are interested in the probability that
it will occur at a given location, or perhaps on a given stretch of the road. The sample
space of this “experiment” consists of a continuum of points, those on the interval
from 0 to 200, and we shall assume, for the sake of argument, that the probability

that an accident will occur on any interval of length d is
d

200
, with d measured in
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kilometers. Note that this assignment of probabilities is consistent with Postulates 1
and 2. (Postulate 1 states that probability of an event is a nonnegative real number;
that is, P(A)G 0 for any subset A of S but in Postulate 2 P(S) = 1.) The probabilities

d

200
are all nonnegative and P(S) =

200

200
= 1. So far this assignment of probabilities

applies only to intervals on the line segment from 0 to 200, but if we use Postulate 3
(Postulate 3: If A1, A2, A3, . . . , is a finite or infinite sequence of mutually exclusive
events of S, then P(A1 ∪A2 ∪A3 ∪ · · · ) = P(A1)+P(A2)+P(A3)+ · · · ), we can
also obtain probabilities for the union of any finite or countably infinite sequence
of nonoverlapping intervals. For instance, the probability that an accident will occur
on either of two nonoverlapping intervals of length d1 and d2 is

d1+d2

200

and the probability that it will occur on any one of a countably infinite sequence of
nonoverlapping intervals of length d1, d2, d3, . . . is

d1+d2+d3+ · · ·
200

With reference to Example 8, observe also that the probability of the accident
occurring on a very short interval, say, an interval of 1 centimeter, is only 0.00000005,
which is very small. As the length of the interval approaches zero, the probability
that an accident will occur on it also approaches zero; indeed, in the continuous case
we always assign zero probability to individual points. This does not mean that the
corresponding events cannot occur; after all, when an accident occurs on the 200-
kilometer stretch of road, it has to occur at some point even though each point has
zero probability.

4 Probability Density Functions

The way in which we assigned probabilities in Example 8 is very special, and it is
similar in nature to the way in which we assign equal probabilities to the six faces
of a die, heads and tails, the 52 playing cards in a standard deck, and so forth.
To treat the problem of associating probabilities with values of continuous ran-
dom variables more generally, suppose that a bottler of soft drinks is concerned
about the actual amount of a soft drink that his bottling machine puts into
16-ounce bottles. Evidently, the amount will vary somewhat from bottle to bottle;
it is, in fact, a continuous random variable. However, if he rounds the amounts
to the nearest tenth of an ounce, he will be dealing with a discrete random vari-
able that has a probability distribution, and this probability distribution may be
pictured as a histogram in which the probabilities are given by the areas of rect-
angles, say, as in the diagram at the top of Figure 6. If he rounds the amounts to
the nearest hundredth of an ounce, he will again be dealing with a discrete random
variable (a different one) that has a probability distribution, and this probability
distribution may be pictured as a probability histogram in which the probabilities
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15.9

Amounts rounded to nearest tenth of an ounce

16.0 16.1

15.9 16.0 16.1

15.90

Amounts rounded to nearest hundredth of an ounce

16.00 16.10

Figure 6. Definition of probability in the continuous case.

are given by the areas of rectangles, say, as in the diagram in the middle of
Figure 6.

It should be apparent that if he rounds the amounts to the nearest thousandth
of an ounce or to the nearest ten-thousandth of an ounce, the probability histograms
of the probability distributions of the corresponding discrete random variables will
approach the continuous curve shown in the diagram at the bottom of Figure 6,
and the sum of the areas of the rectangles that represent the probability that the
amount falls within any specified interval approaches the corresponding area under
the curve.

Indeed, the definition of probability in the continuous case presumes for
each random variable the existence of a function, called a probability density

function, such that areas under the curve give the probabilities associated with the
corresponding intervals along the horizontal axis. In other words, a probability
density function, integrated from a to b (with a F b), gives the probability that
the corresponding random variable will take on a value on the interval from
a to b.
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DEFINITION 4. PROBABILITY DENSITY FUNCTION. A function with values f(x), defined

over the set of all real numbers, is called a probability density function of the

continuous random variable X if and only if

P(a ≤ X ≤ b) =
∫ b

a

f (x)dx

for any real constants a and b with a…b.

Probability density functions are also referred to, more briefly, as probability densi-

ties, density functions, densities, or p.d.f.’s.
Note that f (c), the value of the probability density of X at c, does not give

P(X = c) as in the discrete case. In connection with continuous random variables,
probabilities are always associated with intervals and P(X = c) = 0 for any real
constant c. This agrees with what we said on the previous page and it also follows
directly from Definition 4 with a = b = c.

Because of this property, the value of a probability density function can be
changed for some of the values of a random variable without changing the prob-
abilities, and this is why we said in Definition 4 that f (x) is the value of a probability
density, not the probability density, of the random variable X at x. Also, in view of
this property, it does not matter whether we include the endpoints of the interval
from a to b; symbolically, we have the following theorem.

THEOREM 4. If X is a continuous random variable and a and b are real
constants with a F b, then

P(a F X F b) = P(a F X <b) = P(a<X F b) = P(a<X <b)

Analogous to Theorem 1, let us now state the following properties of probability
densities, which again follow directly from the postulates of probability.

THEOREM 5. A function can serve as a probability density of a continuous
random variable X if its values, f (x), satisfy the conditions†

1. f (x) G 0 for −q< x<q;

2.

∫

q

−q
f (x)dx = 1.

EXAMPLE 9

If X has the probability density

f (x) =

{

k · e−3x for x> 0

0 elsewhere

find k and P(0.5 F X F 1).

†The conditions are not “if and only if” as in Theorem 1 because f (x) could be negative for some values of
the random variable without affecting any of the probabilities. However, both conditions of Theorem 5 will be
satisfied by nearly all the probability densities used in practice and studied in this text.
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Solution

To satisfy the second condition of Theorem 5, we must have

∫

q

−q
f (x)dx =

∫

q

0
k · e−3x dx = k · lim

t→q

e−3x

−3

∣

∣

∣

t

0
=

k

3
= 1

and it follows that k = 3. For the probability we get

P(0.5 F X F 1) =
∫ 1

0.5
3e−3x dx = −e−3x

∣

∣

∣

1

0.5
= −e−3+ e−1.5 = 0.173

Although the random variable of the preceding example cannot take on negative
values, we artificially extended the domain of its probability density to include all
the real numbers. This is a practice we shall follow throughout this text.

As in the discrete case, there are many problems in which it is of interest to
know the probability that the value of a continuous random variable X is less than
or equal to some real number x. Thus, let us make the following definition analogous
to Definition 3.

DEFINITION 5. DISTRIBUTION FUNCTION. If X is a continuous random variable and

the value of its probability density at t is f(t), then the function given by

F(x) = P(X ≤ x) =
∫ x

−q
f (t)dt for −q< x<q

is called the distribution function or the cumulative distribution function of X.

The properties of distribution functions given in Theorem 2 hold also for the
continuous case; that is, F(−q) = 0, F(q) = 1, and F(a) F F(b) when a<b. Fur-
thermore, based on Definition 5, we can state the following theorem.

THEOREM 6. If f (x) and F(x) are the values of the probability density and
the distribution function of X at x, then

P(a F X F b) = F(b)−F(a)

for any real constants a and b with a F b, and

f (x) =
dF(x)

dx

where the derivative exists.

EXAMPLE 10

Find the distribution function of the random variable X of Example 9, and use it to
reevaluate P(0.5 F X F 1).
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Solution

For x> 0,

F(x) =
∫ x

−q
f (t)dt =

∫ x

0
3e−3tdt = −e−3t

∣

∣

∣

x

0
= 1− e−3x

and since F(x) = 0 for x F 0, we can write

F(x) =

{

0 for x F 0

1− e−3x for x> 0

To determine the probability P(0.5 F X F 1), we use the first part of Theorem 6,
getting

P(0.5 F X F 1) = F(1)−F(0.5)

= (1− e−3)− (1− e−1.5)

= 0.173

This agrees with the result obtained by using the probability density directly in
Example 9.

EXAMPLE 11

Find a probability density function for the random variable whose distribution func-
tion is given by

F(x) =















0 for x F 0

x for 0< x< 1

1 for x G 1

and plot its graph.

Solution

Since the given density function is differentiable everywhere except at x = 0 and x =
1, we differentiate for x< 0, 0< x< 1, and x> 1, getting 0, 1, and 0. Thus, according
to the second part of Theorem 6, we can write

f (x) =















0 for x< 0

1 for 0< x< 1

0 for x> 1

To fill the gaps at x = 0 and x = 1, we let f (0) and f (1) both equal zero. Actually, it
does not matter how the probability density is defined at these two points, but there
are certain advantages for choosing the values in such a way that the probability
density is nonzero over an open interval. Thus, we can write the probability density
of the original random variable as

f (x) =

{

1 for 0< x< 1

0 elsewhere

Its graph is shown in Figure 7.
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0

f (x)

x
1

1

Figure 7. Probability density of Example 11.

In most applications we encounter random variables that are either discrete or
continuous, so the corresponding distribution functions have a steplike appearance
as in Figure 5, or they are continuous curves or combinations of lines as in Figure 8,
which shows the graph of the distribution function of Example 11.

Discontinuous distribution functions like the one shown in Figure 9 arise when
random variables are mixed. Such a distribution function will be discontinuous at
each point having a nonzero probability and continuous elsewhere. As in the dis-
crete case, the height of the step at a point of discontinuity gives the probability that

10
x

F(x)

1

Figure 8. Distribution function of Example 11.

0

F(x)

x
0.5 1

1

4

1

2

3

4

1

Figure 9. Distribution function of a mixed random variable.
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the random variable will take on that particular value. With reference to Figure 9,
P(X = 0.5) = 3

4 −
1
4 =

1
2 , but otherwise the random variable is like a continuous

random variable.
In this chapter we shall limit ourselves to random variables that are discrete or

continuous with the latter having distribution functions that are differentiable for all
but a finite set of values of the random variables.

Exercises

16. Find the distribution function of the random variable
X of Exercise 17 and use it to reevaluate part (b).

17. The probability density of the continuous random
variable X is given by

f (x) =















1

5
for 2< x< 7

0 elsewhere

(a) Draw its graph and verify that the total area under the
curve (above the x-axis) is equal to 1.

(b) Find P(3<X < 5).

18. (a) Show that

f (x) = e−x for 0< x<q

represents a probability density function.

(b) Sketch a graph of this function and indicate the area
associated with the probability that x> 1.

(c) Calculate the probability that x> 1.

19. (a) Show that

f (x) = 3x2 for 0< x< 1

represents a density function.

(b) Sketch a graph of this function, and indicate the area
associated with the probability that 0.1< x< 0.5.

(c) Calculate the probability that 0.1< x< 0.5.

20. The probability density of the random variable Y is
given by

f (y) =











1

8
(y+ 1) for 2< y< 4

0 elsewhere

Find P(Y< 3.2) and P(2.9<Y< 3.2).

21. Find the distribution function of the random variable
Y of Exercise 20 and use it to determine the two proba-
bilities asked for in that exercise.

22. The p.d.f. of the random variable X is given by

f (x) =











c
√

x
for 0< x< 4

0 elsewhere

Find
(a) the value of c;

(b) P(X < 1
4 ) and P(X > 1).

23. Find the distribution function of the random variable
X of Exercise 22 and use it to determine the two proba-
bilities asked for in part (b) of that exercise.

24. The probability density of the random variable Z is
given by

f (z) =

{

kze−z2
for z> 0

0 for z F 0

Find k and draw the graph of this probability density.

25. With reference to Exercise 24, find the distribution
function of Z and draw its graph.

26. The density function of the random variable X is
given by

g(x) =

{

6x(1− x) for 0< x< 1

0 elsewhere

Find P(X < 1
4 ) and P(X > 1

2 ).

27. With reference to Exercise 26, find the distribution
function of X and use it to reevaluate the two probabili-
ties asked for in that exercise.

28. Find the distribution function of the random variable
X whose probability density is given by

f (x) =















x for 0< x< 1

2− x for 1 F x< 2

0 elsewhere
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Also sketch the graphs of the probability density and dis-
tribution functions.

29. Find the distribution function of the random variable
X whose probability density is given by

f (x) =































1

3
for 0< x< 1

1

3
for 2< x< 4

0 elsewhere

Also sketch the graphs of the probability density and dis-
tribution functions.

30. With reference to Exercise 28, find P(0.8<X < 1.2)
using
(a) the probability density;

(b) the distribution function.

31. Find the distribution function of the random variable
X whose probability density is given by

f (x) =















































x

2
for 0< x F 1

1

2
for 1< x F 2

3− x

2
for 2< x< 3

0 elsewhere

Also sketch the graphs of these probability density and
distribution functions.

32. The distribution function of the random variable X is
given by

F(x) =























0 for x<−1

x+ 1

2
for −1 F x< 1

1 for x G 1

Find P(− 1
2 <X < 1

2 ) and P(2<X < 3).

33. With reference to Exercise 32, find the probability
density of X and use it to recalculate the two proba-
bilities.

34. The distribution function of the random variable Y is
given by

F(y) =











1−
9

y2
for y> 3

0 elsewhere

Find P(Y F 5) and P(Y> 8).

35. With reference to Exercise 34, find the probabil-
ity density of Y and use it to recalculate the two
probabilities.

36. With reference to Exercise 34 and the result of
Exercise 35, sketch the graphs of the distribution
function and the probability density of Y, letting
f (3) = 0.

37. The distribution function of the random variable X is
given by

F(x) =

{

1− (1+ x)e−x for x> 0

0 for x F 0

Find P(X F 2), P(1<X < 3), and P(X > 4).

38. With reference to Exercise 37, find the probability
density of X.

39. With reference to Figure 9, find expressions for the
values of the distribution function of the mixed random
variable X for

(a) x F 0; (b) 0< x< 0.5;

(c) 0.5 F x< 1; (d) x G 1.

40. Use the results of Exercise 39 to find expressions for
the values of the probability density of the mixed random
variable X for

(a) x< 0; (b) 0< x< 0.5;

(c) 0.5< x< 1; (d) x> 1.

P(X = 0.5) = 1
2 , and f (0) and f (1) are undefined.

41. The distribution function of the mixed random vari-
able Z is given by

F(z) =























0 for z<−2

z+ 4

8
for −2 F z< 2

1 for z G 2

Find P(Z = −2), P(Z = 2), P(−2<Z< 1), and P(0 F

Z F 2).
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5 Multivariate Distributions

In the beginning of this chapter we defined a random variable as a real-valued func-
tion defined over a sample space with a probability measure, and it stands to reason
that many different random variables can be defined over one and the same sample
space. With reference to the sample space of Figure 1, for example, we considered
only the random variable whose values were the totals rolled with a pair of dice, but
we could also have considered the random variable whose values are the products of
the numbers rolled with the two dice, the random variable whose values are the dif-
ferences between the numbers rolled with the red die and the green die, the random
variable whose values are 0, 1, or 2 depending on the number of dice that come up
2, and so forth. Closer to life, an experiment may consist of randomly choosing some
of the 345 students attending an elementary school, and the principal may be inter-
ested in their I.Q.’s, the school nurse in their weights, their teachers in the number
of days they have been absent, and so forth.

In this section we shall be concerned first with the bivariate case, that is, with
situations where we are interested at the same time in a pair of random variables
defined over a joint sample space. Later, we shall extend this discussion to the mul-

tivariate case, covering any finite number of random variables.
If X and Y are discrete random variables, we write the probability that X will

take on the value x and Y will take on the value y as P(X = x, Y = y). Thus, P(X = x,
Y = y) is the probability of the intersection of the events X = x and Y = y. As in
the univariate case, where we dealt with one random variable and could display the
probabilities associated with all values of X by means of a table, we can now, in the
bivariate case, display the probabilities associated with all pairs of values of X and
Y by means of a table.

EXAMPLE 12

Two caplets are selected at random from a bottle containing 3 aspirin, 2 sedative, and
4 laxative caplets. If X and Y are, respectively, the numbers of aspirin and sedative
caplets included among the 2 caplets drawn from the bottle, find the probabilities
associated with all possible pairs of values of X and Y.

Solution

The possible pairs are (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), and (2, 0). To find the prob-
ability associated with (1, 0), for example, observe that we are concerned with the
event of getting one of the 3 aspirin caplets, none of the 2 sedative caplets, and,
hence, one of the 4 laxative caplets. The number of ways in which this can be done is
(

3
1

)(

2
0

)(

4
1

)

= 12, and the total number of ways in which 2 of the 9 caplets can be

selected is

(

9
2

)

= 36. Since those possibilities are all equally likely by virtue of the

assumption that the selection is random, it follows from a theorem (If an experiment
can result in any one of N different equally likely outcomes, and if n of these out-
comes together constitute event A, then the probability of event A is P(A) = n/N)

that the probability associated with (1, 0) is 12
36 =

1
3 . Similarly, the probability associ-

ated with (1, 1) is
(

3
1

)(

2
1

)(

4
0

)

36
=

6

36
=

1

6
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and, continuing this way, we obtain the values shown in the following table:

x

0 1 2

0
1

6

1

3

1

12

y 1
2

9

1

6

2
1

36

Actually, as in the univariate case, it is generally preferable to represent proba-
bilities such as these by means of a formula. In other words, it is preferable to express
the probabilities by means of a function with the values f (x, y) = P(X = x, Y = y)

for any pair of values (x, y) within the range of the random variables X and Y. For
instance, for the two random variables of Example 12 we can write

f (x, y) =

(

3
x

)(

2
y

)(

4
2− x− y

)

(

9
2

)

for x = 0, 1, 2; y = 0, 1, 2;
0 F x+ y F 2

DEFINITION 6. JOINT PROBABILITY DISTRIBUTION. If X and Y are discrete random

variables, the function given by f(x, y) = P(X = x, Y = y) for each pair of values

(x, y) within the range of X and Y is called the joint probability distribution of

X and Y.

Analogous to Theorem 1, let us state the following theorem, which follows from the
postulates of probability.

THEOREM 7. A bivariate function can serve as the joint probability distri-
bution of a pair of discrete random variables X and Y if and only if its
values, f (x, y), satisfy the conditions

1. f (x, y) G 0 for each pair of values (x, y) within its domain;

2.
∑

x

∑

y
f (x, y) = 1, where the double summation extends over all

possible pairs (x, y) within its domain.

EXAMPLE 13

Determine the value of k for which the function given by

f (x, y) = kxy for x = 1, 2, 3; y = 1, 2, 3

can serve as a joint probability distribution.
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Solution

Substituting the various values of x and y, we get f (1, 1) = k, f (1, 2) = 2k, f (1, 3) =
3k, f (2, 1) = 2k, f (2, 2) = 4k, f (2, 3) = 6k, f (3, 1) = 3k, f (3, 2) = 6k, and f (3, 3) = 9k.
To satisfy the first condition of Theorem 7, the constant k must be nonnegative, and
to satisfy the second condition,

k+ 2k+ 3k+ 2k+ 4k+ 6k+ 3k+ 6k+ 9k = 1

so that 36k = 1 and k = 1
36 .

As in the univariate case, there are many problems in which it is of interest to
know the probability that the values of two random variables are less than or equal
to some real numbers x and y.

DEFINITION 7. JOINT DISTRIBUTION FUNCTION. If X and Y are discrete random vari-

ables, the function given by

F(x, y) = P(X ≤ x, Y ≤ y) =
∑

s≤x

∑

t≤y

f (s, t) for −q< x<q

−q< y<q

where f(s, t) is the value of the joint probability distribution of X and Y at (s, t), is

called the joint distribution function, or the joint cumulative distribution of X
and Y.

In Exercise 48 the reader will be asked to prove properties of joint distribution func-
tions that are analogous to those of Theorem 2.

EXAMPLE 14

With reference to Example 12, find F(1, 1).

Solution
F(1, 1) = P(X F 1, Y F 1)

= f (0, 0)+ f (0, 1)+ f (1, 0)+ f (1, 1)

=
1

6
+

2

9
+

1

3
+

1

6

=
8

9

As in the univariate case, the joint distribution function of two random variables
is defined for all real numbers. For instance, for Example 12 we also get F(−2, 1) =
P(X F −2, Y F 1) = 0 and F(3.7, 4.5) = P(X F 3.7, Y F 4.5) = 1.

Let us now extend the various concepts introduced in this section to the contin-
uous case.
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DEFINITION 8. JOINT PROBABILITY DENSITY FUNCTION. A bivariate function with

values f(x, y) defined over the xy-plane is called a joint probability density
function of the continuous random variables X and Y if and only if

P(X, Y) ∈ A =
∫∫

A

f (x, y)dxdy

for any region A in the xy-plane.

Analogous to Theorem 5, it follows from the postulates of probability that

THEOREM 8. A bivariate function can serve as a joint probability density
function of a pair of continuous random variables X and Y if its values,
f (x, y), satisfy the conditions

1. f (x, y) G 0 for −q< x<q, −q< y<q;

2.

∫

q

−q

∫

q

−q
f (x, y)dx dy = 1.

EXAMPLE 15

Given the joint probability density function

f (x, y) =















3

5
x(y+ x) for 0< x< 1, 0< y< 2

0 elsewhere

of two random variables X and Y, find P[(X, Y) ∈ A], where A is the region {(x, y)|0<
x< 1

2 , 1< y< 2}.

Solution

P[(X, Y) ∈ A] = P

(

0<X <
1

2
, 1<Y< 2

)

=
∫ 2

1

∫ 1
2

0

3

5
x(y+ x)dx dy

=
∫ 2

1

3x2y

10
+

3x3

15

∣

∣

∣

∣

∣

x= 1
2

dy

=
∫ 2

1

(

3y

40
+

1

40

)

dy =
3y2

80
+

y

40

∣

∣

∣

∣

2

1

=
11

80

Analogous to Definition 7, we have the following definition of the joint distribu-
tion function of two continuous random variables.
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DEFINITION 9. JOINT DISTRIBUTION FUNCTION. If X and Y are continuous random

variables, the function given by

F(x, y) = P(X ≤ x, Y ≤ y) =
∫ y

−q

∫ x

−q
f (s, t)ds dt for −q< x<q,

−q< y<q

where f(s, t) is the joint probability density of X and Y at (s, t), is called the joint
distribution function of X and Y.

Note that the properties of joint distribution functions, which the reader will be
asked to prove in Exercise 48 for the discrete case, hold also for the continuous case.

As in Section 4, we shall limit our discussion here to random variables whose
joint distribution function is continuous everywhere and partially differentiable with
respect to each variable for all but a finite set of values of the two random variables.

Analogous to the relationship f (x) =
dF(x)

dx
of Theorem 6, partial differentia-

tion in Definition 9 leads to

f (x, y) =


2

xy
F(x, y)

wherever these partial derivatives exist. As in Section 4, the joint distribution func-
tion of two continuous random variables determines their joint density (short for
joint probability density function) at all points (x, y) where the joint density is con-
tinuous. Also as in Section 4, we generally let the values of joint probability densities
equal zero wherever they are not defined by the above relationship.

EXAMPLE 16

If the joint probability density of X and Y is given by

f (x, y) =

{

x+ y for 0< x< 1, 0< y< 1

0 elsewhere

find the joint distribution function of these two random variables.

Solution

If either x< 0 or y< 0, it follows immediately that F(x, y) = 0. For 0< x< 1 and
0< y< 1 (Region I of Figure 10), we get

F(x, y) =
∫ y

0

∫ x

0
(s+ t)ds dt =

1

2
xy(x+ y)

for x> 1 and 0< y< 1 (Region II of Figure 10), we get

F(x, y) =
∫ y

0

∫ 1

0
(s+ t)ds dt =

1

2
y(y+ 1)
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Figure 10. Diagram for Example 16.

for 0< x< 1 and y> 1 (Region III of Figure 10), we get

F(x, y) =
∫ 1

0

∫ x

0
(s+ t)ds dt =

1

2
x(x+ 1)

and for x> 1 and y> 1 (Region IV of Figure 10), we get

F(x, y) =
∫ 1

0

∫ 1

0
(s+ t)ds dt = 1

Since the joint distribution function is everywhere continuous, the boundaries
between any two of these regions can be included in either one, and we can write

F(x, y) =



































































0 for x F 0 or y F 0

1

2
xy(x+ y) for 0< x< 1, 0< y< 1

1

2
y(y+ 1) for x G 1, 0< y< 1

1

2
x(x+ 1) for 0< x< 1, y G 1

1 for x G 1, y G 1

EXAMPLE 17

Find the joint probability density of the two random variables X and Y whose joint
distribution function is given by

F(x, y) =

{

(1− e−x)(1− e−y) for x> 0 and y> 0

0 elsewhere

Also use the joint probability density to determine P(1<X < 3, 1<Y < 2).

&%



Probability Distributions and Probability Densities

Solution

Since partial differentiation yields


2

xy
F(x, y) = e−(x+y)

for x> 0 and y> 0 and 0 elsewhere, we find that the joint probability density of X

and Y is given by

f (x, y) =

{

e−(x+y) for x> 0 and y> 0

0 elsewhere

Thus, integration yields

∫ 2

1

∫ 3

1
e−(x+y) dx dy = (e−1− e−3)(e−1− e−2)

= e−2− e−3− e−4+ e−5

= 0.074

for P(1<X < 3, 1<Y < 2).

For two random variables, the joint probability is, geometrically speaking, a sur-
face, and the probability that we calculated in the preceding example is given by the
volume under this surface, as shown in Figure 11.

All the definitions of this section can be generalized to the multivariate case,
where there are n random variables. Corresponding to Definition 6, the values of
the joint probability distribution of n discrete random variables X1, X2, . . ., and Xn

are given by

f (x1, x2, . . . , xn) = P(X1 = x1, X2 = x2, . . . , Xn = xn)

f (x, y)

x

y

f (x, y)  e (x y)

1

1 2 3

2

3

Figure 11. Diagram for Example 17.
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for each n-tuple (x1, x2, . . . , xn) within the range of the random variables; and corre-
sponding to Definition 7, the values of their joint distribution function are given by

F(x1, x2, . . . , xn) = P(X1 F x1, X2 F x2, . . . , Xn F xn)

for −q< x1<q,−q< x2<q, . . . ,−q< xn<q.

EXAMPLE 18

If the joint probability distribution of three discrete random variables X, Y, and Z

is given by

f (x, y, z) =
(x+ y)z

63
for x = 1, 2; y = 1, 2, 3; z = 1, 2

find P(X = 2, Y+Z F 3).

Solution
P(X = 2, Y+Z F 3) = f (2, 1, 1)+ f (2, 1, 2)+ f (2, 2, 1)

=
3

63
+

6

63
+

4

63

=
13

63

In the continuous case, probabilities are again obtained by integrating the joint
probability density, and the joint distribution function is given by

F(x1, x2, . . . , xn) =
∫ xn

−q
. . .

∫ x2

−q

∫ x1

−q
f (t1, t2, . . . , tn)dt1 dt2 . . . dtn

for −q< x1<q,−q< x2<q, . . . ,−q< xn<q, analogous to Definition 9. Also,
partial differentiation yields

f (x1, x2, . . . , xn) =


n

x1x2 · · · xn
F(x1, x2, . . . , xn)

wherever these partial derivatives exist.

EXAMPLE 19

If the trivariate probability density of X1, X2, and X3 is given by

f (x1, x2, x3) =

{

(x1+ x2)e
−x3 for 0< x1< 1, 0< x2< 1, x3> 0

0 elsewhere

find P[(X1, X2, X3) ∈ A], where A is the region

{

(x1, x2, x3)|0< x1<
1

2
,

1

2
< x2< 1, x3< 1

}
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Solution

P[(X1, X2, X3) ∈ A] = P

(

0<X1<
1

2
,

1

2
<X2< 1, X3< 1

)

=
∫ 1

0

∫ 1

1
2

∫ 1
2

0
(x1+ x2)e

−x3 dx1 dx2 dx3

=
∫ 1

0

∫ 1

1
2

(

1

8
+

x2

2

)

e−x3 dx2 dx3

=
∫ 1

0

1

4
e−x3 dx3

=
1

4
(1− e−1) = 0.158

Exercises

42. If the values of the joint probability distribution of X
and Y are as shown in the table

x
0 1 2

0
1

12

1

6

1

24

1
1

4

1

4

1

40

y
2

1

8

1

20

3
1

120

find

(a) P(X = 1, Y = 2); (b) P(X = 0, 1 F Y< 3);

(c) P(X +Y F 1); (d) P(X >Y).

43. With reference to Exercise 42, find the following val-
ues of the joint distribution function of the two ran-
dom variables:

(a) F(1.2, 0.9); (b) F(−3, 1.5);

(c) F(2, 0); (d) F(4, 2.7).

44. If the joint probability distribution of X and Y is
given by

f (x, y) = c(x2+ y2) for x = −1, 0, 1, 3; y = −1, 2, 3

find the value of c.

45. With reference to Exercise 44 and the value obtai-
ned for c, find
(a) P(X F 1, Y> 2);

(b) P(X = 0, Y F 2);

(c) P(X +Y> 2).

46. Show that there is no value of k for which

f (x, y) = ky(2y− x) for x = 0, 3; y = 0, 1, 2

can serve as the joint probability distribution of two ran-
dom variables.

47. If the joint probability distribution of X and Y is
given by

f (x, y) =
1

30
(x+ y) for x = 0, 1, 2, 3; y = 0, 1, 2

construct a table showing the values of the joint distribu-
tion function of the two random variables at the 12 points
(0, 0), (0, 1), . . . , (3, 2).

48. If F(x, y) is the value of the joint distribution func-
tion of two discrete random variables X and Y at (x, y),
show that
(a) F(−q,−q) = 0;

(b) F(q,q) = 1;

(c) if a<b and c<d, then F(a, c) F F(b, d).

49. Determine k so that

f (x, y) =
{

kx(x− y) for 0< x< 1,−x< y< x

0 elsewhere

can serve as a joint probability density.

50. If the joint probability density of X and Y is given by

f (x, y) =
{

24xy for 0< x< 1, 0< y< 1, x+ y< 1

0 elsewhere

find P(X +Y< 1
2 ).
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51. If the joint probability density of X and Y is given by

f (x, y) =

{

2 for x> 0, y> 0, x+ y< 1

0 elsewhere

find
(a) P(X F

1
2 , Y F

1
2 );

(b) P(X +Y> 2
3 );

(c) P(X > 2Y).

52. With reference to Exercise 51, find an expression for
the values of the joint distribution function of X and Y
when x> 0, y> 0, and x+ y< 1, and use it to verify the
result of part (a).

53. If the joint probability density of X and Y is given by

f (x, y) =











1

y
for 0< x< y, 0< y< 1

0 elsewhere

find the probability that the sum of the values of X and Y

will exceed 1
2 .

54. Find the joint probability density of the two random
variables X and Y whose joint distribution function is
given by

F(x, y) =

{

(1− e−x2
)(1− e−y2

) for x> 0, y> 0

0 elsewhere

55. Use the joint probability density obtained in Exer-
cise 54 to find P(1<X F 2, 1<Y F 2).

56. Find the joint probability density of the two random
variables X and Y whose joint distribution function is
given by

F(x, y) =

{

1− e−x− e−y+ e−x−y for x> 0, y> 0

0 elsewhere

57. Use the joint probability density obtained in Exer-
cise 56 to find P(X +Y> 3).

58. If F(x, y) is the value of the joint distribution func-
tion of the two continuous random variables X and Y at
(x, y), express P(a<X F b, c<Y F d) in terms of F(a, c),
F(a, d), F(b, c), and F(b, d). Observe that the result holds
also for discrete random variables.

59. Use the formula obtained in Exercise 58 to verify the
result, 0.074, of Example 17.

60. Use the formula obtained in Exercise 58 to verify the
result of Exercise 55.

61. Use the formula obtained in Exercise 58 to verify the
result of Exercise 57.

62. Find k if the joint probability distribution of X, Y, and
Z is given by

f (x, y, z) = kxyz

for x = 1, 2; y = 1, 2, 3; z = 1, 2.

63. With reference to Exercise 62, find
(a) P(X = 1, Y F 2, Z = 1);

(b) P(X = 2, Y+Z = 4).

64. With reference to Exercise 62, find the following val-
ues of the joint distribution function of the three ran-
dom variables:
(a) F(2, 1, 2);

(b) F(1, 0, 1);

(c) F(4, 4, 4).

65. Find k if the joint probability density of X, Y, and Z
is given by

f (x, y, z) =















kxy(1− z) for 0< x< 1, 0< y< 1,

0< z< 1, x+ y+ z< 1

0 elsewhere

66. With reference to Exercise 65, find P(X +Y< 1
2 ).

67. Use the result of Example 16 to verify that the joint
distribution function of the random variables X1, X2, and
X3 of Example 19 is given by

F(x1, x2, x3) =



































































0 for x1 F 0, x2 F 0, or x3 F 0

1

2
x1x2(x1 + x2)(1− e−x3 ) for 0< x1 < 1, 0< x2 < 1, x3 > 0

1

2
x2(x2 + 1)(1− e−x3 ) for x1 G 1, 0< x2 < 1, x3 > 0

1

2
x1(x1 + 1)(1− e−x3 ) for 0< x1 < 1, x2 G 1, x3 > 0

1− e−x3 for x1 G 1, x2 G 1, x3 > 0

68. If the joint probability density of X, Y, and Z is
given by

f (x, y, z) =























1

3
(2x+ 3y+ z) for 0< x< 1, 0< y< 1,

0< z< 1

0 elsewhere

find
(a) P(X = 1

2 , Y = 1
2 , Z = 1

2 );

(b) P(X < 1
2 , Y< 1

2 , Z< 1
2 ).
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6 Marginal Distributions

To introduce the concept of a marginal distribution, let us consider the following
example.

EXAMPLE 20

In Example 12 we derived the joint probability distribution of two random variables
X and Y, the number of aspirin caplets and the number of sedative caplets included
among two caplets drawn at random from a bottle containing three aspirin, two seda-
tive, and four laxative caplets. Find the probability distribution of X alone and that
of Y alone.

Solution

The results of Example 12 are shown in the following table, together with the marginal
totals, that is, the totals of the respective rows and columns:

x

0 1 2

0
1

6

1

3

1

12

7

12

y 1
2

9

1

6

7

18

2
1

36

1

36

5

12

1

2

1

12

The column totals are the probabilities that X will take on the values 0, 1, and 2. In
other words, they are the values

g(x) =
2
∑

y=0

f (x, y) for x = 0, 1, 2

of the probability distribution of X. By the same token, the row totals are the values

h(y) =
2
∑

x=0

f (x, y) for y = 0, 1, 2

of the probability distribution of Y.

We are thus led to the following definition.

DEFINITION 10. MARGINAL DISTRIBUTION. If X and Y are discrete random variables

and f(x, y) is the value of their joint probability distribution at (x, y), the function

given by

g(x) =
∑

y

f (x, y)

'!
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for each x within the range of X is called the marginal distribution of X. Corre-

spondingly, the function given by

h(y) =
∑

x

f (x, y)

for each y within the range of Y is called the marginal distribution of Y.

When X and Y are continuous random variables, the probability distributions are
replaced by probability densities, the summations are replaced by integrals, and
we obtain the following definition.

DEFINITION 11. MARGINAL DENSITY. If X and Y are continuous random variables

and f(x, y) is the value of their joint probability density at (x, y), the function

given by

g(x) =
∫

q

−q
f (x, y)dy for −q< x<q

is called the marginal density of X. Correspondingly, the function given by

h(y) =
∫

q

−q
f (x, y)dx for −q< y<q

is called the marginal density of Y.

EXAMPLE 21

Given the joint probability density

f (x, y) =















2

3
(x+ 2y) for 0< x< 1, 0< y< 1

0 elsewhere

find the marginal densities of X and Y.

Solution

Performing the necessary integrations, we get

g(x) =
∫

q

−q
f (x, y)dy =

∫ 1

0

2

3
(x+ 2y)dy =

2

3
(x+ 1)

for 0< x< 1 and g(x) = 0 elsewhere. Likewise,

h(y) =
∫

q

−q
f (x, y)dx =

∫ 1

0

2

3
(x+ 2y)dx =

1

3
(1+ 4y)

for 0< y< 1 and h(y) = 0 elsewhere.

When we are dealing with more than two random variables, we can speak not
only of the marginal distributions of the individual random variables, but also of the
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joint marginal distributions of several of the random variables. If the joint probabil-
ity distribution of the discrete random variables X1, X2, . . ., and Xn has the values
f (x1, x2, . . . , xn), the marginal distribution of X1 alone is given by

g(x1) =
∑

x2

· · ·
∑

xn

f (x1, x2, . . . , xn)

for all values within the range of X1, the joint marginal distribution of X1, X2, and
X3 is given by

m(x1, x2, x3) =
∑

x4

· · ·
∑

xn

f (x1, x2, . . . , xn)

for all values within the range of X1, X2, and X3, and other marginal distributions
can be defined in the same way. For the continuous case, probability distributions
are replaced by probability densities, summations are replaced by integrals, and if
the joint probability density of the continuous random variables X1, X2, . . ., and Xn

has the values f (x1, x2, . . . , xn), the marginal density of X2 alone is given by

h(x2) =
∫

q

−q
· · ·
∫

q

−q
f (x1, x2, . . . , xn)dx1 dx3 · · ·dxn

for −q< x2<q, the joint marginal density of X1 and Xn is given by

ϕ(x1, xn) =
∫

q

−q
· · ·
∫

q

−q
f (x1, x2, . . . , xn)dx2 dx3 · · · dxn−1

for −q< x1<q and −q< xn<q, and so forth.

EXAMPLE 22

Considering again the trivariate probability density of Example 19,

f (x1, x2, x3) =

{

(x1+ x2)e
−x3 for 0< x1< 1, 0< x2< 1, x3> 0

0 elsewhere

find the joint marginal density of X1 and X3 and the marginal density of X1 alone.

Solution

Performing the necessary integration, we find that the joint marginal density of X1

and X3 is given by

m(x1, x3) =
∫ 1

0
(x1+ x2)e

−x3 dx2 =
(

x1+
1

2

)

e−x3

for 0< x1< 1 and x3> 0 and m(x1, x3) = 0 elsewhere. Using this result, we find that
the marginal density of X1 alone is given by

g(x1) =
∫

q

0

∫ 1

0
f (x1, x2, x3)dx2 dx3 =

∫

q

0
m(x1, x3)dx3

=
∫

q

0

(

x1+
1

2

)

e−x3 dx3 = x1+
1

2

for 0< x1< 1 and g(x1) = 0 elsewhere.
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Corresponding to the various marginal and joint marginal distributions and den-
sities we have introduced in this section, we can also define marginal and joint

marginal distribution functions. Some problems relating to such distribution func-
tions will be left to the reader in Exercises 72, 79, and 80.

7 Conditional Distributions

In the conditional probability of event A, given event B, as

P(A|B) =
P(A∩B)

P(B)

provided P(B)Z 0. Suppose now that A and B are the events X = x and Y = y so
that we can write

P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)

=
f (x, y)

h(y)

provided P(Y = y) = h(y)Z 0, where f (x, y) is the value of the joint probability
distribution of X and Y at (x, y), and h(y) is the value of the marginal distribution of
Y at y. Denoting the conditional probability by f (x|y) to indicate that x is a variable
and y is fixed, let us now make the following definition.

DEFINITION 12. CONDITIONAL DISTRIBUTION. If f(x, y) is the value of the joint prob-

ability distribution of the discrete random variables X and Y at (x, y) and h(y) is

the value of the marginal distribution of Y at y, the function given by

f (x|y) =
f (x, y)

h(y)
h(y)Z 0

for each x within the range of X is called the conditional distribution of X given
Y = y. Correspondingly, if g(x) is the value of the marginal distribution of X at x,

the function given by

w(y|x) =
f (x, y)

g(x)
g(x)Z 0

for each y within the range of Y is called the conditional distribution of Y given
X = x.

EXAMPLE 23

With reference to Examples 12 and 20, find the conditional distribution of X

given Y = 1.

Solution

Substituting the appropriate values from the table in Example 20, we get

f (0|1) =

2

9
7

18

=
4

7

'$
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f (1|1) =

1

6
7

18

=
3

7

f (2|1) =
0

7

18

= 0

When X and Y are continuous random variables, the probability distributions
are replaced by probability densities, and we obtain the following definition.

DEFINITION 13. CONDITIONAL DENSITY. If f(x, y) is the value of the joint density of

the continuous random variables X and Y at (x, y) and h(y) is the value of the

marginal distribution of Y at y, the function given by

f (x|y) =
f (x, y)

h(y)
h(y)Z 0

for−q< x<q, is called the conditional density of X given Y = y. Correspond-

ingly, if g(x) is the value of the marginal density of X at x, the function

given by

w(y|x) =
f (x, y)

g(x)
g(x)Z 0

for −q< y<q, is called the conditional density of Y given X = x.

EXAMPLE 24

With reference to Example 21, find the conditional density of X given Y = y, and
use it to evaluate P(X F

1
2 |Y = 1

2 ).

Solution

Using the results obtained on the previous page, we have

f (x|y) =
f (x, y)

h(y)
=

2

3
(x+ 2y)

1

3
(1+ 4y)

=
2x+ 4y

1+ 4y

for 0< x< 1 and f (x|y) = 0 elsewhere. Now,

f

(

x

∣

∣

∣

∣

1

2

)

=
2x+ 4 ·

1

2

1+ 4 ·
1

2

=
2x+ 2

3

' 



Probability Distributions and Probability Densities

and we can write

P

(

X F
1

2

∣

∣

∣

∣

Y =
1

2

)

=
∫ 1

2

0

2x+ 2

3
dx =

5

12

It is of interest to note that in Figure 12 this probability is given by the ratio of the
area of trapezoid ABCD to the area of trapezoid AEFD.

Figure 12. Diagram for Example 24.

EXAMPLE 25

Given the joint probability density

f (x, y) =

{

4xy for 0< x< 1, 0< y< 1

0 elsewhere

find the marginal densities of X and Y and the conditional density of X given Y = y.

Solution

Performing the necessary integrations, we get

g(x) =
∫

q

−q
f (x, y)dy =

∫ 1

0
4xy dy

= 2xy2

∣

∣

∣

∣

∣

y=1

y=0

= 2x

for 0< x< 1, and g(x) = 0 elsewhere; also

h(y) =
∫

q

−q
f (x, y)dx =

∫ 1

0
4xy dx

= 2x2y

∣

∣

∣

∣

∣

x=1

x=0

= 2y
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for 0< y< 1, and h(y) = 0 elsewhere. Then, substituting into the formula for a con-
ditional density, we get

f (x|y) =
f (x, y)

h(y)
=

4xy

2y
= 2x

for 0< x< 1, and f (x|y) = 0 elsewhere.

When we are dealing with more than two random variables, whether continuous
or discrete, we can consider various different kinds of conditional distributions or
densities. For instance, if f (x1, x2, x3, x4) is the value of the joint distribution of the
discrete random variables X1, X2, X3, and X4 at (x1, x2, x3, x4), we can write

p(x3|x1, x2, x4) =
f (x1, x2, x3, x4)

g(x1, x2, x4)
g(x1, x2, x4)Z 0

for the value of the conditional distribution of X3 at x3 given X1 = x1, X2 = x2, and
X4 = x4, where g(x1, x2, x4) is the value of the joint marginal distribution of X1, X2,
and X4 at (x1, x2, x4). We can also write

q(x2, x4|x1, x3) =
f (x1, x2, x3, x4)

m(x1, x3)
m(x1, x3)Z 0

for the value of the joint conditional distribution of X2 and X4 at (x2, x4) given
X1 = x1 and X3 = x3, or

r(x2, x3, x4|x1) =
f (x1, x2, x3, x4)

b(x1)
b(x1)Z 0

for the value of the joint conditional distribution of X2, X3, and X4 at (x2, x3, x4)

given X1 = x1.
When we are dealing with two or more random variables, questions of indepen-

dence are usually of great importance. In Example 25 we see that f (x|y) = 2x does
not depend on the given value Y = y, but this is clearly not the case in Example 24,

where f (x|y) =
2x+ 4y

1+ 4y
. Whenever the values of the conditional distribution of X

given Y = y do not depend on y, it follows that f (x|y) = g(x), and hence the formulas
of Definitions 12 and 13 yield

f (x, y) = f (x|y) ·h(y) = g(x) ·h(y)

That is, the values of the joint distribution are given by the products of the corre-
sponding values of the two marginal distributions. Generalizing from this observa-
tion, let us now make the following definition.

DEFINITION 14. INDEPENDENCE OF DISCRETE RANDOM VARIABLES. If f(x1, x2, . . . , xn) is

the value of the joint probability distribution of the discrete random variables

X1, X2, . . . , Xn at (x1, x2, . . . , xn) and fi(xi) is the value of the marginal distribution

of Xi at xi for i = 1, 2, . . . , n, then the n random variables are independent if and

only if

f (x1, x2, . . . , xn) = f1(x1) · f2(x2) · . . . · fn(xn)

for all (x1, x2, . . . , xn) within their range.

To give a corresponding definition for continuous random variables, we simply
substitute the word “density” for the word “distribution.”

With this definition of independence, it can easily be verified that the three ran-
dom variables of Example 22 are not independent, but that the two random variables
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X1 and X3 and also the two random variables X2 and X3 are pairwise independent

(see Exercise 81).
The following examples serve to illustrate the use of Definition 14 in finding

probabilities relating to several independent random variables.

EXAMPLE 26

Considering n independent flips of a balanced coin, let Xi be the number of heads
(0 or 1) obtained in the ith flip for i = 1, 2, . . . , n. Find the joint probability distribu-
tion of these n random variables.

Solution

Since each of the random variables Xi, for i = 1, 2, . . . , n, has the probability distri-
bution

fi(xi) =
1

2
for xi = 0, 1

and the n random variables are independent, their joint probability distribution is
given by

f (x1, x2, . . . , xn) = f1(x1) · f2(x2) · . . . · fn(xn)

=
1

2
·

1

2
· . . . ·

1

2
=
(

1

2

)n

where xi = 0 or 1 for i = 1, 2, . . . , n.

EXAMPLE 27

Given the independent random variables X1, X2, and X3 with the probability
densities

f1(x1) =

{

e−x1 for x1> 0

0 elsewhere

f2(x2) =

{

2e−2x2 for x2> 0

0 elsewhere

f3(x3) =
{

3e−3x3 for x3> 0

0 elsewhere

find their joint probability density, and use it to evaluate the probability P(X1+
X2 F 1, X3> 1).

Solution

According to Definition 14, the values of the joint probability density are
given by

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3)

= e−x1 · 2e−2x2 · 3e−3x3

= 6e−x1−2x2−3x3

''
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for x1> 0, x2> 0, x3> 0, and f (x1, x2, x3) = 0 elsewhere. Thus,

P(X1+X2 F 1, X3> 1) =
∫

q

1

∫ 1

0

∫ 1−x2

0
6e−x1−2x2−3x3 dx1 dx2 dx3

= (1− 2e−1+ e−2)e−3

= 0.020

Exercises

69. Given the values of the joint probability distribution
of X and Y shown in the table

x
−1 1

−1
1

8

1

2

y 0 0
1

4

1
1

8
0

find
(a) the marginal distribution of X;

(b) the marginal distribution of Y;

(c) the conditional distribution of X given Y = −1.

70. With reference to Exercise 42, find
(a) the marginal distribution of X;

(b) the marginal distribution of Y;

(c) the conditional distribution of X given Y = 1;

(d) the conditional distribution of Y given X = 0.

71. Given the joint probability distribution

f (x, y, z) =
xyz

108
for x = 1, 2, 3; y = 1, 2, 3; z = 1, 2

find
(a) the joint marginal distribution of X and Y;

(b) the joint marginal distribution of X and Z;

(c) the marginal distribution of X;

(d) the conditional distribution of Z given X = 1 and
Y = 2;

(e) the joint conditional distribution of Y and Z given
X = 3.

72. With reference to Example 20, find
(a) the marginal distribution function of X, that is, the
function given by G(x) = P(X F x) for −q< x<q;

(b) the conditional distribution function of X given Y =
1, that is, the function given by F(x|1) = P(X F x|Y = 1)
for −q< x<q.

73. Check whether X and Y are independent if their joint
probability distribution is given by
(a) f (x, y) = 1

4 for x = −1 and y = −1, x = −1 and
y = 1, x = 1 and y = −1, and x = 1 and y = 1;

(b) f (x, y) = 1
3 for x = 0 and y = 0, x = 0 and y = 1, and

x = 1 and y = 1.

74. If the joint probability density of X and Y is given by

f (x, y) =















1

4
(2x+ y) for 0< x< 1, 0< y< 2

0 elsewhere

find
(a) the marginal density of X;

(b) the conditional density of Y given X = 1
4 .

75. With reference to Exercise 74, find
(a) the marginal density of Y;

(b) the conditional density of X given Y = 1.

76. If the joint probability density of X and Y is given by

f (x, y) =
{

24y(1− x− y) for x> 0, y> 0, x+ y< 1

0 elsewhere

find
(a) the marginal density of X;

(b) the marginal density of Y.

Also determine whether the two random variables are
independent.

77. With reference to Exercise 53, find
(a) the marginal density of X;

(b) the marginal density of Y.

Also determine whether the two random variables are
independent.

78. With reference to Example 22, find
(a) the conditional density of X2 given X1 = 1

3 and
X3 = 2;

(b) the joint conditional density of X2 and X3 given
X1 = 1

2 .
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79. If F(x, y) is the value of the joint distribution function
of X and Y at (x, y), show that the marginal distribution
function of X is given by

G(x) = F(x,q) for −q< x<q

Use this result to find the marginal distribution function
of X for the random variables of Exercise 54.

80. If F(x1, x2, x3) is the value of the joint distribution
function of X1, X2, and X3 at (x1, x2, x3), show that the
joint marginal distribution function of X1 and X3 is
given by

M(x1, x3) = F(x1,q, x3) for −q< x1<q,−q< x3<q

and that the marginal distribution function of X1 is
given by

G(x1) = F(x1,q,q) for −q< x1<q

With reference to Example 19, use these results to find

(a) the joint marginal distribution function of X1 and X3;

(b) the marginal distribution function of X1.

81. With reference to Example 22, verify that the three
random variables X1, X2, and X3 are not independent,
but that the two random variables X1 and X3 and
also the two random variables X2 and X3 are pairwise
independent.

82. If the independent random variables X and Y have
the marginal densities

f (x) =















1

2
for 0< x< 2

0 elsewhere

π(y) =















1

3
for 0< y< 3

0 elsewhere

find
(a) the joint probability density of X and Y;

(b) the value of P(X2+Y2> 1).

8 The Theory in Practice

This chapter has been about how probabilities can group themselves into probability
distributions, and how, in the case of continuous random variables, these distribu-
tions become probability density functions. In practice, however, all data appear to
be discrete. (Even if data arise from continuous random variables, the limitations
of measuring instruments and roundoff produce discrete values.) In this section, we
shall introduce some applications of the ideas of probability distributions and den-
sities to the exploration of raw data, an important element of what is called data

analysis.
When confronted with raw data, often consisting of a long list of measurements,

it is difficult to understand what the data are informing us about the process, product,
or service which gave rise to them. The following data, giving the response times of
30 integrated circuits (in picoseconds), illustrate this point:

Integrated Circuit Response Times (ps)

4.6 4.0 3.7 4.1 4.1 5.6 4.5 6.0 6.0 3.4

3.4 4.6 3.7 4.2 4.6 4.7 4.1 3.7 3.4 3.3

3.7 4.1 4.5 4.6 4.4 4.8 4.3 4.4 5.1 3.9

Examination of this long list of numbers seems to tell us little other than, per-
haps, the response times are greater than 3 ps or less than 7 ps. (If the list contained
several hundred numbers, even this information would be difficult to elicit.)

A start at exploring data can be made by constructing a stem-and-leaf display.
To construct such a display, the first digit of each response time is listed in a column
at the left, and the associated second digits are listed to the right of each first digit.
For the response-time data, we obtain the following stem-and-leaf display:
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3 7 4 4 7 7 4 3 7 9

4 6 0 1 1 5 6 2 6 7 1 1 5 6 4 8 3 4

5 6 1

6 0 0

In this display, each row is a stem and the numbers in the column to the left of the
vertical line are called stem labels. Each number on a stem to the right of the vertical
line is called a leaf.

The stem-and-leaf display allows examination of the data in a way that would
be difficult, if not impossible, from the original listing. For example, it can quickly
be seen that there are more response times in the range 4.0 to 4.9 ps than any other,
and that the great majority of circuits had response times of less than 5. This method
of exploratory data analysis yields another advantage; namely there is no loss of
information in a stem-and-leaf display.

The first two stems of this stem-and-leaf display contain the great majority of
the observations, and more detail might be desirable. To obtain a finer subdivision
of the data in each stem, a double-stem display can be constructed by dividing each
stem in half so that the leaves in the first half of each stem are 0, 1, 2, 3, and 4, and
those in the second half are 5, 6, 7, 8, and 9. The resulting double-stem display looks
like this:

3f 4 4 4 3

3s 7 7 7 7 9

4f 0 1 1 2 1 1 4 3 4

4s 6 5 6 6 7 5 6 8

5∗ 6 1

6∗ 0 0

The stem labels include the letter f (for first) to denote that the leaves of this stem
are 0–4, and s (for second) to denote that the leaves are 5–9. The asterisk is used with
stem labels 5 and 6 to show that all 10 digits are included in these stems.

Numerical data can be grouped according to their values in several other ways
in addition to stem-and-leaf displays.

DEFINITION 15. FREQUENCY DISTRIBUTION. A grouping of numerical data into classes

having definite upper and lower limits is called a frequency distribution.

The construction of a frequency distribution is easily facilitated with a computer
program such as MINITAB. The following discussion may be omitted if a computer
program is used to construct frequency distributions.

To construct a frequency distribution, first a decision is made about the number
of classes to use in grouping the data. The number of classes can be chosen to make
the specification of upper and lower class limits convenient. Generally, the number
of classes should increase as the number of observations becomes larger, but it is
rarely helpful to use fewer than 5 or more than 15 classes.
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The smallest and largest observations that can be put into each class are called
the class limits. In choosing class limits, it is important that the classes do not over-
lap, so there is no ambiguity about which class contains any given observation. Also,
enough classes should be included to accommodate all observations. Finally, the
observations are tallied to determine the class frequencies, the number of obser-
vations falling into each class.

EXAMPLE 28

Construct a frequency distribution of the following compressive strengths (in psi) of
concrete samples, given to the nearest 10 psi:

4890 4830 5490 4820 5230 4860 5040 5060 4500 5260

4610 5100 4730 5250 5540 4910 4430 4850 5040 5000

4600 4630 5330 5160 4950 4480 5310 4730 4700 4390

4710 5160 4970 4710 4430 4260 4890 5110 5030 4850

4820 4550 4970 4740 4840 4910 5200 4880 5150 4890

4900 4990 4570 4790 4480 5060 4340 4830 4670 4750

Solution

Since the smallest observation is 4260 and the largest is 5540, it will be convenient
to choose seven classes, having the class limits 4200–4390, 4400–4590, . . ., 5400–5990.
(Note that class limits of 4200–4400, 4400–4600, etc., are not used because they would
overlap and assignment of 4400, for example, would be ambiguous; it could fit into
either of the first two classes.) The following table exhibits the results of tallying the
observations, that is, counting the number that fall into each class:

Class Limits Tally Frequency

4200–4390 3

4400–4590 7

4600–4790 12

4800–4990 19

5000–5190 11

5200–5390 6

5400–5590 2

Total 60

Note the similarity between frequency distributions and probability distribu-
tions. A frequency distribution represents data, but a probability distribution rep-
resents a theoretical distribution of probabilities.

The midpoint between the upper class limit of a class and the lower class limit of
the next class in a frequency distribution is called a class boundary. Class boundaries,
rather than class marks, are used in constructing cumulative distributions
(Exercise 88). The interval between successive class boundaries is called the class

interval; it can also be defined as the difference between successive lower class lim-
its or successive upper class limits. (Note that the class interval is not obtained by

)("



Probability Distributions and Probability Densities

subtracting the lower class limit of a class from its upper class limit.) A class can be
represented by a single number, called the class mark. This number is calculated for
any class by averaging its upper and lower class limits.

Once data have been grouped into a frequency distribution, each observation
in a given class is treated as if its value is the class mark of that class. In so doing,
its actual value is lost; it is known only that its value lies somewhere between the
class limits of its class. Such an approximation is the price paid for the convenience
of working with a frequency distribution.

EXAMPLE 29

For the frequency distribution of compressive strengths of concrete given in
Example 28, find (a) the class boundaries, (b) the class interval, and (c) the class
mark of each class.

Solution

(a) The class boundaries of the first class are 4195–4395. The class boundaries
of the second through the sixth classes are 4395–4595, 4595–4795, 4795–4995,
4995–5195, and 5195–5395, respectively. The class boundaries of the last class
are 5395–5595. Note that the lower class boundary of the first class is calculated
as if there were a class below the first class, and the upper class boundary of the
last class is calculated as if there were a class above it. Also note that, unlike
class limits, the class boundaries overlap.

(b) The class interval is 200, the difference between the upper and lower class
boundaries of any class. It also can be found by subtracting successive lower
class limits, for example, 4400− 4200 = 200 psi, or by subtracting successive
upper class limits, for example, 4590− 4390 = 200.

(c) The class mark of the first class is (4200+ 4390)/2 = 4295; it is (4400+ 4590)/
2 = 4495 for the second class; and the class marks are 4695, 4895, 5095, 5295,
and 5495 for the remaining five classes. Note that the class interval, 200, also is
given by the difference between any two successive class marks.

Histograms are easily constructed using most statistical software packages. Using
MINITAB software to construct the histogram of compressive strengths, we obtain
the result shown in Figure 13.

EXAMPLE 30

Suppose a wire is soldered to a board and pulled with continuously increasing force
until the bond breaks. The forces required to break the solder bonds are as follows:

Force Required to Break Solder Bonds (grams)

19.8 13.9 30.4 16.4 11.6 36.9 14.8 21.1 13.5 5.8

10.0 17.1 14.1 16.6 23.3 12.1 18.8 10.4 9.4 23.8

14.2 26.7 7.8 22.9 12.6 6.8 13.5 10.7 12.2 27.7

9.0 14.9 24.0 12.0 7.1 12.8 18.6 26.0 37.4 13.3

Use MINITAB or other statistical software to obtain a histogram of these data.
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Figure 13. Histogram of compressive strengths.

Solution

The resulting histogram is shown in Figure 14. This histogram exhibits a right-hand
“tail,” suggesting that while most of the solder bonds have low or moderate breaking
strengths, a few had strengths that were much greater than the rest.
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Figure 14. Histogram of solder-bond strengths.

Data having histograms with a long tail on the right or on the left are said to be
skewed. A histogram exhibiting a long right-hand tail arises when the data have pos-

itive skewness. Likewise, if the tail is on the left, the data are said the have negative

skewness. Examples of data that often are skewed include product lifetimes, many
kinds of stress tests, workers’ incomes, and many weather-related phenomena, such
as the proportion of cloudiness on a given day.
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The shape of a histogram can be a valuable guide to a search for causes of
production problems in the early stages of an investigation. For example, a skewed
histogram often arises from “drifting” of machine settings from their nominal val-
ues. Sometimes skewed distributions do not arise from underlying causes but are
the natural consequences of the type of measurements made. Some examples of
“naturally” skewed data include the duration of telephone calls, the time intervals
between emissions of radioactive particles, and, as previously mentioned, incomes
of workers.

Histograms sometimes show more than one mode, or “high points.” A mode
is a bar in a histogram that is surrounded by bars of lower frequency. A histogram
exhibiting two modes is said to be bimodal, and one having more than two modes
is said to be multimodal. An example of a bimodal histogram is shown in Figure 15.
If there are several causes operating, each cause may generate its own distribution,
and the histogram of all the data may be multimodal, each mode representing the
center of the data that would arise from the corresponding cause if it were operating
alone. Thus, multimodality can facilitate a search for underlying causes of error with
the aim of eliminating them.

Figure 15. Bimodal histogram.

Applied Exercises SECS. 1–2

83. With reference to Example 3, find the probability dis-
tribution of Y, the difference between the number of
heads and the number of tails obtained in four tosses of a
balanced coin.

84. An urn contains four balls numbered 1, 2, 3, and 4. If
two balls are drawn from the urn at random (that is, each
pair has the same chance of being selected) and Z is the
sum of the numbers on the two balls drawn, find
(a) the probability distribution of Z and draw a histo-
gram;

(b) the distribution function of Z and draw its graph.

85. A coin is biased so that heads is twice as likely as tails.
For three independent tosses of the coin, find
(a) the probability distribution of X, the total number
of heads;

(b) the probability of getting at most two heads.

86. With reference to Exercise 85, find the distribution
function of the random variable X and plot its graph. Use
the distribution function of X to find

(a) P(1<X F 3); (b) P(X > 2).

87. The probability distribution of V, the weekly num-
ber of accidents at a certain intersection, is given by
g(0) = 0.40, g(1) = 0.30, g(2) = 0.20, and g(3) = 0.10.
Construct the distribution function of V and draw
its graph.

88. With reference to Exercise 87, find the probability
that there will be at least two accidents in any one
week, using
(a) the original probabilities;

(b) the values of the distribution function.

89. This question has been intentionally omitted for this
edition.

90. With reference to Exercise 80, find the distribution
function of the sum of the spots on the dice, that is, the
probability that this sum of the spots on the dice will be
at most S, where S = 2, 3, . . . , 12.

)( 



Probability Distributions and Probability Densities

SECS. 3–4
91. The actual amount of coffee (in grams) in a 230-gram
jar filled by a certain machine is a random variable whose
probability density is given by

f (x) =























0 for x F 227.5

1

5
for 227.5< x< 232.5

0 for x G 232.5

Find the probabilities that a 230-gram jar filled by this
machine will contain
(a) at most 228.65 grams of coffee;

(b) anywhere from 229.34 to 231.66 grams of coffee;

(c) at least 229.85 grams of coffee.

92. The number of minutes that a flight from Phoenix to
Tucson is early or late is a random variable whose proba-
bility density is given by

f (x) =











1

288
(36− x2) for −6< x< 6

0 elsewhere

where negative values are indicative of the flight’s being
early and positive values are indicative of its being late.
Find the probabilities that one of these flights will be
(a) at least 2 minutes early;

(b) at least 1 minute late;

(c) anywhere from 1 to 3 minutes early;

(d) exactly 5 minutes late.

93. The tread wear (in thousands of kilometers) that car
owners get with a certain kind of tire is a random variable
whose probability density is given by

f (x) =











1

30
e−

x
30 for x> 0

0 for x F 0

Find the probabilities that one of these tires will last
(a) at most 18,000 kilometers;

(b) anywhere from 27,000 to 36,000 kilometers;

(c) at least 48,000 kilometers.

94. The shelf life (in hours) of a certain perishable pack-
aged food is a random variable whose probability density
function is given by

f (x) =















20,000

(x+ 100)3
for x> 0

0 elsewhere

Find the probabilities that one of these packages will have
a shelf life of

(a) at least 200 hours;

(b) at most 100 hours;

(c) anywhere from 80 to 120 hours.

95. The total lifetime (in years) of five-year-old dogs of
a certain breed is a random variable whose distribution
function is given by

F(x) =











0 for x F 5

1−
25

x2
for x> 5

Find the probabilities that such a five-year-old dog
will live
(a) beyond 10 years;

(b) less than eight years;

(c) anywhere from 12 to 15 years.

96. In a certain city the daily consumption of water (in
millions of liters) is a random variable whose probability
density is given by

f (x) =















1

9
xe−

x
3 for x> 0

0 elsewhere

What are the probabilities that on a given day
(a) the water consumption in this city is no more than 6
million liters;

(b) the water supply is inadequate if the daily capacity of
this city is 9 million liters?

SEC. 5

97. Two textbooks are selected at random from a shelf
that contains three statistics texts, two mathematics texts,
and three physics texts. If X is the number of statistics
texts and Y the number of mathematics texts actually
chosen, construct a table showing the values of the joint
probability distribution of X and Y.

98. Suppose that we roll a pair of balanced dice and X is
the number of dice that come up 1, and Y is the number
of dice that come up 4, 5, or 6.
(a) Draw a diagram like that of Figure 1 showing the val-
ues of X and Y associated with each of the 36 equally
likely points of the sample space.

(b) Construct a table showing the values of the joint prob-
ability distribution of X and Y.

99. If X is the number of heads and Y the number of
heads minus the number of tails obtained in three flips
of a balanced coin, construct a table showing the values
of the joint probability distribution of X and Y.

100. A sharpshooter is aiming at a circular target with
radius 1. If we draw a rectangular system of coordinates
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with its origin at the center of the target, the coordinates
of the point of impact, (X, Y), are random variables hav-
ing the joint probability density

f (x, y) =















1

π
for 0< x2+ y2< 1

0 elsewhere

Find
(a) P[(X, Y) ∈ A], where A is the sector of the circle in
the first quadrant bounded by the lines y = 0 and y = x;

(b) P[(X, Y) ∈ B], where B = {(x, y)|0< x2+ y2< 1
2 }.

101. Suppose that P, the price of a certain commodity (in
dollars), and S, its total sales (in 10,000 units), are ran-
dom variables whose joint probability distribution can be
approximated closely with the joint probability density

f (p, s) =

{

5pe−ps for 0.20<p< 0.40, s> 0

0 elsewhere

Find the probabilities that
(a) the price will be less than 30 cents and sales will
exceed 20,000 units;

(b) the price will be between 25 cents and 30 cents and
sales will be less than 10,000 units.

102. A certain college gives aptitude tests in the sciences
and the humanities to all entering freshmen. If X and Y
are, respectively, the proportions of correct answers that
a student gets on the tests in the two subjects, the joint
probability distribution of these random variables can be
approximated with the joint probability density

f (x, y) =















2

5
(2x+ 3y) for 0< x< 1, 0< y< 1

0 elsewhere

What are the probabilities that a student will get
(a) less than 0.40 on both tests;

(b) more than 0.80 on the science test and less than 0.50
on the humanities test?

SECS. 6–7

103. With reference to Exercise 97, find
(a) the marginal distribution of X;

(b) the conditional distribution of Y given X = 0.

104. If X is the proportion of persons who will respond to
one kind of mail-order solicitation, Y is the proportion of
persons who will respond to another kind of mail-order

solicitation, and the joint probability density of X and Y
is given by

f (x, y) =















2

5
(x+ 4y) for 0< x< 1, 0< y< 1

0 elsewhere

find the probabilities that
(a) at least 30 percent will respond to the first kind of
mail-order solicitation;

(b) at most 50 percent will respond to the second kind of
mail-order solicitation given that there has been a 20 per-
cent response to the first kind of mail-order solicitation.

105. If two cards are randomly drawn (without replace-
ment) from an ordinary deck of 52 playing cards, Z is the
number of aces obtained in the first draw, and W is the
total number of aces obtained in both draws, find
(a) the joint probability distribution of Z and W;

(b) the marginal distribution of Z;

(c) the conditional distribution of W given Z = 1.

106. With reference to Exercise 101, find
(a) the marginal density of P;

(b) the conditional density of S given P = p;

(c) the probability that sales will be less than 30,000 units
when p = 25 cents.

107. If X is the amount of money (in dollars) that a sales-
person spends on gasoline during a day and Y is the cor-
responding amount of money (in dollars) for which he or
she is reimbursed, the joint density of these two random
variables is given by

f (x, y) =















1

25

(

20− x

x

)

for 10< x< 20,
x

2
< y< x

0 elsewhere

find
(a) the marginal density of X;

(b) the conditional density of Y given X = 12;

(c) the probability that the salesperson will be reim-
bursed at least $8 when spending $12.

108. Show that the two random variables of Exercise 102
are not independent.

109. The useful life (in hours) of a certain kind of inte-
grated circuit is a random variable having the probabil-
ity density

f (x) =















20,000

(x+ 100)3
for x> 0

0 elsewhere
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If three of these circuits operate independently, find
(a) the joint probability density of X1, X2, and X3, repre-
senting the lengths of their useful lives;

(b) the value of P(X1< 100, X2< 100, X3 G 200).

SEC. 8

110. The following are the percentages of tin in measure-
ments made on 24 solder joints:

61 63 59 54 65 60 62 61 67 60 55 68

57 64 65 62 59 59 60 62 61 63 58 61

(a) Construct a stem-and-leaf diagram using 5 and 6 as
the stem labels.

(b) Construct a double-stem display.

(c) Which is more informative?

111. Suppose the first row of 12 observations in Exer-
cise 110 came from solder connections made at station
105 and the second row came from station 107. Use a
pair of stem-and-leaf diagrams to determine whether you
should suspect a difference in the soldering process at the
two stations.

112. Two different lathes turn shafts to be used in electric
motors. Measurements made of their diameters (in cm)
are

Lathe A: 1.42 1.38 1.40 1.41 1.39 1.44 1.36 1.42 1.40

Lathe B: 1.47 1.31 1.56 1.33 1.29 1.46 1.28 1.51

Construct two stem-and-leaf diagrams to see if you
should suspect that the two lathes are turning out shafts
of different diameters.

113. Use MINITAB or some other computer software to
construct a stem-and-leaf display for the following data
representing the time to make coke (in hours) in succes-
sive runs of a coking oven.

7.8 9.2 6.4 8.2 7.6 5.9 7.4 7.1 6.7 8.5

10.1 8.6 7.7 5.9 9.3 6.4 6.8 7.9 7.2 10.2

6.9 7.4 7.8 6.6 8.1 9.5 6.4 7.6 8.4 9.2

114. Use MINITAB or some other computer software to
construct a stem-and-leaf display for the combined data
of Exercise 112.

115. The following are the drying times (minutes) of 100
sheets coated with polyurethane under various ambient
conditions:

45.6 50.3 55.1 63.0 58.2 65.5 51.1 57.4 60.4 54.9

56.1 62.1 43.5 63.8 64.9 59.9 63.0 67.7 53.8 57.9

61.8 52.2 61.2 51.6 58.6 73.8 53.9 64.1 57.2 75.4

55.9 70.1 46.2 63.6 56.0 48.1 62.2 58.8 50.8 68.1

51.4 73.9 66.7 42.9 71.0 56.1 60.8 58.6 70.6 62.2

59.9 47.5 72.5 62.0 56.8 54.3 61.0 66.3 52.6 63.5

64.3 63.6 53.5 55.1 62.8 63.3 64.7 54.9 54.4 69.6

64.2 59.3 60.6 57.1 68.3 46.7 73.7 56.8 62.9 58.4

68.5 68.9 62.1 62.8 74.4 43.8 40.0 64.4 50.8 49.9

55.8 66.8 67.0 64.8 57.6 68.3 42.5 64.4 48.3 56.5

Construct a frequency distribution of these data, using
eight classes.

116. Eighty pilots were tested in a flight simulator and
the time for each to take corrective action for a given
emergency was measured in seconds, with the following
results:

11.1 5.2 3.6 7.6 12.4 6.8 3.8 5.7 9.0 6.0 4.9 12.6

7.4 5.3 14.2 8.0 12.6 13.7 3.8 10.6 6.8 5.4 9.7 6.7

14.1 5.3 11.1 13.4 7.0 8.9 6.2 8.3 7.7 4.5 7.6 5.0

9.4 3.5 7.9 11.0 8.6 10.5 5.7 7.0 5.6 9.1 5.1 4.5

6.2 6.8 4.3 8.5 3.6 6.1 5.8 10.0 6.4 4.0 5.4 7.0

4.1 8.1 5.8 11.8 6.1 9.1 3.3 12.5 8.5 10.8 6.5 7.9

6.8 10.1 4.9 5.4 9.6 8.2 4.2 3.4

Construct a frequency distribution of these data.

117. Find the class boundaries, the class interval, and the
class marks of the frequency distribution constructed in
Exercise 115.

118. Find the class boundaries, the class interval, and the
class marks of the frequency distribution constructed in
Exercise 116.

119. The following are the number of highway accidents
reported on 30 successive days in a certain county:

6 4 0 3 5 6 2 0 0 12 3 7 2 1 1

0 4 0 0 0 1 8 0 2 4 7 3 6 2 0

Construct a frequency distribution of these data. Iden-
tify the class boundaries, the class marks, and the class
interval.

120. A percentage distribution is obtained from a fre-
quency distribution by replacing each frequency by 100
times the ratio of that frequency to the total frequency.
Construct a percentage distribution using the reaction-
time data of Exercise 116.
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121. Construct a percentage distribution using the drying-
time data of Exercise 115.

122. Percentage distributions are useful in comparing two
frequency distributions having different total frequen-
cies. Construct percentage distributions from the follow-
ing two frequency distributions and determine whether
the distributions of daily absences in the two departments
follow similar patterns.

FREQUENCIES

Class Shipping Security
Limits Department Department

0–1 26 18

2–3 18 11

4–5 10 7

6–7 4 3

8–9 2 1

Totals 60 40

123. A cumulative frequency distribution is constructed
from a frequency distribution by replacing each fre-
quency with the sum of the frequency of the given class
and the frequencies of all classes above it, and represent-
ing each class by its upper class boundary. Construct a
cumulative frequency distribution using the data of Exer-
cise 115.

124. Construct a cumulative frequency distribution using
the data of Exercise 116.

125. Construct cumulative percentage distributions from
the frequency distributions of absences given in Exer-
cise 122.

126. Unequal class intervals. The small number of obser-
vations greater than 7 in Exercise 119 may cause some
difficulty in constructing a frequency distribution. To
keep class intervals equal, one is faced with the dilemma
of either creating too many classes for only 30 observa-
tions or using a small number of classes with excessive
loss of information in the first few classes. In such cases,
one is tempted to drop the rule of equal-size classes, using
a larger interval for the last class.
(a) If that were done, what would the resulting frequency
distribution become?

(b) Is there a unique class interval?

127. The following are the times to failure of 38 light
bulbs, given in hours of operation.

150 389 345 310 20 310 175 376 334 340

332 331 327 344 328 341 325 2 311 320

256 315 55 345 111 349 245 367 81 327

355 309 375 316 336 278 396 287

(a) Dropping the rule that class intervals must be equal,
construct a frequency distribution from these data.

(b) Can you find the class mark of every class?

128. (a) Construct a histogram of the reaction times of
pilots from the data in Exercise 116.

(b) What can be said about the shape of this histogram?

129. (a) Construct a histogram of the drying times of
polyurethane from the data in Exercise 115.

(b) What can be said about the shape of this histogram?

130. Use the data of Exercise 128 to illustrate that class
marks are given by the midpoint between successive class
boundaries as well as the midpoint between successive
class limits.

131. Using the data of Exercise 129, show that the class
marks also are given by the midpoint between successive
class boundaries.

132. Construct a histogram using the solder-joint data in
Exercise 110.

133. (a) Using only the first two rows of the data for the
response times given in Section 8, construct a histogram.

(b) How would you describe the shape of the histogram?

134. (a) Combining the data for both lathes in Exer-
cise 112, construct a histogram.

(b) How would you describe the shape of the histogram?

135. Use MINITAB or some other computer software to
construct a histogram of the coking-time data given in
Exercise 113.

136. Use MINITAB or some other computer software to
construct a histogram of the drying-time data in Exer-
cise 115.

137. A plot of the points (x, f ), where x represents the
class mark of a given class in a frequency distribution and
f represents its frequency, is called a frequency polygon.
Construct a frequency polygon using the data in Exer-
cise 116.

138. Construct a frequency polygon from the data in
Exercise 115.

139. A plot of the cumulative frequency (see Exer-
cise 123) on the y-axis and the corresponding upper class
boundary on the x-axis is called an ogive.

))(
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(a) Construct an ogive for the data of Exercise 115.

(b) Using the same set of axes, relabel the y-axis so that
the same graph also shows the ogive of the percentage
distribution of drying times.

140. (a) Construct an ogive for the reaction times given
in Exercise 116.

(b) Construct an ogive representing the cumulative per-
centage distribution.
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Answers to Odd-Numbered Exercises

1 (a) no, because f (4) is negative; (b) yes; (c) no, because
the sum of the probabilities is less than 1.

5 0<k< 1.

9 (a) no, because F(4) exceeds 1; (b) no, because F(2) is
less than F(1); (c) yes.

11 (a) 1
2 ; (b) 1

6 ; (c) f (1) = 1
3 ; f (4) = 1

6 ; f (6) = 2
3 ;

f (10) = 1
6 ; f (x) = 0 elsewhere.

13 (a) 3
4 ; (b) 1

4 ; (c) 1
2 ; (d) 3

4 ; (e) 1
2 ; (f) 1

4 .

17 (b) 2
5 .

19 (c) 0.124.

21 F(y) =















0 for y… 2

1
16 (y

2+ 2y− 8) for 2< y< 4

1 for yÚ 4

The probabilities are 0.454 and 0.1519.

23 F(x) =











0 for x… 0
1
2

√
x for 0< x< 4;

1 for xÚ 4

(b) 1
4 and 1

2 .

25 F(z) =

{

0 for z… 0

1− e−z2
for z> 0

27 G(x) =











0 for x… 0

3x2− 2x3 for 0< x< 1

1 for xÚ 1

The probabilities are 5
32 and 1

2 .

29 F(x) =



































0 for x… 0

x2

2
for 0< x< 1

2x−
x2

2
− 1 for … x< 2

1 for xÚ 2

31 F(x) =







































0 for x… 0

x2

4
for 0< x… 1

1
4 (2x− 1) for 1< x… 2

1
4 (6x− x2− 5) for 2< x< 3

1 for xÚ 3

33 f (x) = 1
2 for − 1< x< 1 and f (x) = 0 elsewhere.

35 f (y) =
18

y3
for y> 0 and f (y) = 0 elsewhere; the two prob-

abilities are 16
25 and 9

64 .

37 The three probabilities are 1− 3e−2, 2e−1− 4e−3, and

5e−5.

39 (a) F(x) = 0; (b) F(x) = 1
2 x; (c) F(x) = 1

2 (x+ 1);
(d) F(x) = 0.

41 The probabilities are 1
4 , 1

4 , 3
8 , and 1

2 .

43 (a) 1
4 ; (b) 0; (c) 7

24 ; (d) 119
120 .

45 (a) 29
89 ; (b) 5

89 ; (c) 55
89 .

)))



Probability Distributions and Probability Densities

47 x

0 1 2 3

0 0 1
30

1
10

1
5

y 1 1
30

2
15

3
10

8
15

2 1
10

3
10

3
5 1

49 k = 2.

51 (a) 1
2 ; (b) 5

9 ; (c) 1
3 .

53 1− 1
2 ln 2 = 0.6354.

55 (e−1− e−4)2.

57 (e−2− e−3)2.

63 (a) 1
18 ; (b) 7

27 .

65 k = 144.

71 (a) m(x, y) =
xy

36
for x = 1, 2, 3 and y = 1, 2, 3;

(b) n(x, z) =
xz

18
for x = 1, 2, 3 and z = 1, 2;

(c) g(x) =
x

6
for x = 1, 2, 3; (d) φ(z|1, 2) =

z

3
for z = 1, 2;

(e) ψ(y, z|3) =
yz

18
for y = 1, 2, 3 and z = 1, 2.

73 (a) Independent; (b) not independent.

75 (a) h(y) = 1
4 (1+ y) for 0< y< 2 and h(y) = 0 elsewhere;

(b) f (x|1) = 1
2 (2x+ 1) for 0< x< 1 and f (x|1) = 0 elsewhere.

77 (a) g(x) = − ln x for 0< x< 1 and g(x) = 0 elsewhere;
(b) h(y) = 1 for 0< y< 1 and h(y) = 0 elsewhere. The two
random variables are not independent.

79 G(x) = 1− e−x2
for x> 0 and G(x) = 0 elsewhere.

83 Y −4 −2 0 2 4

P(Y) 1
16

4
16

6
16

4
16

1
16

85 (a) X 0 1 2 3

P(X) 1
27

6
27

12
27

8
27

(b) 19
27 .

87 F(V) =



























0 for V< 0
0.40 for 0…V< 1
0.70 for 1…V< 2
0.90 for 2…V< 3

1 for V Ú 3

.

89 Yes;

12
∑

x=2

f (x) = 1.

91 (a) 0.23; (b) 0.464; (c) 0.53.

93 (a) 0.4512; (b) 0.1054; (c) 0.2019.

95 (a) 1
4 ; (b) 39

64 ; (c) 1
16 .

101 (a) 0.3038; (b) 1
221 .

103 (a) g(0) = 5
14 , g(1) = 15

28 , g(2) = 3
28 ;

(b) φ(0|0) = 3
10 , φ(1|0) = 6

10 , φ(2|0) = 1
10 .

105 (a) f (0, 0) = 188
221 , f (0, 1) = 16

221 , f (1, 0) = 16
221 ,

f (1, 1) = 1
221 . (b) g(0) = 204

221 , g(1) = 17
221 ; (c) φ(0|0) = 16

17 ,

φ(1, 1) = 1
17 .

107 (a) g(x) =
20− x

50
for 10< x< 20 and g(x) = 0 else-

where; (b) φ(y|12) = 1
6 for 6< y< 12 and φ(y|12) = 0

elsewhere; (c) 2
3 .

109 (a) f (x1, x2, x3) =
(20, 000)3

(x1+ 100)3(x2+ 100)3(x3+ 100)3

for x1> 0, x2> 0, x3> 0 and f (x1, x2, x3) = 0 elsewhere;

(b) 1
16 .

111 Station 107 data show less variability than station
105 data.
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